1
|
Netti V, Cocca MA, Cutrera N, Molina Ponce T, Ford P, Di Giusto G, Capurro C. Osteopontin Regulates AQP4 Expression by TRPV4 Activation in Müller Cells: Implications for Retinal Homeostasis. Mol Neurobiol 2024:10.1007/s12035-024-04595-6. [PMID: 39485629 DOI: 10.1007/s12035-024-04595-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024]
Abstract
During the intense neuronal activity in the retina, Müller cells are exposed to a hypotonic environment and activate a regulatory volume decrease (RVD) response, which depends on Aquaporin-4 (AQP4) and the calcium channel Transient Receptor Potential Vanilloid 4 (TRPV4). It was reported that Osteopontin (OPN), a cytokine and component of the extracellular matrix (ECM), may modulate the RVD of Müller cells. In other cell types, OPN participates in cell survival and migration, which Müller cells undergo to maintain retinal homeostasis. Therefore, the aim of this work was to study the putative crosstalk of OPN with AQP4 and/or TRPV4 in the main functions of Müller cells: RVD, morphology maintenance and migration. We used a human Müller cell line (MIO-M1) exposed to OPN and evaluated cell volume and osmotic permeability (Pf) during an osmotic swelling, AQP4 expression, cell morphology and migration. We observed that OPN induced a reduced Pf and RVD by downregulating AQP4 expression, which was prevented by TRPV4 inhibition. OPN also induced significant changes in cell morphology with an increased number of cytoplasmic projections. Finally, OPN reduced the migration of Müller cells, being this effect dependent on TRPV4. We propose that OPN affects water permeability and cell volume regulation of Müller cells by activating TRPV4 to reduce AQP4 expression. This represents a novel mechanism of regulation of water permeability by the ECM in Müller cells. Additionally, OPN-induced changes in morphology and migration of Müller cells may have an impact on retinal physiology.
Collapse
Affiliation(s)
- Vanina Netti
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Azul Cocca
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Nicolás Cutrera
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Tomás Molina Ponce
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Ford
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela Di Giusto
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| | - Claudia Capurro
- Facultad de Ciencias Médicas, Departamento de Ciencias Fisiológicas, Laboratorio de Biomembranas, Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO Houssay), Paraguay 2155, 7Th Floor (1121), Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
2
|
Someya H, Ito M, Nishio Y, Sato T, Harimoto K, Takeuchi M. Osteopontin-induced vascular hyperpermeability through tight junction disruption in diabetic retina. Exp Eye Res 2022; 220:109094. [PMID: 35490836 DOI: 10.1016/j.exer.2022.109094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/17/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022]
Abstract
Diabetic retinopathy is a major cause of blindness in developed countries, and is characterized by deterioration of barrier function causing vascular hyperpermeability and retinal edema. Vascular endothelial growth factor (VEGF) is a major mediator of diabetic macular edema. Although anti-VEGF drugs are the first-line treatment for diabetic macular edema, some cases are refractory to anti-VEGF therapy. Osteopontin (OPN) is a phosphoglycoprotein with diverse functions and expressed in various cells and tissues. Elevated OPN level has been implicated in diabetic retinopathy, but whether OPN is involved in hyperpermeability remains unclear. Using streptozotocin-induced diabetic mice (STZ mice) and human retinal endothelial cells (HRECs), we tested the hypothesis that up-regulated OPN causes tight junction disruption, leading to vascular hyperpermeability. The serum and retinal OPN concentrations were elevated in STZ mice compared to controls. Intravitreal injection of anti-OPN neutralizing antibody (anti-OPN Ab) suppressed vascular hyperpermeability and prevented decreases in claudin-5 and ZO-1 gene expression levels in the retina of STZ mice. Immunohistochemical staining of retinal vessels in STZ mice revealed claudin-5 immunoreactivity with punctate distribution and attenuated ZO-1 immunoreactivity, and these changes were prevented by anti-OPN Ab. Intravitreal injection of anti-OPN Ab did not change VEGF gene expression or protein concentration in retina of STZ mice. In an in vitro study, HRECs were exposed to normal glucose or high glucose with or without OPN for 48 h, and barrier function was evaluated by transendothelial electrical resistance and Evans blue permeation. Barrier function deteriorated under high glucose condition, and was further exacerbated by the addition of OPN. Immunofluorescence localization of claudin-5 and ZO-1 demonstrated punctate appearance with discontinuous junction in HRECs exposed to high glucose and OPN. There were no changes in VEGF and VEGF receptor-2 expression levels in HRECs by exposure to OPN. Our results suggest that OPN induces tight junction disruption and vascular hyperpermeability under diabetic conditions. Targeting OPN may be an effective approach to manage diabetic retinopathy.
Collapse
Affiliation(s)
- Hideaki Someya
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshiaki Nishio
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Tomohito Sato
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Kozo Harimoto
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan.
| |
Collapse
|
3
|
Gao J, Xu G, Xu P. Full-length transcriptomic analysis reveals osmoregulatory mechanisms in Coilia nasus eyes reared under hypotonic and hyperosmotic stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149333. [PMID: 34352462 DOI: 10.1016/j.scitotenv.2021.149333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
In recent years, sea-level rise, caused by global warming, will trigger salinity changes. This will threaten the survival of aquatic animals. Till now, the osmoregulatory mechanism of Coilia nasus eyes has not been yet explored. Oxford Nanopore Technologies (ONT) sequencing was performed in C. nasus eyes during hypotonic and hyperosmotic stress for the first time. 22.5G clean reads and 26,884 full-length non-redundant sequences were generated via ONT sequencing. AS events, APA, TF, and LncRNA were identified. During hypotonic stress, 46 up-regulated DEGs and 28 down-regulated DEGs were identified. During hypertonic stress, 190 up-regulated DEGs and 182 down-regulated DEGs were identified. These DEGs were associated with immune, metabolism, and transport responses. The expression of these DEGs indicated that apoptosis and inflammation were triggered during hypotonic and hyperosmotic stress. To resist hypotonic stress, polyamines metabolism and transport of Na+ and Cl- from inter-cellular to extra-cellular were activated. During hyperosmotic stress, amino acids metabolism and transport of myo-inositol and Na+ from extra-cellular to inter-cellular were activated, while Cl- transport was inhibited. Moreover, different transcript isoforms generated from the same gene performed different expression patterns during hypotonic and hypertonic stress. These findings will be beneficial to understand osmoregulatory mechanism of C. nasus eyes, and can also improve our insights on the adaptation of aquatic animals to environmental changes.
Collapse
Affiliation(s)
- Jun Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China
| | - Gangchun Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China.
| |
Collapse
|
4
|
Zwanzig A, Meng J, Müller H, Bürger S, Schmidt M, Pankonin M, Wiedemann P, Unterlauft JD, Eichler W. Neuroprotective effects of glial mediators in interactions between retinal neurons and Müller cells. Exp Eye Res 2021; 209:108689. [PMID: 34216615 DOI: 10.1016/j.exer.2021.108689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/31/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
Progressive retinal ganglion cell (RGC) loss underlies a number of retinal neurodegenerative disorders, which may lead to permanent vision loss. However, secreted neuroprotective factors, such as PEDF, VEGF and IL-6, which are produced by Müller cells, have been shown to promote RGC survival. Assuming that the communication of RGCs with Müller cells involves a release of glioactive substances we sought to determine whether retinal neurons are able to modulate expression levels of Müller cell-derived PEDF, VEGF and IL-6. We demonstrate elevated mRNA levels of these factors in Müller cells in co-cultures with RGCs or R28 cells when compared to homotypic Müller cell cultures. Furthermore, R28 cells were more protected from apoptosis when co-cultured with Müller cells. IL-6 and VEGF were upregulated in Müller cells under hypoxia. Both cytokines, as well as PEDF, induced an altered neuronal expression of members of the Bcl-2 family, which are central molecules in the regulation of apoptosis. These results suggest that in retinal ischemia, via own secreted mediators, RGCs can resist a potential demise by stimulating Müller cells to increase production of neuroprotective factors, which counteract RGC apoptosis.
Collapse
Affiliation(s)
- Annette Zwanzig
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Jie Meng
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Heidi Müller
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Susanne Bürger
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Manuela Schmidt
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Maik Pankonin
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Peter Wiedemann
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Jan Darius Unterlauft
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany
| | - Wolfram Eichler
- Leipzig University, Department of Ophthalmology and Eye Hospital, Liebigstrasse 10-14, D-04103 Leipzig, Germany.
| |
Collapse
|
5
|
Sagmeister S, Merl-Pham J, Petrera A, Deeg CA, Hauck SM. High glucose treatment promotes extracellular matrix proteome remodeling in Mller glial cells. PeerJ 2021; 9:e11316. [PMID: 34046254 PMCID: PMC8139267 DOI: 10.7717/peerj.11316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/30/2021] [Indexed: 11/20/2022] Open
Abstract
Background The underlying pathomechanisms in diabetic retinopathy (DR) remain incompletely understood. The aim of this study was to add to the current knowledge about the particular role of retinal Mller glial cells (RMG) in the initial processes of DR. Methods Applying a quantitative proteomic workflow, we investigated changes of primary porcine RMG under short term high glucose treatment as well as glycolysis inhibition treatment. Results We revealed significant changes in RMG proteome primarily in proteins building the extracellular matrix (ECM) indicating fundamental remodeling processes of ECM as novel rapid response to high glucose treatment. Among others, Osteopontin (SPP1) as well as its interacting integrins were significantly downregulated and organotypic retinal explant culture confirmed the selective loss of SPP1 in RMG upon treatment. Since SPP1 in the retina has been described neuroprotective for photoreceptors and functions against experimentally induced cell swelling, its rapid loss under diabetic conditions may point to a direct involvement of RMG to the early neurodegenerative processes driving DR. Data are available via ProteomeXchange with identifier PXD015879.
Collapse
Affiliation(s)
- Sandra Sagmeister
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany.,Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Agnese Petrera
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| | - Cornelia A Deeg
- Chair of Physiology, Department of Veterinary Sciences, LMU Munich, Martinsried, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core Facility, Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Munich, Germany
| |
Collapse
|
6
|
Rettinger CL, Kaini RR, Burke TA, Wang HC. Neurotrophic Factors Secreted by Induced Pluripotent Stem Cell-Derived Retinal Progenitors Promote Retinal Survival and Preservation in an Adult Porcine Neuroretina Model. J Ocul Pharmacol Ther 2021; 37:301-312. [PMID: 33661042 DOI: 10.1089/jop.2020.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Purpose: Paracrine factors released by pluripotent stem cells have shown great potential as therapeutic agents in regenerative medicine. The purpose of this study was to characterize trophic factor secretion of retinal progenitor cells (RPCs) derived from human induced pluripotent stem cells (iPSCs) and to assess its impact on retinal survival ex vivo. Methods: RPCs were generated from human 3D1 iPSCs following previously established protocols with modifications. Conditioned medium (CM) was harvested from iPSC-derived retinal progenitors and analyzed for trophic factor composition through multiplex enzyme-linked immunosorbent assay. Retina-preserving capability of the collected CM was examined using a degenerative porcine neuroretina model. Viability of the CM-treated retina explants was evaluated using the resazurin-based PrestoBlue reagent, whereas the lactate dehydrogenase (LDH) assay was used to assess retinal cytotoxicity. Retina explants were also analyzed morphologically through immunohistochemistry for glial cell activation and apoptosis. Results: We have successfully generated and characterized iPSC-derived RPCs that secreted an array of neuroprotective factors, including osteopontin, hepatocyte growth factor, stromal cell-derived factor 1, and insulin-like growth factor-1. Retina explants cultured in CM derived from iPSC-RPCs (iPSC-RPC-CM) showed better preservation of the retinal microarchitecture and fewer terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)+ nuclei, and reduced reactive gliosis. Furthermore, we saw a reduction in extracellular LDH levels in CM-treated retina explants, which also exhibited higher metabolic activity than the untreated controls. Conclusions: iPSC-derived RPCs secrete many trophic factors that have been shown to promote neuroprotection, tissue repair, and regeneration in the retina. Overall, we have demonstrated the neuroprotective effects of iPSC-RPC-CM through a degenerative neuroretina model ex vivo.
Collapse
Affiliation(s)
- Christina L Rettinger
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Ramesh R Kaini
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Teresa A Burke
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| | - Heuy-Ching Wang
- Ocular and Sensory Trauma Task Area, United States Army Institute of Surgical Research, Fort Sam Houston, Texas, USA
| |
Collapse
|
7
|
Vohra R, Kolko M. Lactate: More Than Merely a Metabolic Waste Product in the Inner Retina. Mol Neurobiol 2020; 57:2021-2037. [PMID: 31916030 DOI: 10.1007/s12035-019-01863-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
The retina is an extension of the central nervous system and has been considered to be a simplified, more tractable and accessible version of the brain for a variety of neuroscience investigations. The optic nerve displays changes in response to underlying neurodegenerative diseases, such as stroke, multiple sclerosis, and Alzheimer's disease, as well as inner retinal neurodegenerative disease, e.g., glaucoma. Neurodegeneration has increasingly been linked to dysfunctional energy metabolism or conditions in which the energy supply does not meet the demand. Likewise, increasing lactate levels have been correlated with conditions consisting of unbalanced energy supply and demand, such as ischemia-associated diseases or excessive exercise. Lactate has thus been acknowledged as a metabolic waste product in organs with high energy metabolism. However, in the past decade, numerous beneficial roles of lactate have been revealed in the central nervous system. In this context, lactate has been identified as a valuable energy substrate, protecting against glutamate excitotoxicity and ischemia, as well as having signaling properties which regulate cellular functions. The present review aims to summarize and discuss protective roles of lactate in various model systems (in vitro, ex vivo, and in vivo) reflecting the inner retina focusing on lactate metabolism and signaling in inner retinal homeostasis and disease.
Collapse
Affiliation(s)
- Rupali Vohra
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Miriam Kolko
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Department of Ophthalmology, Rigshospitalet-Glostrup, University of Copenhagen, Glostrup, Denmark.
| |
Collapse
|
8
|
Behar-Cohen F, Dernigoghossian M, Andrieu-Soler C, Levy R, Cohen R, Zhao M. Potential antiedematous effects of intravitreous anti-VEGF, unrelated to VEGF neutralization. Drug Discov Today 2019; 24:1436-1439. [PMID: 31173913 DOI: 10.1016/j.drudis.2019.05.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/07/2019] [Accepted: 05/31/2019] [Indexed: 01/07/2023]
Abstract
The intravitreous injection of therapeutic proteins that neutralize vascular endothelial growth factor (VEGF) family members is efficient to reduce macular edema associated with wet age-related macular degeneration (AMD), retinal vein occlusion (RVO) and diabetic retinopathy (DR). It has revolutionized the visual prognosis of patients with macular edema. The antiedematous effect is dependent on an intravitreous dose of drug, which varies between patients and requires frequent and repeated injections to maintain its effects. At the time when optimizing the duration of anti-VEGF effects is a major challenge, understanding how anti-VEGF reduces macular edema is crucial. We discuss herein how anti-VEGF exerts antiedematous effects and raise the hypothesis that mechanisms, unrelated to VEGF neutralization, might have been underestimated.
Collapse
Affiliation(s)
- Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Ophtalmopole Hôpital Cohin, Assistance Publique Hôpitaux de Paris, France.
| | - Marilyn Dernigoghossian
- Inserm UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Charlotte Andrieu-Soler
- Inserm UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, Paris, France; IGMM, CNRS, Univ. Montpellier, Montpellier, France
| | - Rinath Levy
- Inserm UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Raphaël Cohen
- Inserm UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Min Zhao
- Inserm UMR_S 1138, Team 17, Centre de Recherche des Cordeliers, Paris, France; Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France; Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|
9
|
Abstract
Osteopontin (OPN) is a secreted glycosylated phosphoprotein that influences cell survival, inflammation, migration, and homeostasis after injury. As the role of OPN in the retina remains unclear, this study issue was addressed by aiming to study how the absence of OPN in knock-out mice affects the retina and the influence of age on these effects. The study focused on retinal ganglion cells (RGCs) and glial cells (astrocytes, Müller cells, and resident microglia) in 3- and 20-month-old mice. The number of RGCs in the retina was quantified and the area occupied by astrocytes was measured. In addition, the morphology of Müller cells and microglia was examined in retinal sections. The deficiency in OPN reduces RGC density by 25.09% at 3 months of age and by 60.37% at 20 months of age. The astrocyte area was also reduced by 51.01% in 3-month-old mice and by 57.84% at 20 months of age, although Müller glia and microglia did not seem to be affected by the lack of OPN. This study demonstrates the influence of OPN on astrocytes and RGCs, whereby the absence of OPN in the retina diminishes the area occupied by astrocytes and produces a secondary reduction in the number of RGCs. Accordingly, OPN could be a target to develop therapies to combat neurodegenerative diseases and astrocytes may represent a key mediator of such effects.
Collapse
|
10
|
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull 2018; 151:92-108. [PMID: 30458250 DOI: 10.1016/j.brainresbull.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue's responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed.
Collapse
Affiliation(s)
- Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Niterói, RJ, Brazil.
| | | | - Claire H Mitchell
- Department of Anatomy and Cell Biology, Ophthalmology, and Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Mirzaei A, Mohammadi S, Ghaffari SH, Yaghmaie M, Vaezi M, Alimoghaddam K, Ghavamzadeh A. Osteopontin b and c Splice isoforms in Leukemias and Solid
Tumors: Angiogenesis Alongside Chemoresistance. Asian Pac J Cancer Prev 2018; 19:615-623. [PMID: 29580029 PMCID: PMC5980831 DOI: 10.22034/apjcp.2018.19.3.615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Osteopontin (OPN) is a glycoprotein involved in regulation of various influences on tumor progression, such as cellular proliferation, apoptosis, angiogenesis, and metastasis. Vascular endothelial growth factor (VEGF) is a secreted molecule supporting angiogenesis in various cancers through activation of the PI3K/AKT/ERK1/2 pathway. OPN and VEGF have a number of isoforms with various activities. In spite of the well-defined association between OPN and VEGF isoform expression and cure rate for solid tumors, there is a scarcity of information as to any association in leukemia. Based on the critical role of OPN in cell survival, it seems reasonable to hypothesize that OPN and VEGF isoform expression levels may impact on chemoresistance and relapse in leukemia the same as in solid tumors. Hence, the aim of our review was to explain relationships between OPN and VEGF isoforms and angiogenesis and related pathways in chemoresistance of leukemia and solid tumors. Our findings demonstrated that OPNb and OPNc alongside with VEGF isoforms and other gene pathways are involved in angiogenesis and also might promote chemoresistance and even recurrence in leukemia and solid tumors. To sum up, targeting OPN isoforms, particularly b and c, might be a novel therapeutic strategy for the treatment of leukemia as well as solid tumors.
Collapse
Affiliation(s)
- Akram Mirzaei
- Hematology, Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Iran. ,
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Müller glia, the principal macroglia of the retina, express diverse subtypes of adenosine and metabotropic purinergic (P2Y) receptors. Müller cells of several species, including man, also express ionotropic P2X7 receptors. ATP is liberated from Müller cells after activation of metabotropic glutamate receptors and during osmotic and mechanical induction of membrane stretch; adenosine is released through equilibrative nucleoside transporters. Müller cell-derived purines modulate the neuronal activity and have autocrine effects, for example, induction of glial calcium waves and regulation of the cellular volume. Glial calcium waves induced by neuron-derived ATP mediate functional hyperemia in the retina. Purinergic signaling contributes to the induction of Müller cell gliosis, for example, of cellular proliferation and downregulation of potassium channels, which are important for the homeostatic functions of Müller cells. Purinergic glial calcium waves may also promote the long-range propagation of gliosis and neuronal degeneration across the retinal tissue. The osmotic ATP release is inhibited under pathological conditions. Inhibition of the ATP release may result in osmotic Müller cell swelling and dysregulation of the water transport through the cells; both may contribute to the development of retinal edema. Suppression of the osmotic ATP release and upregulation of the ecto-apyrase (NTPDase1), which facilitate the extracellular degradation of ATP and the formation of adenosine, may protect neurons and photoreceptors from death due to overactivation of P2X receptors. Pharmacological inhibition of P2X7 receptors and stimulation of adenosine receptors may represent clinical approaches to prevent retinal cell death and dysregulated cell proliferation, and to treat retinal edema.
Collapse
Affiliation(s)
- Andreas Reichenbach
- 1 Paul Flechsig Institute of Brain Research, University of Leipzig , Leipzig, Germany
| | - Andreas Bringmann
- 2 Department of Ophthalmology and Eye Hospital, University of Leipzig , Leipzig, Germany
| |
Collapse
|
13
|
Mechanisms of macular edema: Beyond the surface. Prog Retin Eye Res 2017; 63:20-68. [PMID: 29126927 DOI: 10.1016/j.preteyeres.2017.10.006] [Citation(s) in RCA: 377] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Macular edema consists of intra- or subretinal fluid accumulation in the macular region. It occurs during the course of numerous retinal disorders and can cause severe impairment of central vision. Major causes of macular edema include diabetes, branch and central retinal vein occlusion, choroidal neovascularization, posterior uveitis, postoperative inflammation and central serous chorioretinopathy. The healthy retina is maintained in a relatively dehydrated, transparent state compatible with optimal light transmission by multiple active and passive systems. Fluid accumulation results from an imbalance between processes governing fluid entry and exit, and is driven by Starling equation when inner or outer blood-retinal barriers are disrupted. The multiple and intricate mechanisms involved in retinal hydro-ionic homeostasis, their molecular and cellular basis, and how their deregulation lead to retinal edema, are addressed in this review. Analyzing the distribution of junction proteins and water channels in the human macula, several hypotheses are raised to explain why edema forms specifically in the macular region. "Pure" clinical phenotypes of macular edema, that result presumably from a single causative mechanism, are detailed. Finally, diabetic macular edema is investigated, as a complex multifactorial pathogenic example. This comprehensive review on the current understanding of macular edema and its mechanisms opens perspectives to identify new preventive and therapeutic strategies for this sight-threatening condition.
Collapse
|
14
|
Activated Müller Cells Involved in ATP-Induced Upregulation of P2X 7 Receptor Expression and Retinal Ganglion Cell Death. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9020715. [PMID: 27738636 PMCID: PMC5050355 DOI: 10.1155/2016/9020715] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/10/2016] [Accepted: 08/28/2016] [Indexed: 11/17/2022]
Abstract
P2X7 receptor (P2X7R), an ATP-gated ion channel, plays an important role in glaucomatous retinal ganglion cell (RGC) apoptotic death, in which activated retinal Müller glial cells may be involved by releasing ATP. In the present study, we investigated whether and how activated Müller cells may induce changes in P2X7R expression in RGCs by using immunohistochemistry and Western blot techniques. Intravitreal injection of DHPG, a group I metabotropic glutamate receptor (mGluR I) agonist, induced upregulation of GFAP expression, suggestive of Müller cell activation (gliosis), as we previously reported. Accompanying Müller cell activation, P2X7R protein expression was upregulated, especially in the cells of ganglion cell layer (GCL), which was reversed by coinjection of brilliant blue G (BBG), a P2X7R blocker. In addition, intravitreal injection of ATP also induced upregulation of P2X7R protein expression. Similar results were observed in cultured retinal neurons by ATP treatment. Moreover, both DHPG and ATP intravitreal injection induced a reduction in the number of fluorogold retrogradely labeled RGCs, and the DHPG effect was partially rescued by coinjection of BBG. All these results suggest that activated Müller cells may release ATP and, in turn, induce upregulation of P2X7R expression in the cells of GCL, thus contributing to RGC death.
Collapse
|
15
|
Mining for genes related to choroidal neovascularization based on the shortest path algorithm and protein interaction information. Biochim Biophys Acta Gen Subj 2016; 1860:2740-9. [PMID: 26987808 DOI: 10.1016/j.bbagen.2016.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Choroidal neovascularization (CNV) is a serious eye disease that may cause visual loss, especially for older people. Many factors have been proven to induce this disease including age, gender, obesity, and so on. However, until now, we have had limited knowledge on CNV's pathogenic mechanism. Discovering the genes that underlie this disease and performing extensive studies on them can help us to understand how CNV occurs and design effective treatments. METHODS In this study, we designed a computational method to identify novel CNV-related genes in a large protein network constructed using the protein-protein interaction information in STRING. The candidate genes were first extracted from the shortest paths connecting any two known CNV-related genes and then filtered by a permutation test and using knowledge of their linkages to known CNV-related genes. RESULTS A list of putative CNV-related candidate genes was accessed by our method. These genes are deemed to have strong relationships with CNV. CONCLUSIONS Extensive analyses of several of the putative genes such as ANK1, ITGA4, CD44 and others indicate that they are related to specific biological processes involved in CNV, implying they may be novel CNV-related genes. GENERAL SIGNIFICANCE The newfound putative CNV-related genes may provide new insights into CNV and help design more effective treatments. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
|
16
|
Sirko S, Irmler M, Gascón S, Bek S, Schneider S, Dimou L, Obermann J, De Souza Paiva D, Poirier F, Beckers J, Hauck SM, Barde YA, Götz M. Astrocyte reactivity after brain injury-: The role of galectins 1 and 3. Glia 2015; 63:2340-61. [PMID: 26250529 PMCID: PMC5042059 DOI: 10.1002/glia.22898] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/14/2015] [Accepted: 07/22/2015] [Indexed: 01/18/2023]
Abstract
Astrocytes react to brain injury in a heterogeneous manner with only a subset resuming proliferation and acquiring stem cell properties in vitro. In order to identify novel regulators of this subset, we performed genomewide expression analysis of reactive astrocytes isolated 5 days after stab wound injury from the gray matter of adult mouse cerebral cortex. The expression pattern was compared with astrocytes from intact cortex and adult neural stem cells (NSCs) isolated from the subependymal zone (SEZ). These comparisons revealed a set of genes expressed at higher levels in both endogenous NSCs and reactive astrocytes, including two lectins-Galectins 1 and 3. These results and the pattern of Galectin expression in the lesioned brain led us to examine the functional significance of these lectins in brains of mice lacking Galectins 1 and 3. Following stab wound injury, astrocyte reactivity including glial fibrillary acidic protein expression, proliferation and neurosphere-forming capacity were found significantly reduced in mutant animals. This phenotype could be recapitulated in vitro and was fully rescued by addition of Galectin 3, but not of Galectin 1. Thus, Galectins 1 and 3 play key roles in regulating the proliferative and NSC potential of a subset of reactive astrocytes.
Collapse
Affiliation(s)
- Swetlana Sirko
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sergio Gascón
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sarah Bek
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Sarah Schneider
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Jara Obermann
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Daisylea De Souza Paiva
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Department of Physiology, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Francoise Poirier
- Institut Jacques Monod, CNRS-University Paris Diderot, Paris, France
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising-Weihenstephan, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Yves-Alain Barde
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Magdalena Götz
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University Munich, Germany.,Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Neuherberg, Germany.,SYNERGY, Excellence Cluster of Systems Neurology, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
17
|
Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2015; 51:1-40. [PMID: 26113209 DOI: 10.1016/j.preteyeres.2015.06.003] [Citation(s) in RCA: 517] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/18/2015] [Accepted: 06/02/2015] [Indexed: 02/07/2023]
Abstract
The mammalian retina provides an excellent opportunity to study glia-neuron interactions and the interactions of glia with blood vessels. Three main types of glial cells are found in the mammalian retina that serve to maintain retinal homeostasis: astrocytes, Müller cells and resident microglia. Müller cells, astrocytes and microglia not only provide structural support but they are also involved in metabolism, the phagocytosis of neuronal debris, the release of certain transmitters and trophic factors and K(+) uptake. Astrocytes are mostly located in the nerve fibre layer and they accompany the blood vessels in the inner nuclear layer. Indeed, like Müller cells, astrocytic processes cover the blood vessels forming the retinal blood barrier and they fulfil a significant role in ion homeostasis. Among other activities, microglia can be stimulated to fulfil a macrophage function, as well as to interact with other glial cells and neurons by secreting growth factors. This review summarizes the main functional relationships between retinal glial cells and neurons, presenting a general picture of the retina recently modified based on experimental observations. The preferential involvement of the distinct glia cells in terms of the activity in the retina is discussed, for example, while Müller cells may serve as progenitors of retinal neurons, astrocytes and microglia are responsible for synaptic pruning. Since different types of glia participate together in certain activities in the retina, it is imperative to explore the order of redundancy and to explore the heterogeneity among these cells. Recent studies revealed the association of glia cell heterogeneity with specific functions. Finally, the neuroprotective effects of glia on photoreceptors and ganglion cells under normal and adverse conditions will also be explored.
Collapse
Affiliation(s)
- Elena Vecino
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - F David Rodriguez
- Department of Biochemistry and Molecular Biology, E-37007, University of Salamanca, Salamanca, Spain
| | - Noelia Ruzafa
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Xandra Pereiro
- Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, Leioa 48940, Vizcaya, Spain
| | - Sansar C Sharma
- Department of Ophthalmology, Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA; IKERBASQUE, Basque Foundation for Science at Dept. Cell Biology and Histology, UPV/EHU, Spain
| |
Collapse
|
18
|
Cehofski LJ, Kruse A, Kjærgaard B, Stensballe A, Honoré B, Vorum H. Proteins involved in focal adhesion signaling pathways are differentially regulated in experimental branch retinal vein occlusion. Exp Eye Res 2015; 138:87-95. [PMID: 26086079 DOI: 10.1016/j.exer.2015.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 06/05/2015] [Accepted: 06/12/2015] [Indexed: 12/13/2022]
Abstract
Branch retinal vein occlusion (BRVO) is a common retinal vascular disease, but global protein changes following the condition remain largely unelucidated. To bring new insights into pathological processes and identify potential therapeutic targets, large-scale retinal protein changes following BRVO were studied by combining a porcine model of experimental BRVO with proteomic analysis by label-free liquid chromatography mass spectrometry. Among a total set of 1974 proteins, 52 significantly upregulated proteins and 10 significantly downregulated proteins were identified in retinas with BRVO after 15 days. Significantly upregulated proteins were involved in signaling pathways of focal adhesion via integrin and blood coagulation. Proteins involved in focal adhesion signaling included collagen α-2 chain, laminin subunit β-2, laminin subunit γ-1, lipocalin-7, nidogen-2, osteopontin, integrin-β, α-actinin-1, isoform 2 of α-actinin-1, talin-2 and filamin C. The identified proteins indicate that BRVO was associated with extracellular matrix remodeling processes. The present study identified focal adhesion signaling and ECM remodeling as important biological mechanisms to evaluate in the search for signaling pathways that promote neovascularisation and macular edema following BRVO.
Collapse
Affiliation(s)
- Lasse Jørgensen Cehofski
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark.
| | - Anders Kruse
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | - Benedict Kjærgaard
- Biomedical Research Laboratory, Aalborg University Hospital, Aalborg, Denmark
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Brain-derived neurotrophic factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by activation of basic fibroblast growth factor signaling. Neuroscience 2015; 295:175-86. [DOI: 10.1016/j.neuroscience.2015.03.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/19/2022]
|
20
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
|
22
|
Ramchandani D, Weber GF. Interactions between osteopontin and vascular endothelial growth factor: Implications for cancer. Biochim Biophys Acta Rev Cancer 2015; 1855:202-22. [PMID: 25732057 DOI: 10.1016/j.bbcan.2015.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 02/10/2015] [Accepted: 02/22/2015] [Indexed: 12/12/2022]
Abstract
For this comprehensive review, 257 publications with the keywords "osteopontin" or "OPN" and "vascular endothelial growth factor" or "VEGF" in PubMed were screened (time frame from year 1996 to year 2014). 37 articles were excluded because they were not focused on the interactions between these molecules, and papers relevant for transformation-related phenomena were selected. Osteopontin (OPN) and vascular endothelial growth factor (VEGF) are characterized by a convergence in function for regulating cell motility and angiogenesis, the response to hypoxia, and apoptosis. Often, they are co-expressed or one molecule induces the other, however, in some settings OPN-associated pathways and VEGF-associated pathways are distinct. Their relationships affect the pathogenesis in cancer, where they contribute to progression and angiogenesis and serve as markers for poor prognosis. The inhibition of OPN may reduce VEGF levels and suppress tumor progression. In vascular pathologies, these two cytokines mediate remodeling, but may also perpetuate inflammation and narrowing of the arteries. OPN and VEGF are elevated and contribute to vascularization in inflammatory diseases.
Collapse
Affiliation(s)
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati, USA.
| |
Collapse
|
23
|
Ressler SJ, Dang TD, Wu SM, Tse DY, Gilbert BE, Vyakarnam A, Yang F, Schauer IG, Barron DA, Rowley DR. WFDC1 is a key modulator of inflammatory and wound repair responses. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:2951-64. [PMID: 25219356 DOI: 10.1016/j.ajpath.2014.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 07/19/2014] [Accepted: 07/24/2014] [Indexed: 12/16/2022]
Abstract
WFDC1/ps20 is a whey acidic protein four-disulfide core member that exhibits diverse growth and immune-associated functions in vitro. In vivo functions are unknown, although WFDC1 is lower in reactive stroma. A Wfdc1-null mouse was generated to assess core functions. Wfdc1-null mice exhibited normal developmental and adult phenotypes. However, homeostasis challenges affected inflammatory and repair processes. Wfdc1-null mice infected with influenza A exhibited 2.75-log-fold lower viral titer relative to control mice. Wfdc1-null infected lungs exhibited elevated macrophages and deposition of osteopontin, a potent macrophage chemokine. In wounding studies, Wfdc1-null mice exhibited an elevated rate of skin closure, and this too was associated with elevated deposition of osteopontin and macrophage recruitment. Wfdc1-null fibroblasts exhibited impaired spheroid formation, elevated adhesion to fibronectin, and an increased rate of wound closure in vitro. This was reversed by neutralizing antibody to osteopontin. Osteopontin mRNA and cleaved protein was up-regulated in Wfdc1-null cells treated with lipopolysaccharide or polyinosinic-polycytidylic acid coordinate with constitutively active matrix metallopeptidase-9 (MMP-9), a protease that cleaves osteopontin. These data suggest that WFDC1/ps20 modulates core host response mechanisms, in part, via regulation of osteopontin and MMP-9 activity. Release from WFDC1 regulation is likely a key component of inflammatory and repair response mechanisms, and involves the processing of elevated osteopontin by activated MMP-9, and subsequent macrophage recruitment.
Collapse
Affiliation(s)
- Steven J Ressler
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Truong D Dang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Samuel M Wu
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Dennis Y Tse
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| | - Brian E Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas
| | - Annapurna Vyakarnam
- Department of Infectious Diseases, King's College London, London, United Kingdom
| | - Feng Yang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Isaiah G Schauer
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David A Barron
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - David R Rowley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
24
|
Garcia TB, Pannicke T, Vogler S, Berk BA, Grosche A, Wiedemann P, Seeger J, Reichenbach A, Herculano AM, Bringmann A. Nerve growth factor inhibits osmotic swelling of rat retinal glial (Müller) and bipolar cells by inducing glial cytokine release. J Neurochem 2014; 131:303-13. [DOI: 10.1111/jnc.12822] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Tarcyane Barata Garcia
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
- Institute of Biological Sciences; Federal University of Pará; Belém Brazil
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
| | - Stefanie Vogler
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
| | - Benjamin-Andreas Berk
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
- Institute of Veterinary Anatomy; University of Leipzig; Leipzig Germany
| | - Antje Grosche
- Institute of Human Genetics; University of Regensburg; Regensburg Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital; University of Leipzig; Leipzig Germany
| | - Johannes Seeger
- Institute of Veterinary Anatomy; University of Leipzig; Leipzig Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research; University of Leipzig; Leipzig Germany
| | | | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital; University of Leipzig; Leipzig Germany
| |
Collapse
|
25
|
von Toerne C, Menzler J, Ly A, Senninger N, Ueffing M, Hauck SM. Identification of a novel neurotrophic factor from primary retinal Müller cells using stable isotope labeling by amino acids in cell culture (SILAC). Mol Cell Proteomics 2014; 13:2371-81. [PMID: 24925906 DOI: 10.1074/mcp.m113.033613] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Retinal Müller glial cells (RMGs) have a primary role in maintaining the homeostasis of the retina. In pathological situations, RMGs execute protective and regenerative effects, but they can also contribute to neurodegeneration. It has recently been recognized that cultured primary RMGs secrete pro-survival factors for retinal neurons for up to 2 weeks in culture, but this ability is lost when RMGs are cultivated for longer durations. In our study, we investigated RMG supernatants for novel neuroprotective factors using a quantitative proteomic approach. Stable isotope labeling by amino acids in cell culture (SILAC) was used on primary porcine RMGs. Supernatants of RMGs cultivated for 2 weeks were compared with supernatants from cells that had already lost their protective capacity. Using this approach, we detected established neurotrophic factors such as transferrin, osteopontin, and leukemia inhibitory factor and identified C-X-C motif chemokine 10 (CXCL10) as a novel candidate neuroprotective factor. All factors prolonged photoreceptor survival in vitro. Ex vivo treatment of retinal explants with leukemia inhibitory factor or CXCL10 demonstrated a neuroprotective effect on photoreceptors. Western blots on CXCL10- and leukemia inhibitory factor-stimulated explanted retina and photoreceptor lysates indicated activation of pro-survival signal transducer and activator of transcription signaling and B-cell lymphoma pathways. These findings suggest that CXCL10 contributes to the supportive potential of RMGs toward retinal neurons.
Collapse
Affiliation(s)
- Christine von Toerne
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Jacob Menzler
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Alice Ly
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Nicole Senninger
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany
| | - Marius Ueffing
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany; §Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Stefanie M Hauck
- From the ‡Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), 85764 Neuherberg, Germany;
| |
Collapse
|
26
|
Osteopontin is induced by TGF-β2 and regulates metabolic cell activity in cultured human optic nerve head astrocytes. PLoS One 2014; 9:e92762. [PMID: 24718314 PMCID: PMC3981660 DOI: 10.1371/journal.pone.0092762] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/25/2014] [Indexed: 12/26/2022] Open
Abstract
The aqueous humor (AH) component transforming growth factor (TGF)-β2 is strongly correlated to primary open-angle glaucoma (POAG), and was shown to up-regulate glaucoma-associated extracellular matrix (ECM) components, members of the ECM degradation system and heat shock proteins (HSP) in primary ocular cells. Here we present osteopontin (OPN) as a new TGF-β2 responsive factor in cultured human optic nerve head (ONH) astrocytes. Activation was initially demonstrated by Oligo GEArray microarray and confirmed by semiquantitative (sq) RT-PCR, realtime RT-PCR and western blot. Expressions of most prevalent OPN receptors CD44 and integrin receptor subunits αV, α4, α 5, α6, α9, β1, β3 and β5 by ONH astrocytes were shown by sqRT-PCR and immunofluorescence labeling. TGF-β2 treatment did not affect their expression levels. OPN did not regulate gene expression of described TGF-β2 targets shown by sqRT-PCR. In MTS-assays, OPN had a time- and dose-dependent stimulating effect on the metabolic activity of ONH astrocytes, whereas TGF-β2 significantly reduced metabolism. OPN signaling via CD44 mediated a repressive outcome on metabolic activity, whereas signaling via integrin receptors resulted in a pro-metabolic effect. In summary, our findings characterize OPN as a TGF-β2 responsive factor that is not involved in TGF-β2 mediated ECM and HSP modulation, but affects the metabolic activity of astrocytes. A potential involvement in a protective response to TGF-β2 triggered damage is indicated, but requires further investigation.
Collapse
|
27
|
Purinergic neuron-glia interactions in sensory systems. Pflugers Arch 2014; 466:1859-72. [DOI: 10.1007/s00424-014-1510-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
|