1
|
Király K, Karádi DÁ, Zádor F, Mohammadzadeh A, Galambos AR, Balogh M, Riba P, Tábi T, Zádori ZS, Szökő É, Fürst S, Al-Khrasani M. Shedding Light on the Pharmacological Interactions between μ-Opioid Analgesics and Angiotensin Receptor Modulators: A New Option for Treating Chronic Pain. Molecules 2021; 26:6168. [PMID: 34684749 PMCID: PMC8537077 DOI: 10.3390/molecules26206168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022] Open
Abstract
The current protocols for neuropathic pain management include µ-opioid receptor (MOR) analgesics alongside other drugs; however, there is debate on the effectiveness of opioids. Nevertheless, dose escalation is required to maintain their analgesia, which, in turn, contributes to a further increase in opioid side effects. Finding novel approaches to effectively control chronic pain, particularly neuropathic pain, is a great challenge clinically. Literature data related to pain transmission reveal that angiotensin and its receptors (the AT1R, AT2R, and MAS receptors) could affect the nociception both in the periphery and CNS. The MOR and angiotensin receptors or drugs interacting with these receptors have been independently investigated in relation to analgesia. However, the interaction between the MOR and angiotensin receptors has not been excessively studied in chronic pain, particularly neuropathy. This review aims to shed light on existing literature information in relation to the analgesic action of AT1R and AT2R or MASR ligands in neuropathic pain conditions. Finally, based on literature data, we can hypothesize that combining MOR agonists with AT1R or AT2R antagonists might improve analgesia.
Collapse
MESH Headings
- Analgesics/pharmacology
- Analgesics, Opioid/pharmacology
- Animals
- Chronic Pain/drug therapy
- Humans
- Neuralgia/drug therapy
- Nociception/drug effects
- Pain Management/methods
- Proto-Oncogene Mas
- Receptors, Angiotensin/drug effects
- Receptors, Angiotensin/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- Kornél Király
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Dávid Á. Karádi
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Ferenc Zádor
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Amir Mohammadzadeh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Anna Rita Galambos
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mihály Balogh
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Pál Riba
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Tamás Tábi
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Zoltán S. Zádori
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Éva Szökő
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Nagyvárad tér 4, H-1089 Budapest, Hungary; (T.T.); (É.S.)
| | - Susanna Fürst
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| | - Mahmoud Al-Khrasani
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Semmelweis University, Nagyvárad tér 4, P.O. Box 370, H-1445 Budapest, Hungary; (D.Á.K.); (F.Z.); (A.M.); (A.R.G.); (M.B.); (P.R.); (Z.S.Z.); (S.F.)
| |
Collapse
|
2
|
Tan R, Cao L. Cannabinoid WIN-55,212-2 mesylate inhibits tumor necrosis factor-α-induced expression of nitric oxide synthase in dorsal root ganglion neurons. Int J Mol Med 2018; 42:919-925. [PMID: 29786105 PMCID: PMC6034934 DOI: 10.3892/ijmm.2018.3687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 01/19/2018] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) is an established pain modulator in the peripheral nervous system. Elevated levels of TNF-α in dorsal root ganglion (DRG) neurons reportedly is critical for neuropathic pain processing. It has been shown that the production of nitric oxide, a key player in the development and maintenance of nociception, depends on the expression of nitric oxide synthases (NOSs) and their activities. Accumulating evidence also supports an important role of cannabinoids in modulating neuropathic pain. In this study, we explored the effects and the underlying mechanisms of crosstalk between TNF-α and cannabinoid on the expression/activity of NOS in DRG neurons. With or without knockdown of p38 mitogen-activated protein kinase (MAPK), DRG neurons were treated with TNF-α in the presence or absence of synthetic cannabinoid WIN-55,212-2 mesylate (WIN-55) and selective cannabinoid receptor (CB) antagonists. TNF-α significantly increased the NOS activity as well as the mRNA stability and expression of neuronal NOS (nNOS) in DRG neurons; this was abolished by inhibiting p38 MAPK signaling. WIN-55 inhibited TNF-α-induced p38 MAPK activity as well as TNF-α-induced increase of mRNA stability and expression/activity of nNOS; the inhibitory effect of WIN-55 was blocked by a selective CB2 antagonist. Our findings suggest that TNF-α induces the expression/activity of nNOS in DRG neurons by increasing its mRNA stability by a p38 MAPK-dependent mechanism; WIN-55 inhibits this effect of TNF-α by inhibiting p38 MAPK via CB2. By linking the functions of TNF-α, NOS and cannabinoid in DRG neurons, this study adds new insights into the molecular mechanisms underlying the pharmacologic effects of cannabinoids on neuropathic pain as well as into the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Rong Tan
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lijun Cao
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
3
|
Abstract
Many cancerous solid tumors metastasize to the bone and induce pain (cancer-induced bone pain [CIBP]). Cancer-induced bone pain is often severe because of enhanced inflammation, rapid bone degradation, and disease progression. Opioids are prescribed to manage this pain, but they may enhance bone loss and increase tumor proliferation, further compromising patient quality of life. Angiotensin-(1-7) (Ang-(1-7)) binds and activates the Mas receptor (MasR). Angiotensin-(1-7)/MasR activation modulates inflammatory signaling after acute tissue insult, yet no studies have investigated whether Ang-(1-7)/MasR play a role in CIBP. We hypothesized that Ang-(1-7) inhibits CIBP by targeting MasR in a murine model of breast CIBP. 66.1 breast cancer cells were implanted into the femur of BALB/cAnNHsd mice as a model of CIBP. Spontaneous and evoked pain behaviors were assessed before and after acute and chronic administration of Ang-(1-7). Tissues were collected from animals for ex vivo analyses of MasR expression, tumor burden, and bone integrity. Cancer inoculation increased spontaneous pain behaviors by day 7 that were significantly reduced after a single injection of Ang-(1-7) and after sustained administration. Preadministration of A-779 a selective MasR antagonist prevented this reduction, whereas pretreatment with the AT2 antagonist had no effect; an AT1 antagonist enhanced the antinociceptive activity of Ang-(1-7) in CIBP. Repeated Ang-(1-7) administration did not significantly change tumor burden or bone remodeling. Data here suggest that Ang-(1-7)/MasR activation significantly attenuates CIBP, while lacking many side effects seen with opioids. Thus, Ang-(1-7) may be an alternative therapeutic strategy for the nearly 90% of patients with advanced-stage cancer who experience excruciating pain.
Collapse
|
4
|
Hou J, Ma T, Cao H, Chen Y, Wang C, Chen X, Xiang Z, Han X. TNF-α-induced NF-κB activation promotes myofibroblast differentiation of LR-MSCs and exacerbates bleomycin-induced pulmonary fibrosis. J Cell Physiol 2017; 233:2409-2419. [PMID: 28731277 DOI: 10.1002/jcp.26112] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/20/2017] [Indexed: 12/16/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible lung disease of unknown cause. It has been reported that both lung resident mesenchymal stem cells (LR-MSCs) and tumor necrosis factor-α (TNF-α) play important roles in the development of pulmonary fibrosis. However, the underlying connections between LR-MSCs and TNF-α in the pathogenesis of pulmonary fibrosis are still elusive. In this study, we found that the pro-inflammatory cytokine TNF-α and the transcription factor nuclear factor kappa B (NF-κB) p65 subunit were both upregulated in bleomycin-induced fibrotic lung tissue. In addition, we discovered that TNF-α promotes myofibroblast differentiation of LR-MSCs through activating NF-κB signaling. Interestingly, we also found that TNF-α promotes the expression of β-catenin. Moreover, we demonstrated that suppression of the NF-κB signaling could attenuate myofibroblast differentiation of LR-MSCs and bleomycin-induced pulmonary fibrosis which were accompanied with decreased expression of β-catenin. Our data implicates that inhibition of the NF-κB signaling pathway may provide a therapeutic strategy for pulmonary fibrosis, a disease that warrants more effective treatment approaches.
Collapse
Affiliation(s)
- Jiwei Hou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Honghui Cao
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Cong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Xiang Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Zou Xiang
- Faculty of Health and Social Sciences, Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Pan B, Cheng Z, Kong G, Song Z, Wang Y, Wei L, Xiao D, Zhao Y, Guo Q. Propofol inhibits expression of angiotensin II receptor type 2 in dorsal root ganglion neurons. Exp Ther Med 2017; 13:867-872. [PMID: 28450911 PMCID: PMC5403460 DOI: 10.3892/etm.2017.4040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/04/2016] [Indexed: 11/10/2022] Open
Abstract
The renin-angiotensin system (RAS) is involved in nociception and has functions in the cardiovascular system. The primary role of the RAS is to mediate the effect of angiotensin II (Ang II) through Ang II receptor type 2 (AT2). Due to this, AT2 has become a novel therapeutic target for the relief of peripheral neuropathic pain in humans. As it is one of the most popular induction agents of general anesthesia, propofol also exerts peripheral antinociceptive effects. The present study assessed the effect of propofol on the expression of AT2 in cultured dorsal root ganglion (DRG) neurons. The results indicate that propofol decreases AT2 mRNA expression in a statistically significant dose- and time-dependent manner (P<0.05). This resulted in a marked decrease in AT2 protein expression and the density of Ang II-binding AT2 on the cell membrane of DRG neurons. The effect of propofol was reversed by LY294002, a phosphatidylinositol 3-kinase (PI3K) inhibitor. Although propofol exhibited no significant effect on AT2 gene promoter activity, it significantly decreased the stability of AT2 mRNA (P<0.05). However, this effect was reversed by LY294002. In addition, propofol increased PI3K activity in a concentration-dependent manner in DRG neurons. In conclusion, to the best of our knowledge, the current study provides the first evidence suggesting that propofol inhibits the expression of AT2 in DRG neurons by decreasing the stability of AT2 mRNA through a PI3K-dependent mechanism. The present study provides novel insights into the mechanisms of the peripheral antinociceptive action of propofol and suggests a potential means of regulating Ang II/AT2 signaling in the peripheral nervous system.
Collapse
Affiliation(s)
- Bingbing Pan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Zhigang Cheng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Gaoyin Kong
- Department of Anesthesiology, Hunan Provincial People's Hospital, Changsha, Hunan 410001, P.R. China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yunjiao Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| | - Lai Wei
- Department of Anesthesiology, Hunan Provincial People's Hospital, Changsha, Hunan 410001, P.R. China
| | - Dan Xiao
- Department of Anesthesiology, Hunan Provincial People's Hospital, Changsha, Hunan 410001, P.R. China
| | - Yuan Zhao
- Department of Anesthesiology, Hunan Provincial People's Hospital, Changsha, Hunan 410001, P.R. China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410078, P.R. China
| |
Collapse
|
6
|
Li Q, Chen J, Chen Y, Cong X, Chen Z. Chronic sciatic nerve compression induces fibrosis in dorsal root ganglia. Mol Med Rep 2016; 13:2393-400. [PMID: 26820076 PMCID: PMC4768999 DOI: 10.3892/mmr.2016.4810] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 12/15/2015] [Indexed: 01/10/2023] Open
Abstract
In the present study, pathological alterations in neurons of the dorsal root ganglia (DRG) were investigated in a rat model of chronic sciatic nerve compression. The rat model of chronic sciatic nerve compression was established by placing a 1 cm Silastic tube around the right sciatic nerve. Histological examination was performed via Masson's trichrome staining. DRG injury was assessed using Fluoro Ruby (FR) or Fluoro Gold (FG). The expression levels of target genes were examined using reverse transcription-quantitative polymerase chain reaction, western blot and immunohistochemical analyses. At 3 weeks post-compression, collagen fiber accumulation was observed in the ipsilateral area and, at 8 weeks, excessive collagen formation with muscle atrophy was observed. The collagen volume fraction gradually and significantly increased following sciatic nerve compression. In the model rats, the numbers of FR-labeled DRG neurons were significantly higher, relative to the sham-operated group, however, the numbers of FG-labeled neurons were similar. In the ipsilateral DRG neurons of the model group, the levels of transforming growth factor-β1 (TGF-β1) and connective tissue growth factor (CTGF) were elevated and, surrounding the neurons, the levels of collagen type I were increased, compared with those in the contralateral DRG. In the ipsilateral DRG, chronic nerve compression was associated with significantly higher levels of phosphorylated (p)-extracellular signal-regulated kinase 1/2, and significantly lower levels of p-c-Jun N-terminal kinase and p-p38, compared with those in the contralateral DRGs. Chronic sciatic nerve compression likely induced DRG pathology by upregulating the expression levels of TGF-β1, CTGF and collagen type I, with involvement of the mitogen-activated protein kinase signaling pathway.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, The First People's Hospital of Yichang, Yichang, Hubei 443000, P.R. China
| | - Jianghai Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yanhua Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Xiaobin Cong
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
7
|
Kaur P, Muthuraman A, Kaur M. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives. ACS Chem Neurosci 2015; 6:508-21. [PMID: 25680080 DOI: 10.1021/cn500363g] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Angiotensin converting enzyme (ACE) is a dipeptidyl peptidase transmembrane bound enzyme. Generally, ACE inhibitors are used for the cardiovascular disorders. ACE inhibitors are primary agents for the management of hypertension, so these cannot be avoided for further use. The present Review focuses on the implications of angiotensin converting enzyme inhibitors in neurodegenerative disorders such as dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, and diabetic neuropathy. ACE inhibitors such as ramipril, captopril, perindopril, quinapril, lisinopril, enalapril, and trandolapril have been documented to ameliorate the above neurodegenerative disorders. Neurodegeneration occurs not only by angiotensin II, but also by other endogenous factors, such as the formation of free radicals, amyloid beta, immune reactions, and activation of calcium dependent enzymes. ACE inhibitors interact with the above cellular mechanisms. Thus, these may act as a promising factor for future medicine for neurological disorders beyond the cardiovascular actions. Central acting ACE inhibitors can be useful in the future for the management of neuropathic pain due to following actions: (i) ACE-2 converts angiotensinogen to angiotensin(1-7) (hepatapeptide) which produces neuroprotective action; (ii) ACE inhibitors downregulate kinin B1 receptors in the peripheral nervous system which is responsible for neuropathic pain. However, more extensive research is required in the field of neuropathic pain for the utilization of ACE inhibitors in human.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| | - Manjinder Kaur
- Department of Pharmacology and Toxicology, Neurodegenerative Research Division, Akal College of Pharmacy & Technical Education, Mastuana Sahib, Sangrur-148001, Punjab, India
| |
Collapse
|
8
|
Kaur P, Muthuraman A, Kaur J. Ameliorative potential of angiotensin-converting enzyme inhibitor (ramipril) on chronic constriction injury of sciatic nerve induced neuropathic pain in mice. J Renin Angiotensin Aldosterone Syst 2014; 16:103-12. [DOI: 10.1177/1470320314556171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/09/2014] [Indexed: 01/12/2023] Open
Affiliation(s)
- Parneet Kaur
- Department of Pharmacology, Akal College of Pharmacy & Technical Education, Punjab, India
| | - Arunachalam Muthuraman
- Department of Pharmacology, Akal College of Pharmacy & Technical Education, Punjab, India
| | - Jaspreet Kaur
- Department of Pharmacology, Akal College of Pharmacy & Technical Education, Punjab, India
| |
Collapse
|