1
|
Anders S, Breithausen B, Unichenko P, Herde MK, Minge D, Abramian A, Behringer C, Deshpande T, Boehlen A, Domingos C, Henning L, Pitsch J, Kim YB, Bedner P, Steinhäuser C, Henneberger C. Epileptic activity triggers rapid ROCK1-dependent astrocyte morphology changes. Glia 2024; 72:643-659. [PMID: 38031824 PMCID: PMC10842783 DOI: 10.1002/glia.24495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Long-term modifications of astrocyte function and morphology are well known to occur in epilepsy. They are implicated in the development and manifestation of the disease, but the relevant mechanisms and their pathophysiological role are not firmly established. For instance, it is unclear how quickly the onset of epileptic activity triggers astrocyte morphology changes and what the relevant molecular signals are. We therefore used two-photon excitation fluorescence microscopy to monitor astrocyte morphology in parallel to the induction of epileptiform activity. We uncovered astrocyte morphology changes within 10-20 min under various experimental conditions in acute hippocampal slices. In vivo, induction of status epilepticus resulted in similarly altered astrocyte morphology within 30 min. Further analysis in vitro revealed a persistent volume reduction of peripheral astrocyte processes triggered by induction of epileptiform activity. In addition, an impaired diffusion within astrocytes and within the astrocyte network was observed, which most likely is a direct consequence of the astrocyte remodeling. These astrocyte morphology changes were prevented by inhibition of the Rho GTPase RhoA and of the Rho-associated kinase (ROCK). Selective deletion of ROCK1 but not ROCK2 from astrocytes also prevented the morphology change after induction of epileptiform activity and reduced epileptiform activity. Together these observations reveal that epileptic activity triggers a rapid ROCK1-dependent astrocyte morphology change, which is mechanistically linked to the strength of epileptiform activity. This suggests that astrocytic ROCK1 signaling is a maladaptive response of astrocytes to the onset of epileptic activity.
Collapse
Affiliation(s)
- Stefanie Anders
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Björn Breithausen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Petr Unichenko
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Michel K. Herde
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Daniel Minge
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Adlin Abramian
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Charlotte Behringer
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Anne Boehlen
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Cátia Domingos
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julika Pitsch
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA, USA
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Henneberger
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
2
|
Mortazavi A, Khan AU, Nieblas-Bedolla E, Boddeti U, Bachani M, Ksendzovsky A, Johnson K, Zaghloul KA. Differential gene expression underlying epileptogenicity in patients with gliomas. Neurooncol Adv 2024; 6:vdae103. [PMID: 39022648 PMCID: PMC11252565 DOI: 10.1093/noajnl/vdae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Seizures are a common sequela for patients suffering from gliomas. Molecular properties are known to influence the initiation of seizures that may influence tumor growth. Different levels of gene expression with seizures related to gliomas remain unclear. We analyzed RNA sequencing of gliomas to further probe these differences. Methods Total RNA sequencing was obtained from The Cancer Genome Atlas-Lower-Grade Glioma project, comprised of 2021 World Health Organization classification low-grade gliomas, including IDH-mutant and IDH-wild type, to distinguish differential expression in patients who did and did not experience seizures. Utilizing QIAGEN Ingenuity Pathways Analysis, we identified canonical and functional pathways to characterize differential expression. Results Of 289 patients with gliomas, 83 (28.7%) had available information regarding seizure occurrence prior to intervention and other pertinent variables of interest. Of these, 50 (60.2%) were allocated to the seizure group. When comparing the level of RNA expression from these tumors between the seizure and non-seizure groups, 52 genes that were significantly differentially regulated were identified. We found canonical pathways that were altered, most significantly RhoGDI and semaphorin neuronal repulsive signaling. Functional gene analysis revealed tumors that promoted seizures had significantly increased functional gene sets involving neuronal differentiation and synaptogenesis. Conclusions In the setting of gliomas, differences in tumor gene expression exist between individuals with and without seizures, despite similarities in patient demographics and other tumor characteristics. There are significant differences in gene expression associated with neuron development and synaptogenesis, ultimately suggesting a mechanistic role of a tumor-neuron synapse in seizure initiation.
Collapse
Affiliation(s)
- Armin Mortazavi
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan, USA
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anas U Khan
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Ujwal Boddeti
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Muzna Bachani
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Alexander Ksendzovsky
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kory Johnson
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
3
|
Dashtban-Moghadam E, Khodaverdian S, Dabirmanesh B, Mirnajafi-Zadeh J, Shojaei A, Mirzaie M, Choopanian P, Atabakhshi-Kashi M, Fatholahi Y, Khajeh K. Hippocampal tandem mass tag (TMT) proteomics analysis during kindling epileptogenesis in rat. Brain Res 2024; 1822:148620. [PMID: 37848119 DOI: 10.1016/j.brainres.2023.148620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Epilepsy is a neurological disorder that remains difficult to treat due to the lack of a clear molecular mechanism and incomplete understanding of involved proteins. To identify potential therapeutic targets, it is important to gain insight into changes in protein expression patterns related to epileptogenesis. One promising approach is to analyze proteomic data, which can provide valuable information about these changes. In this study, to evaluate the changes in gene expression during epileptogenesis, LC-MC2 analysis was carried out on hippocampus during stages of electrical kindling in rat models. Subsequently, progressive changes in the expression of proteins were detected as a result of epileptogenesis development. In line with behavioral kindled seizure stages and according to the proteomics data, we described epileptogenesis phases by comparing Stage3 versus Control (S3/C0), Stage5 versus Stage3 (S5/S3), and Stage5 versus Control group (S5/C0). Gene ontology analysis on differentially expressed proteins (DEPs) showed significant changes of proteins involved in immune responses like Csf1R, Aif1 and Stat1 during S3/C0, regulation of synaptic plasticity like Bdnf, Rac1, CaMK, Cdc42 and P38 during S5/S3, and nervous system development throughout S5/C0 like Bdnd, Kcc2 and Slc1a3.There were also proteins like Cox2, which were altered commonly among all three phases. The pathway enrichment analysis of DEPs was also done to discover molecular connections between phases and we have found that the targets like Csf1R, Bdnf and Cox2 were analyzed throughout all three phases were highly involved in the PPI network analysis as hub nodes. Additionally, these same targets underwent changes which were confirmed through Western blotting. Our results have identified proteomic patterns that could shed light on the molecular mechanisms underlying epileptogenesis which may allow for novel targeted therapeutic strategies.
Collapse
Affiliation(s)
- Elahe Dashtban-Moghadam
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Shima Khodaverdian
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran; Institute for Brain and Cognition, Tarbiat Modares University, Tehran, Iran
| | - Amir Shojaei
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Mehdi Mirzaie
- Department of Pharmacology, Faculty of Medicine, Neuroscience Center & Helsinki Institute of Life Science, University of Helsinki, Helsinki 00290, Finland; Department of Applied Mathematics, Faculty of Mathematical Science, Tarbiat Modares University, Tehran, Iran
| | - Peyman Choopanian
- Department of Pharmacology, Faculty of Medicine, Neuroscience Center & Helsinki Institute of Life Science, University of Helsinki, Helsinki 00290, Finland
| | - Mona Atabakhshi-Kashi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Nanoscience and Technology, Beijing 100190, China
| | - Yaghoub Fatholahi
- Department of Medical Physiology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Chung YS, Ahmed PK, Othman I, Shaikh MF. Orthosiphon stamineus Proteins Alleviate Hydrogen Peroxide Stress in SH-SY5Y Cells. Life (Basel) 2021; 11:life11060585. [PMID: 34202937 PMCID: PMC8235403 DOI: 10.3390/life11060585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
The neuroprotective potential of Orthosiphon stamineus leaf proteins (OSLPs) has never been evaluated in SH-SY5Y cells challenged by hydrogen peroxide (H2O2). This work thus aims to elucidate OSLP neuroprotective potential in alleviating H2O2 stress. OSLPs at varying concentrations were evaluated for cytotoxicity (24 and 48 h) and neuroprotective potential in H2O2-induced SH-SY5Y cells (24 h). The protective mechanism of H2O2-induced SH-SY5Y cells was also explored via mass-spectrometry-based label-free quantitative proteomics (LFQ) and bioinformatics. OSLPs (25, 50, 125, 250, 500, and 1000 µg/mL; 24 and 48 h) were found to be safe. Pre-treatments with OSLP doses (250, 500, and 1000 µg/mL, 24 h) significantly increased the survival of SH-SY5Y cells in a concentration-dependent manner and improved cell architecture—pyramidal-shaped cells, reduced clumping and shrinkage, with apparent neurite formations. OSLP pre-treatment (1000 µg/mL, 24 h) lowered the expressions of two major heat shock proteins, HSPA8 (heat shock protein family A (Hsp70) member 8) and HSP90AA1 (heat shock protein 90), which promote cellular stress signaling under stress conditions. OSLP is, therefore, suggested to be anti-inflammatory by modulating the “signaling of interleukin-4 and interleukin-13” pathway as the predominant mechanism in addition to regulating the “attenuation phase” and “HSP90 chaperone cycle for steroid hormone receptors” pathways to counteract heat shock protein (HSP)-induced damage under stress conditions.
Collapse
Affiliation(s)
- Yin-Sir Chung
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
| | - Pervaiz Khalid Ahmed
- School of Business, Monash University Malaysia, Bandar Sunway 47500, Malaysia;
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Liquid Chromatography-Mass Spectrometry (LCMS) Platform, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; (Y.-S.C.); (I.O.)
- Global Asia in the 21st Century (GA21), Monash University Malaysia, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
6
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Leite Góes Gitai D, de Andrade TG, Dos Santos YDR, Attaluri S, Shetty AK. Chronobiology of limbic seizures: Potential mechanisms and prospects of chronotherapy for mesial temporal lobe epilepsy. Neurosci Biobehav Rev 2019; 98:122-134. [PMID: 30629979 PMCID: PMC7023906 DOI: 10.1016/j.neubiorev.2019.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/11/2022]
Abstract
Mesial Temporal Lobe Epilepsy (mTLE) characterized by progressive development of complex partial seizures originating from the hippocampus is the most prevalent and refractory type of epilepsy. One of the remarkable features of mTLE is the rhythmic pattern of occurrence of spontaneous seizures, implying a dependence on the endogenous clock system for seizure threshold. Conversely, circadian rhythms are affected by epilepsy too. Comprehending how the circadian system and seizures interact with each other is essential for understanding the pathophysiology of epilepsy as well as for developing innovative therapies that are efficacious for better seizure control. In this review, we confer how the temporal dysregulation of the circadian clock in the hippocampus combined with multiple uncoupled oscillators could lead to periodic seizure occurrences and comorbidities. Unraveling these associations with additional research would help in developing chronotherapy for mTLE, based on the chronobiology of spontaneous seizures. Notably, differential dosing of antiepileptic drugs over the circadian period and/or strategies that resynchronize biological rhythms may substantially improve the management of seizures in mTLE patients.
Collapse
Affiliation(s)
- Daniel Leite Góes Gitai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Institute of Biological Sciences and Health, Federal University of Alagoas, Maceio, Alagoas, Brazil
| | | | | | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas, USA; Research Service, Olin E. Teague Veterans' Medical Center, Central Texas Veterans Health Care System, Temple, Texas, USA.
| |
Collapse
|
8
|
Huang Z, Peng Y, Yu H, Yu X, Zhou J, Xiao J. RhoA protects the podocytes against high glucose-induced apoptosis through YAP and plays critical role in diabetic nephropathy. Biochem Biophys Res Commun 2018; 504:949-956. [PMID: 30220545 DOI: 10.1016/j.bbrc.2018.08.204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Zongshun Huang
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Guangzhou, 510120, China.
| | - Yonghua Peng
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Guangzhou, 510120, China.
| | - Hui Yu
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Guangzhou, 510120, China.
| | - Xiaomin Yu
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Guangzhou, 510120, China.
| | - Jialin Zhou
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Guangzhou, 510120, China.
| | - Jie Xiao
- Department of Nephrology, The First Affiliated Hospital of Guangzhou Medical University, No. 151, Yanjiangxi Road, Guangzhou, 510120, China.
| |
Collapse
|
9
|
Guo W, Shang DM, Cao JH, Feng K, He YC, Jiang Y, Wang S, Gao YF. Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6132436. [PMID: 28255556 PMCID: PMC5309434 DOI: 10.1155/2017/6132436] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 01/15/2017] [Indexed: 02/07/2023]
Abstract
As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients' personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR) algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.
Collapse
Affiliation(s)
- Wei Guo
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Dong-Mei Shang
- Department of Outpatient, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Jing-Hui Cao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou 510507, China
| | - Yi-Chun He
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yang Jiang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - ShaoPeng Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yu-Fei Gao
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
10
|
Jiang X, Lachance M, Rossignol E. Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy. PROGRESS IN BRAIN RESEARCH 2016; 226:81-126. [PMID: 27323940 DOI: 10.1016/bs.pbr.2016.04.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABAergic interneurons of the parvalbumin-positive fast-spiking basket cells subtype (PV INs) are important regulators of cortical network excitability and of gamma oscillations, involved in signal processing and cognition. Impaired development or function of PV INs has been associated with epilepsy in various animal models of epilepsy, as well as in some genetic forms of epilepsy in humans. In this review, we provide an overview of some of the experimental data linking PV INs dysfunction with epilepsy, focusing on disorders of the specification, migration, maturation, synaptic function, or connectivity of PV INs. Furthermore, we reflect on the potential therapeutic use of cell-type specific stimulation of PV INs within active networks and on the transplantation of PV INs precursors in the treatment of epilepsy and its comorbidities.
Collapse
Affiliation(s)
- X Jiang
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - M Lachance
- CHU Ste-Justine Research Center, Montréal, QC, Canada
| | - E Rossignol
- Université de Montréal, Montréal, QC, Canada; CHU Ste-Justine Research Center, Montréal, QC, Canada.
| |
Collapse
|
11
|
Cdc42 deficiency induces podocyte apoptosis by inhibiting the Nwasp/stress fibers/YAP pathway. Cell Death Dis 2016; 7:e2142. [PMID: 26986510 PMCID: PMC4823952 DOI: 10.1038/cddis.2016.51] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/06/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Podocyte apoptosis is a major mechanism that leads to proteinuria in many chronic kidney diseases. However, the concert mechanisms that cause podocyte apoptosis in these kidney diseases are not fully understood. The Rho family of small GTPases has been shown to be required in maintaining podocyte structure and function. Recent studies have indicated that podocyte-specific deletion of Cdc42 in vivo, but not of RhoA or Rac1, leads to congenital nephrotic syndrome and glomerulosclerosis. However, the underlying cellular events in podocyte controlled by Cdc42 remain unclear. Here, we assessed the cellular mechanisms by which Cdc42 regulates podocyte apoptosis. We found that the expression of Cdc42 and its activity were significantly decreased in high glucose-, lipopolysaccharide- or adriamycin-injured podocytes. Reduced Cdc42 expression in vitro and in vivo by small interfering RNA and selective Cdc42 inhibitor ML-141, respectively, caused podocyte apoptosis and proteinuria. Our results further demonstrated that insufficient Cdc42 or Nwasp, its downstream effector, could decrease the mRNA and protein expression of YAP, which had been regarded as an anti-apoptosis protein in podocyte. Moreover, our data indicated that the loss of stress fibers caused by Cdc42/Nwasp deficiency also decreased Yes-associated protein (YAP) mRNA and protein expression, and induced podocyte apoptosis. Podocyte apoptosis induced by Cdc42/Nwasp/stress fiber deficiency was significantly inhibited by overexpressing-active YAP. Thus, the Cdc42/Nwasp/stress fibers/YAP signal pathway may potentially play an important role in regulating podocyte apoptosis. Maintaining necessary Cdc42 would be one potent way to prevent proteinuria kidney diseases.
Collapse
|
12
|
Trieu BH, Kramár EA, Cox CD, Jia Y, Wang W, Gall CM, Lynch G. Pronounced differences in signal processing and synaptic plasticity between piriform-hippocampal network stages: a prominent role for adenosine. J Physiol 2015; 593:2889-907. [PMID: 25902928 DOI: 10.1113/jp270398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/17/2015] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Extended trains of theta rhythm afferent activity lead to a biphasic response facilitation in field CA1 but not in the lateral perforant path input to the dentate gyrus. Processes that reverse long-term potentiation in field CA1 are not operative in the lateral perforant path: multiple lines of evidence indicate that this reflects differences in adenosine signalling. Adenosine A1 receptors modulate baseline synaptic transmission in the lateral olfactory tract but not the associational afferents of the piriform cortex. Levels of ecto-5'-nucleotidase (CD73), an enzyme that converts extracellular ATP into adenosine, are markedly different between regions and correlate with adenosine signalling and the efficacy of theta pulse stimulation in reversing long-term potentiation. Variations in transmitter mobilization, CD73 levels, and afferent divergence result in multivariate differences in signal processing through nodes in the cortico-hippocampal network. ABSTRACT The present study evaluated learning-related synaptic operations across the serial stages of the olfactory cortex-hippocampus network. Theta frequency stimulation produced very different time-varying responses in the Schaffer-commissural projections than in the lateral perforant path (LPP), an effect associated with distinctions in transmitter mobilization. Long-term potentiation (LTP) had a higher threshold in LPP field potential studies but not in voltage clamped neurons; coupled with input/output relationships, these results suggest that LTP threshold differences reflect the degree of input divergence. Theta pulse stimulation erased LTP in CA1 but not in the dentate gyrus (DG), although adenosine eliminated potentiation in both areas, suggesting that theta increases extracellular adenosine to a greater degree in CA1. Moreover, adenosine A1 receptor antagonism had larger effects on theta responses in CA1 than in the DG, and concentrations of ecto-5'-nucleotidase (CD73) were much higher in CA1. Input/output curves for two connections in the piriform cortex were similar to those for the LPP, whereas adenosine modulation again correlated with levels of CD73. In sum, multiple relays in a network extending from the piriform cortex through the hippocampus can be differentiated along three dimensions (input divergence, transmitter mobilization, adenosine modulation) that potently influence throughput and plasticity. A model that incorporates the regional differences, supplemented with data for three additional links, suggests that network output goes through three transitions during the processing of theta input. It is proposed that individuated relays allow the circuit to deal with different types of behavioural problems.
Collapse
Affiliation(s)
- Brian H Trieu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Enikö A Kramár
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Conor D Cox
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Yousheng Jia
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Weisheng Wang
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Gary Lynch
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA.,Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| |
Collapse
|