1
|
Santander T, Leslie S, Li LJ, Skinner HE, Simonson JM, Sweeney P, Deen KP, Miller MB, Brunye TT. Towards optimized methodological parameters for maximizing the behavioral effects of transcranial direct current stimulation. Front Hum Neurosci 2024; 18:1305446. [PMID: 39015825 PMCID: PMC11250584 DOI: 10.3389/fnhum.2024.1305446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/12/2024] [Indexed: 07/18/2024] Open
Abstract
Introduction Transcranial direct current stimulation (tDCS) administers low-intensity direct current electrical stimulation to brain regions via electrodes arranged on the surface of the scalp. The core promise of tDCS is its ability to modulate brain activity and affect performance on diverse cognitive functions (affording causal inferences regarding regional brain activity and behavior), but the optimal methodological parameters for maximizing behavioral effects remain to be elucidated. Here we sought to examine the effects of 10 stimulation and experimental design factors across a series of five cognitive domains: motor performance, visual search, working memory, vigilance, and response inhibition. The objective was to identify a set of optimal parameter settings that consistently and reliably maximized the behavioral effects of tDCS within each cognitive domain. Methods We surveyed tDCS effects on these various cognitive functions in healthy young adults, ultimately resulting in 721 effects across 106 published reports. Hierarchical Bayesian meta-regression models were fit to characterize how (and to what extent) these design parameters differentially predict the likelihood of positive/negative behavioral outcomes. Results Consistent with many previous meta-analyses of tDCS effects, extensive variability was observed across tasks and measured outcomes. Consequently, most design parameters did not confer consistent advantages or disadvantages to behavioral effects-a domain-general model suggested an advantage to using within-subjects designs (versus between-subjects) and the tendency for cathodal stimulation (relative to anodal stimulation) to produce reduced behavioral effects, but these associations were scarcely-evident in domain-specific models. Discussion These findings highlight the urgent need for tDCS studies to more systematically probe the effects of these parameters on behavior to fulfill the promise of identifying causal links between brain function and cognition.
Collapse
Affiliation(s)
- Tyler Santander
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Sara Leslie
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Luna J. Li
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Henri E. Skinner
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jessica M. Simonson
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick Sweeney
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Kaitlyn P. Deen
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Michael B. Miller
- Institute for Collaborative Biotechnologies, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Tad T. Brunye
- U. S. Army DEVCOM Soldier Center, Natick, MA, United States
- Center for Applied Brain and Cognitive Sciences, Tufts University, Medford, MA, United States
| |
Collapse
|
2
|
Hafezi S, Doustan M, Saemi E. The Effect of Brain Anodal and Cathodal Transcranial Direct Current Stimulation on Psychological Refractory Period at Different Stimulus-Onset Asynchrony in Non-Fatigue and Mental Fatigue Conditions. Brain Sci 2024; 14:477. [PMID: 38790455 PMCID: PMC11118837 DOI: 10.3390/brainsci14050477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The psychological refractory period (PRP) effect occurs when two stimuli that require separate responses are presented sequentially, particularly with a short and variable time interval between them. Fatigue is a suboptimal psycho-physiological state that leads to changes in strategies. In recent years, numerous studies have investigated the effects of transcranial direct current stimulation (tDCS) on motor control. The present study aimed to investigate the effects of two tDCS methods, anodal and cathodal, on PRP in ten different conditions of stimulus-onset asynchronies (SOAs) under non-fatigue and mental fatigue conditions. The participants involved 39 male university students aged 19 to 25 years. In the pre-test, they were assessed using the PRP measurement tool under both non-fatigue and mental fatigue conditions. The mental fatigue was induced by a 30-min Stroop task. The test consisted of two stimuli with different SOAs (50, 75, 100, 150, 300, 400, 600, 900, 1200, and 1500 ms). The first was a visual stimulus with three choices (letters A, B, and C). After a random SOA, the second stimulus, a visual stimulus with three choices (colors red, yellow, and blue), was presented. Subsequently, participants were randomly assigned to the anodal, cathodal, and sham stimulation groups and underwent four consecutive sessions of tDCS stimulation. In the anodal and cathodal stimulation groups, 20 min of tDCS stimulation were applied to the PLPFC area in each session, while in the sham group, the stimulation was artificially applied. All participants were assessed using the same measurement tools as in the pre-test phase, in a post-test phase one day after the last stimulation session, and in a follow-up phase four days after that. Inferential statistics include mixed ANOVA, one-way ANOVA, independent, and dependent t-tests. The findings indicated that the response time to the second stimulus was longer at lower SOAs. However, there was no significant difference between the groups in this regard. Additionally, there was no significant difference in response time to the second stimulus between the fatigue and non-fatigue conditions, or between the groups. Therefore, tDCS had no significant effect. There was a significant difference between mental fatigue and non-fatigue conditions in the psychological refractory period. Moreover, at lower SOAs, the PRP was longer than at higher SOAs. In conditions of fatigue, the active stimulation groups (anodal and cathodal) performed better than the sham stimulation group at higher SOAs. Considering the difference in response to both stimuli at different SOAs, some central aspects of the response can be simultaneously parallel. Fatigue also affects parallel processing. This study supports the response integration phenomenon in PRP, which predicts that there will be an increase in response time to the first stimulus as the interval between the presentation of the two stimuli increases. This finding contradicts the bottleneck model. In this study, the effectiveness of cathodal and anodal tDCS on response time to the second stimulus and PRP was found to be very small.
Collapse
Affiliation(s)
| | - Mohammadreza Doustan
- Department of Motor Behavior and Sport Psychology, Faculty of Sport Sciences, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran; (S.H.); (E.S.)
| | | |
Collapse
|
3
|
Sergiou CS, Tatti E, Romanella SM, Santarnecchi E, Weidema AD, Rassin EG, Franken IH, van Dongen JD. The effect of HD-tDCS on brain oscillations and frontal synchronicity during resting-state EEG in violent offenders with a substance dependence. Int J Clin Health Psychol 2023; 23:100374. [PMID: 36875007 PMCID: PMC9982047 DOI: 10.1016/j.ijchp.2023.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/25/2023] [Indexed: 02/24/2023] Open
Abstract
Violence is a major problem in our society and therefore research into the neural underpinnings of aggression has grown exponentially. Although in the past decade the biological underpinnings of aggressive behavior have been examined, research on neural oscillations in violent offenders during resting-state electroencephalography (rsEEG) remains scarce. In this study we aimed to investigate the effect of high-definition transcranial direct current stimulation (HD-tDCS) on frontal theta, alpha and beta frequency power, asymmetrical frontal activity, and frontal synchronicity in violent offenders. Fifty male violent forensic patients diagnosed with a substance dependence were included in a double-blind sham-controlled randomized study. The patients received 20 minutes of HD-tDCS two times a day on five consecutive days. Before and after the intervention, the patients underwent a rsEEG task. Results showed no effect of HD-tDCS on the power in the different frequency bands. Also, no increase in asymmetrical activity was found. However, we found increased synchronicity in frontal regions in the alpha and beta frequency bands indicating enhanced connectivity in frontal brain regions as a result of the HD-tDCS-intervention. This study has enhanced our understanding of the neural underpinnings of aggression and violence, pointing to the importance of alpha and beta frequency bands and their connectivity in frontal brain regions. Although future studies should further investigate the complex neural underpinnings of aggression in different populations and using whole-brain connectivity, it can be suggested with caution, that HD-tDCS could be an innovative method to regain frontal synchronicity in neurorehabilitation.
Collapse
Affiliation(s)
- Carmen S. Sergiou
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Elisa Tatti
- City College of New York (CUNY) School of Medicine, New York, NY, USA
| | - Sara M. Romanella
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alix D. Weidema
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Eric G.C Rassin
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Ingmar H.A. Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Josanne D.M. van Dongen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
4
|
Wischnewski M, Compen B. Effects of theta transcranial alternating current stimulation (tACS) on exploration and exploitation during uncertain decision-making. Behav Brain Res 2022; 426:113840. [PMID: 35325684 DOI: 10.1016/j.bbr.2022.113840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/02/2022] [Accepted: 03/08/2022] [Indexed: 01/15/2023]
Abstract
Exploring ones surroundings may yield unexpected rewards, but is associated with uncertainty and risk. Alternatively, exploitation of certain outcomes is related to low risk, yet potentially better outcomes remain unexamined. As such, risk-taking behavior depends on perceived uncertainty and a trade-off between exploration-exploitation. Previously, it has been suggested that risk-taking may relate to theta activity in the prefrontal cortex. Furthermore, previous studies hinted at a relationship between a right-hemispheric bias in frontal theta asymmetry and risky behavior. In the present double-blind sham-controlled within-subject study, we applied bifrontal transcranial alternating current stimulation (tACS) at the theta frequency (5 Hz) on eighteen healthy volunteers during a gambling task. Two tACS montages with either left-right or posterior-anterior current flow were employed at an intensity of 1 mA. Results showed that, compared to sham, theta tACS increased perceived uncertainty irrespective of current flow direction. Despite this observation, no direct effect of tACS on exploration behavior and general risk-taking was observed. Furthermore, frontal theta asymmetry was more right-hemispherically biased after posterior-anterior tACS, compared to sham. Finally, we used electric field simulation to identify which regions were targeted by the tACS montages as an overlap in regions may explain why the two montages resulted in comparable outcomes. Our findings provide a first step towards understanding the relationship between frontal theta oscillations and different features of risk-taking.
Collapse
Affiliation(s)
- Miles Wischnewski
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States.
| | - Boukje Compen
- School of Health Professions Education, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
5
|
Badran BW, Gruber EM, O’Leary GH, Austelle CW, Huffman SM, Kahn AT, McTeague LM, Uhde TW, Cortese BM. Electrical stimulation of the trigeminal nerve improves olfaction in healthy individuals: A randomized, double-blind, sham-controlled trial. Brain Stimul 2022; 15:761-768. [PMID: 35561963 PMCID: PMC9976566 DOI: 10.1016/j.brs.2022.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/03/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Both activated by environmental odorants, there is a clear role for the intranasal trigeminal and olfactory nerves in smell function. Unfortunately, our ability to perceive odorants decreases with age or with injury, and limited interventions are available to treat smell loss. OBJECTIVE We investigated whether electrical stimulation of the trigeminal nerve via trigeminal nerve stimulation (TNS) or transcranial direct current stimulation (tDCS) modulates odor sensitivity in healthy individuals. METHODS We recruited 20 healthy adults (12 Female, mean age = 27) to participate in this three-visit, randomized, double-blind, sham-controlled trial. Participants were randomized to receive one of three stimulation modalities (TNS, tDCS, or sham) during each of their visits. Odor detection thresholds were obtained at baseline, immediately post-intervention, and 30-min post-intervention. Furthermore, participants were asked to complete a sustained attention task and mood assessments before odor detection testing. RESULTS Findings reveal a timeXcondition interaction for guaiacol (GUA) odorant detection thresholds (F (3.188, 60.57) = 3.833, P = 0.0125), but not phenyl ethyl alcohol (PEA) odorant thresholds. At 30-min post-stimulation, both active TNS and active tDCS showed significantly increased sensitivity to GUA compared to sham TNS (Sham TNS = -8.30% vs. Active TNS = 9.11%, mean difference 17.43%, 95% CI 5.674 to 29.18, p = 0.0044; Sham TNS = -8.30% vs. Active tDCS = 13.58%, mean difference 21.89%, 95% CI 10.47 to 33.32, p = 0.0004). CONCLUSION TNS is a safe, simple, noninvasive method for boosting olfaction. Future studies should investigate the use of TNS on smell function across different stimulation parameters, odorants, and patient populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bernadette M. Cortese
- Corresponding author. Department of Psychiatry and Behavioral Sciences, The Medical University of South Carolina, 67 President Street, BA 504F, Charleston, South Carolina, 29425, USA. (B.M. Cortese)
| |
Collapse
|
6
|
Behavioral and electrocortical effects of transcranial alternating current stimulation during advice-guided decision-making. NEUROIMAGE: REPORTS 2021. [DOI: 10.1016/j.ynirp.2021.100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Sergiou CS, Santarnecchi E, Romanella SM, Wieser MJ, Franken IHA, Rassin EGC, van Dongen JDM. Transcranial Direct Current Stimulation Targeting the Ventromedial Prefrontal Cortex Reduces Reactive Aggression and Modulates Electrophysiological Responses in a Forensic Population. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:95-107. [PMID: 34087482 DOI: 10.1016/j.bpsc.2021.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies have shown that impairments in the ventromedial prefrontal cortex play a crucial role in violent behavior in forensic patients who also abuse cocaine and alcohol. Moreover, interventions that aimed to reduce violence risk in those patients are found not to be optimal. A promising intervention might be to modulate the ventromedial prefrontal cortex by high-definition (HD) transcranial direct current stimulation (tDCS). The current study aimed to examine HD-tDCS as an intervention to increase empathic abilities and reduce violent behavior in forensic substance dependent offenders. In addition, using electroencephalography, we examined the effects on the P3 and the late positive potential of the event-related potentials in reaction to situations that depict victims of aggression. METHODS Fifty male forensic patients with a substance dependence were tested in a double-blind, placebo-controlled randomized study. The patients received HD-tDCS 2 times a day for 20 minutes for 5 consecutive days. Before and after the intervention, the patients completed self-reports and performed the Point Subtraction Aggression Paradigm, and electroencephalography was recorded while patients performed an empathy task. RESULTS Results showed a decrease in aggressive responses on the Point Subtraction Aggression Paradigm and in self-reported reactive aggression in the active tDCS group. Additionally, we found a general increase in late positive potential amplitude after active tDCS. No effects on trait empathy and the P3 were found. CONCLUSIONS Current findings are the first to find positive effects of HD-tDCS in reducing aggression and modulating electrophysiological responses in forensic patients, showing the potential of using tDCS as an intervention to reduce aggression in forensic mental health care.
Collapse
Affiliation(s)
- Carmen S Sergiou
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sara M Romanella
- Berenson-Allen Center for Non-Invasive Brain Stimulation, Beth Israel Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Matthias J Wieser
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Eric G C Rassin
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Josanne D M van Dongen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
8
|
Keogh R, Bergmann J, Pearson J. Cortical excitability controls the strength of mental imagery. eLife 2020; 9:50232. [PMID: 32369016 PMCID: PMC7200162 DOI: 10.7554/elife.50232] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Abstract
Mental imagery provides an essential simulation tool for remembering the past and planning the future, with its strength affecting both cognition and mental health. Research suggests that neural activity spanning prefrontal, parietal, temporal, and visual areas supports the generation of mental images. Exactly how this network controls the strength of visual imagery remains unknown. Here, brain imaging and transcranial magnetic phosphene data show that lower resting activity and excitability levels in early visual cortex (V1-V3) predict stronger sensory imagery. Further, electrically decreasing visual cortex excitability using tDCS increases imagery strength, demonstrating a causative role of visual cortex excitability in controlling visual imagery. Together, these data suggest a neurophysiological mechanism of cortical excitability involved in controlling the strength of mental images.
Collapse
Affiliation(s)
- Rebecca Keogh
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Johanna Bergmann
- School of Psychology, University of New South Wales, Sydney, Australia.,Department of Neurophysiology, Max Planck Institute for Brain Research, Frankfurt, Germany.,Brain Imaging Center Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| | - Joel Pearson
- School of Psychology, University of New South Wales, Sydney, Australia
| |
Collapse
|
9
|
Manuel AL, Murray NWG, Piguet O. Transcranial direct current stimulation (tDCS) over vmPFC modulates interactions between reward and emotion in delay discounting. Sci Rep 2019; 9:18735. [PMID: 31822732 PMCID: PMC6904687 DOI: 10.1038/s41598-019-55157-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
Delay discounting requires computing trade-offs between immediate-small rewards and later-larger rewards. Negative and positive emotions shift decisions towards more or less impulsive responses, respectively. Models have conceptualized this trade-off by describing an interplay between “emotional” and “rational” processes, with the former involved during immediate choices and relying on the ventromedial prefrontal cortex (vmPFC), and the latter involved in long-term choices and relying on the dorsolateral prefrontal cortex (dlPFC). Whether stimulation of the vmPFC modulates emotion-induced delay discounting remains unclear. We applied tDCS over the vmPFC in 20 healthy individuals during a delay discounting task following an emotional (positive, negative) or neutral induction. Our results showed that cathodal tDCS increased impulsivity after positive emotions in high impulsivity trials. For low impulsivity trials, anodal tDCS decreased impulsivity following neutral induction compared with emotional induction. Our findings demonstrate that the vmPFC integrates reward and emotion most prominently in situations of increased impulsivity, whereas when higher cognitive control is required the vmPFC appears to be less engaged, possibly due to recruitment of the dlPFC. Understanding how stimulation and emotion influence decision-making at the behavioural and neural levels holds promise to develop interventions to reduce impulsivity.
Collapse
Affiliation(s)
- Aurélie L Manuel
- The University of Sydney, School of Psychology, Sydney, Australia. .,The University of Sydney, Brain & Mind Centre, Sydney, Australia. .,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia.
| | - Nicholas W G Murray
- The University of Sydney, Brain & Mind Centre, Sydney, Australia.,Macquarie University, School of Psychology, Sydney, Australia
| | - Olivier Piguet
- The University of Sydney, School of Psychology, Sydney, Australia.,The University of Sydney, Brain & Mind Centre, Sydney, Australia.,ARC Centre of Excellence in Cognition & its Disorders, Sydney, Australia
| |
Collapse
|
10
|
Cattaneo Z, Ferrari C, Schiavi S, Alekseichuk I, Antal A, Nadal M. Medial prefrontal cortex involvement in aesthetic appreciation of paintings: a tDCS study. Cogn Process 2019; 21:65-76. [DOI: 10.1007/s10339-019-00936-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/10/2019] [Indexed: 10/25/2022]
|
11
|
Frontal cortex electrophysiology in reward- and punishment-related feedback processing during advice-guided decision making: An interleaved EEG-DC stimulation study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:249-262. [PMID: 29380293 PMCID: PMC5889418 DOI: 10.3758/s13415-018-0566-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During decision making, individuals are prone to rely on external cues such as expert advice when the outcome is not known. However, the electrophysiological correlates associated with outcome uncertainty and the use of expert advice are not completely understood. The feedback-related negativity (FRN), P3a, and P3b are event-related brain potentials (ERPs) linked to dissociable stages of feedback and attentional processing during decision making. Even though these ERPs are influenced by both reward- and punishment-related feedback, it remains unclear how extrinsic information during uncertainty modulates these brain potentials. In this study, the effects of advice cues on decision making were investigated in two separate experiments. In the first experiment, electroencephalography (EEG) was recorded in healthy volunteers during a decision-making task in which the participants received reward or punishment feedback preceded by novice, amateur, or expert advice. The results showed that the P3a component was significantly influenced by the subjective predictive value of an advice cue, whereas the FRN and P3b were unaffected by the advice cues. In the second, sham-controlled experiment, cathodal transcranial direct current stimulation (ctDCS) was administered in conjunction with EEG in order to explore the direct contributions of the frontal cortex to these brain potentials. Results showed no significant change in either advice-following behavior or decision times. However, ctDCS did decrease FRN amplitudes as compared to sham, with no effect on the P3a or P3b. Together, these findings suggest that advice information may act primarily on attention allocation during feedback processing, whereas the electrophysiological correlates of the detection and updating of internal prediction models are not affected.
Collapse
|
12
|
Ulrich M, Niemann J, Boland M, Kammer T, Niemann F, Grön G. The neural correlates of flow experience explored with transcranial direct current stimulation. Exp Brain Res 2018; 236:3223-3237. [DOI: 10.1007/s00221-018-5378-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/08/2018] [Indexed: 01/23/2023]
|
13
|
Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation. Front Neurosci 2017; 11:641. [PMID: 29213226 PMCID: PMC5702643 DOI: 10.3389/fnins.2017.00641] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.
Collapse
Affiliation(s)
- Hayley Thair
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Amy L Holloway
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Roger Newport
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Alastair D Smith
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
14
|
Wischnewski M, Schutter DJ. After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 2017; 128:2227-2232. [DOI: 10.1016/j.clinph.2017.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/06/2017] [Accepted: 08/24/2017] [Indexed: 11/28/2022]
|
15
|
Yin Y, Yu H, Su Z, Zhang Y, Zhou X. Lateral prefrontal/orbitofrontal cortex has different roles in norm compliance in gain and loss domains: a transcranial direct current stimulation study. Eur J Neurosci 2017; 46:2088-2095. [DOI: 10.1111/ejn.13653] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 07/08/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Yunlu Yin
- School of Psychological and Cognitive Sciences and Center for Brain and Cognitive Sciences Peking University Beijing 100871 China
| | - Hongbo Yu
- School of Psychological and Cognitive Sciences and Center for Brain and Cognitive Sciences Peking University Beijing 100871 China
- Department of Experimental Psychology University of Oxford Oxford UK
| | - Zhongbin Su
- School of Psychological and Cognitive Sciences and Center for Brain and Cognitive Sciences Peking University Beijing 100871 China
| | - Yuan Zhang
- School of Psychological and Cognitive Sciences and Center for Brain and Cognitive Sciences Peking University Beijing 100871 China
- Department of Psychiatry and Behavioral Sciences Stanford University School of Medicine Stanford CA USA
| | - Xiaolin Zhou
- School of Psychological and Cognitive Sciences and Center for Brain and Cognitive Sciences Peking University Beijing 100871 China
- Beijing Key Laboratory of Behavior and Mental Health Peking University Beijing China
- Key Laboratory of Machine Perception (Ministry of Education) Peking University Beijing China
- PKU‐IDG/McGovern Institute for Brain Research Peking University Beijing China
| |
Collapse
|
16
|
Transcranial Direct Current Stimulation (tDCS) of the Anterior Prefrontal Cortex (aPFC) Modulates Reinforcement Learning and Decision-Making Under Uncertainty: a Double-Blind Crossover Study. JOURNAL OF COGNITIVE ENHANCEMENT 2017. [DOI: 10.1007/s41465-017-0030-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Bognár A, Csete G, Németh M, Csibri P, Kincses TZ, Sáry G. Transcranial Stimulation of the Orbitofrontal Cortex Affects Decisions about Magnocellular Optimized Stimuli. Front Neurosci 2017; 11:234. [PMID: 28491018 PMCID: PMC5405140 DOI: 10.3389/fnins.2017.00234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 04/07/2017] [Indexed: 11/13/2022] Open
Abstract
Visual categorization plays an important role in fast and efficient information processing; still the neuronal basis of fast categorization has not been established yet. There are two main hypotheses known; both agree that primary, global impressions are based on the information acquired through the magnocellular pathway (MC). It is unclear whether this information is available through the MC that provides information (also) for the ventral pathway or through top-down mechanisms by connections between the dorsal pathway and the ventral pathway via the frontal cortex. To clarify this, a categorization task was performed by 48 subjects; they had to make decisions about objects' sizes. We created stimuli specific to the magno- and parvocellular pathway (PC) on the basis of their spatial frequency content. Transcranial direct-current stimulation was used to assess the role of frontal areas, a target of the MC. Stimulation did not bias the accuracy of decisions when stimuli optimized for the PC were used. In the case of stimuli optimized for the MC, anodal stimulation improved the subjects' accuracy in the behavioral test, while cathodal stimulation impaired accuracy. Our results support the hypothesis that fast visual categorization processes rely on top-down mechanisms that promote fast predictions through coarse information carried by MC via the orbitofrontal cortex.
Collapse
Affiliation(s)
- Anna Bognár
- Department of Physiology, University of SzegedSzeged, Hungary
| | - Gergő Csete
- Department of Neurology, University of SzegedSzeged, Hungary
- Department of Anaesthesiology and Intensive Therapy, University of SzegedSzeged, Hungary
| | - Margit Németh
- Department of Physiology, University of SzegedSzeged, Hungary
| | - Péter Csibri
- Department of Physiology, University of SzegedSzeged, Hungary
| | | | - Gyula Sáry
- Department of Physiology, University of SzegedSzeged, Hungary
| |
Collapse
|
18
|
Bajo A, Fleminger S, Metcalfe C, Kopelman MD. Confabulation: What is associated with its rise and fall? A study in brain injury. Cortex 2017; 87:31-43. [DOI: 10.1016/j.cortex.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/03/2016] [Accepted: 06/10/2016] [Indexed: 10/21/2022]
|
19
|
Schnider A, Nahum L, Ptak R. What does extinction have to do with confabulation? Cortex 2017; 87:5-15. [DOI: 10.1016/j.cortex.2016.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/31/2016] [Accepted: 10/21/2016] [Indexed: 10/20/2022]
|
20
|
Nakamura-Palacios EM, Lopes IBC, Souza RA, Klauss J, Batista EK, Conti CL, Moscon JA, de Souza RSM. Ventral medial prefrontal cortex (vmPFC) as a target of the dorsolateral prefrontal modulation by transcranial direct current stimulation (tDCS) in drug addiction. J Neural Transm (Vienna) 2016; 123:1179-94. [DOI: 10.1007/s00702-016-1559-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/19/2016] [Indexed: 12/25/2022]
|
21
|
Armstrong CC, Moody TD, Feusner JD, McCracken JT, Chang S, Levitt JG, Piacentini JC, O'Neill J. Graph-theoretical analysis of resting-state fMRI in pediatric obsessive-compulsive disorder. J Affect Disord 2016; 193:175-84. [PMID: 26773910 PMCID: PMC5767329 DOI: 10.1016/j.jad.2015.12.071] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/06/2015] [Accepted: 12/26/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND fMRI graph theory reveals resting-state brain networks, but has never been used in pediatric OCD. METHODS Whole-brain resting-state fMRI was acquired at 3T from 21 children with OCD and 20 age-matched healthy controls. BOLD connectivity was analyzed yielding global and local graph-theory metrics across 100 child-based functional nodes. We also compared local metrics between groups in frontopolar, supplementary motor, and sensorimotor cortices, regions implicated in recent neuroimaging and/or brain stimulation treatment studies in OCD. RESULTS As in adults, the global metric small-worldness was significantly (P<0.05) lower in patients than controls, by 13.5% (%mean difference=100%X(OCD mean - control mean)/control mean). This suggests less efficient information transfer in patients. In addition, modularity was lower in OCD (15.1%, P<0.01), suggesting less granular - or differently organized - functional brain parcellation. Higher clustering coefficients (23.9-32.4%, P<0.05) were observed in patients in frontopolar, supplementary motor, sensorimotor, and cortices with lower betweenness centrality (-63.6%, P<0.01) at one frontopolar site. These findings are consistent with more locally intensive connectivity or less interaction with other brain regions at these sites. LIMITATIONS Relatively large node size; relatively small sample size, comorbidities in some patients. CONCLUSIONS Pediatric OCD patients demonstrate aberrant global and local resting-state network connectivity topologies compared to healthy children. Local results accord with recent views of OCD as a disorder with sensorimotor component.
Collapse
Affiliation(s)
- Casey C. Armstrong
- Division of Child & Adolescent Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - Teena D. Moody
- Division of Adult Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - Jamie D. Feusner
- Division of Adult Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - James T. McCracken
- Division of Child & Adolescent Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - Susanna Chang
- Division of Child & Adolescent Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - Jennifer G. Levitt
- Division of Child & Adolescent Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - John C. Piacentini
- Division of Child & Adolescent Psychiatry, UCLA Semel Institute For Neurosciences, Los Angeles, CA, United States
| | - Joseph O'Neill
- Division of Child & Adolescent Psychiatry, UCLA Semel Institute for Neurosciences, 760 Westwood Plaza, Los Angeles, CA 90024-1759, United States.
| |
Collapse
|
22
|
Nakamura K, Kawabata H. Transcranial Direct Current Stimulation over the Medial Prefrontal Cortex and Left Primary Motor Cortex (mPFC-lPMC) Affects Subjective Beauty but Not Ugliness. Front Hum Neurosci 2015; 9:654. [PMID: 26696865 PMCID: PMC4672048 DOI: 10.3389/fnhum.2015.00654] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 11/13/2022] Open
Abstract
Neuroaesthetics has been searching for the neural bases of the subjective experience of beauty. It has been demonstrated that neural activities in the medial prefrontal cortex (mPFC) and the left primary motor cortex (lPMC) correlate with the subjective experience of beauty. Although beauty and ugliness seem to be semantically and conceptually opposite, it is still unknown whether these two evaluations represent extreme opposites in unitary or bivariate dimensions. In this study, we applied transcranial direct current stimulation (tDCS) to examine whether non-invasive brain stimulation modulates two types of esthetic evaluation; evaluating beauty and ugliness. Participants rated the subjective beauty and ugliness of abstract paintings before and after the application of tDCS. Application of cathodal tDCS over the mPFC with anode electrode over the lPMC, which induced temporal inhibition of neural excitability of the mPFC, led to a decrease in beauty ratings but not ugliness ratings. There were no changes in ratings of both beauty and ugliness when applying anodal tDCS or sham stimulation over the mPFC. Results from our experiment indicate that the mPFC and the lPMC have a causal role in generating the subjective experience of beauty, with beauty and ugliness evaluations constituting two distinct dimensions.
Collapse
Affiliation(s)
- Koyo Nakamura
- Graduate School of Human Relations, Keio University Tokyo, Japan
| | | |
Collapse
|
23
|
Badcock JC. A Neuropsychological Approach to Auditory Verbal Hallucinations and Thought Insertion - Grounded in Normal Voice Perception. ACTA ACUST UNITED AC 2015; 7:631-652. [PMID: 27617046 PMCID: PMC4995233 DOI: 10.1007/s13164-015-0270-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A neuropsychological perspective on auditory verbal hallucinations (AVH) links key phenomenological features of the experience, such as voice location and identity, to functionally separable pathways in normal human audition. Although this auditory processing stream (APS) framework has proven valuable for integrating research on phenomenology with cognitive and neural accounts of hallucinatory experiences, it has not yet been applied to other symptoms presumed to be closely related to AVH – such as thought insertion (TI). In this paper, I propose that an APS framework offers a useful way of thinking about the experience of TI as well as AVH, providing a common conceptual framework for both. I argue that previous self-monitoring theories struggle to account for both the differences and similarities in the characteristic features of AVH and TI, which can be readily accommodated within an APS framework. Furthermore, the APS framework can be integrated with predictive processing accounts of psychotic symptoms; makes predictions about potential sites of prediction error signals; and may offer a template for understanding a range of other symptoms beyond AVH and TI.
Collapse
Affiliation(s)
- Johanna C Badcock
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, 6009 Western Australia
| |
Collapse
|