1
|
Lacinova L, Mallmann RT, Jurkovičová-Tarabová B, Klugbauer N. Modulation of voltage-gated Ca V2.2 Ca 2+ channels by newly identified interaction partners. Channels (Austin) 2020; 14:380-392. [PMID: 33006503 PMCID: PMC7567506 DOI: 10.1080/19336950.2020.1831328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Voltage-gated Ca2+ channels are typically integrated in a complex network of protein-protein-interactions, also referred to as Ca2+ channel nanodomains. Amongst the neuronal CaV2 channel family, CaV2.2 is of particular importance due to its general role for signal transmission from the periphery to the central nervous system, but also due to its significance for pain perception. Thus, CaV2.2 is an ideal target candidate to search for pharmacological inhibitors but also for novel modulatory interactors. In this review we summarize the last years findings of our intense screenings and characterization of the six CaV2.2 interaction partners, tetraspanin-13 (TSPAN-13), reticulon 1 (RTN1), member 1 of solute carrier family 38 (SLC38), prostaglandin D2 synthase (PTGDS), transmembrane protein 223 (TMEM223), and transmembrane BAX inhibitor motif 3 (Grina/TMBIM3) containing protein. Each protein shows a unique way of channel modulation as shown by extensive electrophysiological studies. Amongst the newly identified interactors, Grina/TMBIM3 is most striking due to its modulatory effect which is rather comparable to G-protein regulation.
Collapse
Affiliation(s)
- Lubica Lacinova
- Center of Bioscience, - Institute for Molecular Physiology and Genetics , Bratislava, Slovakia.,Faculty of Natural Sciences, University of Ss. Cyril and Methodius , Trnava, Slovakia
| | - Robert Theodor Mallmann
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| | | | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg , Freiburg, Germany.,Center for Basics in NeuroModulation (Neuromodul Basics), Albert-Ludwigs-Universität Freiburg , Freiburg, Germany
| |
Collapse
|
2
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
3
|
He R, Zhang J, Yu Y, Jizi L, Wang W, Li M. New Insights Into Interactions of Presynaptic Calcium Channel Subtypes and SNARE Proteins in Neurotransmitter Release. Front Mol Neurosci 2018; 11:213. [PMID: 30061813 PMCID: PMC6054978 DOI: 10.3389/fnmol.2018.00213] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/30/2018] [Indexed: 12/11/2022] Open
Abstract
Action potential (AP) induces presynaptic membrane depolarization and subsequent opening of Ca2+ channels, and then triggers neurotransmitter release at the active zone of presynaptic terminal. Presynaptic Ca2+ channels and SNARE proteins (SNAREs) interactions form a large signal transfer complex, which are core components for exocytosis. Ca2+ channels serve to regulate the activity of Ca2+ channels through direct binding and indirect activation of active zone proteins and SNAREs. The activation of Ca2+ channels promotes synaptic vesicle recruitment, docking, priming, fusion and neurotransmission release. Intracellular calcium increase is a key step for the initiation of vesicle fusion. Various voltage-gated calcium channel (VGCC) subtypes exert different physiological functions. Until now, it has not been clear how different subtypes of calcium channels integrally regulate the release of neurotransmitters within 200 μs of the AP arriving at the active zone of synaptic terminal. In this mini review, we provide a brief overview of the structure and physiological function of Ca2+ channel subtypes, interactions of Ca2+ channels and SNAREs in neurotransmitter release, and dynamic fine-tune Ca2+ channel activities by G proteins (Gβγ), multiple protein kinases and Ca2+ sensor (CaS) proteins.
Collapse
Affiliation(s)
- Rongfang He
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China.,Infectious Disease Department, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Juan Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yiyan Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Laluo Jizi
- Department of Neurology, Liangshan Hospital of Integrated Traditional and Western Medicine, Xichang, China
| | - Weizhong Wang
- Department of Physiology and Center of Polar Medical Research, Second Military Medical University, Shanghai, China
| | - Miaoling Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| |
Collapse
|
4
|
Velasco M, Díaz-García CM, Larqué C, Hiriart M. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells. Mol Pharmacol 2016; 90:341-57. [PMID: 27436126 DOI: 10.1124/mol.116.103861] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/18/2016] [Indexed: 12/11/2022] Open
Abstract
Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion.
Collapse
Affiliation(s)
- Myrian Velasco
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Manlio Díaz-García
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcia Hiriart
- Department of Neurodevelopment and Physiology, Neuroscience Division, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Protein partners of the calcium channel β subunit highlight new cellular functions. Biochem J 2016; 473:1831-44. [DOI: 10.1042/bcj20160125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, β, α2δ and γ, among which the cytosolic β subunit (Cavβ) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavβ. However, a growing number of proteins have been found to interact with Cavβ, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavβ are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavβ protein partners, this review emphasizes the diverse cellular functions of Cavβ and summarizes both past findings as well as recent progress in the understanding of VGCC.
Collapse
|
6
|
Yeste M, Jones C, Amdani SN, Patel S, Coward K. Oocyte activation deficiency: a role for an oocyte contribution? Hum Reprod Update 2015; 22:23-47. [DOI: 10.1093/humupd/dmv040] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
|
7
|
Zhu L, McDavid S, Currie KPM. "Slow" Voltage-Dependent Inactivation of CaV2.2 Calcium Channels Is Modulated by the PKC Activator Phorbol 12-Myristate 13-Acetate (PMA). PLoS One 2015. [PMID: 26222492 PMCID: PMC4519294 DOI: 10.1371/journal.pone.0134117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
CaV2.2 (N-type) voltage-gated calcium channels (Ca2+ channels) play key roles in neurons and neuroendocrine cells including the control of cellular excitability, neurotransmitter / hormone secretion, and gene expression. Calcium entry is precisely controlled by channel gating properties including multiple forms of inactivation. “Fast” voltage-dependent inactivation is relatively well-characterized and occurs over the tens-to- hundreds of milliseconds timeframe. Superimposed on this is the molecularly distinct, but poorly understood process of “slow” voltage-dependent inactivation, which develops / recovers over seconds-to-minutes. Protein kinases can modulate “slow” inactivation of sodium channels, but little is known about if/how second messengers control “slow” inactivation of Ca2+ channels. We investigated this using recombinant CaV2.2 channels expressed in HEK293 cells and native CaV2 channels endogenously expressed in adrenal chromaffin cells. The PKC activator phorbol 12-myristate 13-acetate (PMA) dramatically prolonged recovery from “slow” inactivation, but an inactive control (4α-PMA) had no effect. This effect of PMA was prevented by calphostin C, which targets the C1-domain on PKC, but only partially reduced by inhibitors that target the catalytic domain of PKC. The subtype of the channel β-subunit altered the kinetics of inactivation but not the magnitude of slowing produced by PMA. Intracellular GDP-β-S reduced the effect of PMA suggesting a role for G proteins in modulating “slow” inactivation. We postulate that the kinetics of recovery from “slow” inactivation could provide a molecular memory of recent cellular activity and help control CaV2 channel availability, electrical excitability, and neurotransmission in the seconds-to-minutes timeframe.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah McDavid
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kevin P. M. Currie
- Department of Anesthesiology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
8
|
ZC88, a novel N-type calcium channel blocker from 4-amino-piperidine derivatives state-dependent inhibits Cav2.2 calcium channels. Brain Res 2015; 1605:12-21. [DOI: 10.1016/j.brainres.2015.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/23/2022]
|