1
|
Fernandez G, De Francesco PN, Cornejo MP, Cabral A, Aguggia JP, Duque VJ, Sayar N, Cantel S, Burgos JI, Fehrentz JA, Rorato R, Atasoy D, Mecawi AS, Perello M. Ghrelin Action in the PVH of Male Mice: Accessibility, Neuronal Targets, and CRH Neurons Activation. Endocrinology 2023; 164:bqad154. [PMID: 37823477 PMCID: PMC11491828 DOI: 10.1210/endocr/bqad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/08/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
The hormone ghrelin displays several well-characterized functions, including some with pharmaceutical interest. The receptor for ghrelin, the growth hormone secretagogue receptor (GHSR), is expressed in the hypothalamic paraventricular nucleus (PVH), a critical hub for the integration of metabolic, neuroendocrine, autonomic, and behavioral functions. Here, we performed a neuroanatomical and functional characterization of the neuronal types mediating ghrelin actions in the PVH of male mice. We found that fluorescent ghrelin mainly labels PVH neurons immunoreactive for nitric oxide synthase 1 (NOS1), which catalyze the production of nitric oxide [NO]). Centrally injected ghrelin increases c-Fos in NOS1 PVH neurons and NOS1 phosphorylation in the PVH. We also found that a high dose of systemically injected ghrelin increases the ghrelin level in the cerebrospinal fluid and in the periventricular PVH, and induces c-Fos in NOS1 PVH neurons. Such a high dose of systemically injected ghrelin activates a subset of NOS1 PVH neurons, which do not express oxytocin, via an arcuate nucleus-independent mechanism. Finally, we found that pharmacological inhibition of NO production fully abrogates ghrelin-induced increase of calcium concentration in corticotropin-releasing hormone neurons of the PVH whereas it partially impairs ghrelin-induced increase of plasma glucocorticoid levels. Thus, plasma ghrelin can directly target a subset of NO-producing neurons of the PVH that is involved in ghrelin-induced activation of the hypothalamic-pituitary-adrenal neuroendocrine axis.
Collapse
Affiliation(s)
- Gimena Fernandez
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Agustina Cabral
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Julieta P Aguggia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
| | - Victor J Duque
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Nilufer Sayar
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier cedex 5 34293, France
| | - Juan I Burgos
- Centro de Investigaciones Cardiovasculares “Dr. Horacio Eugenio Cingolani” (CONICET and National University of La Plata), La Plata 1900, Buenos Aires, Argentina
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENSCM, Montpellier cedex 5 34293, France
| | - Rodrigo Rorato
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Deniz Atasoy
- Department of Neuroscience and Pharmacology, Carver College of Medicine, Iowa Neuroscience Institute and Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa, Iowa City, IA 52242, USA
| | - André S Mecawi
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, CEP: 04023-062, Brazil
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), National University of La Plata], La Plata, Buenos Aires 1900, Argentina
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, University of Uppsala, Uppsala 751 05, Sweden
| |
Collapse
|
2
|
Correa-Netto NF, Masukawa MY, Silva-Gomes AM, Linardi A, Santos-Junior JG. Memory reactivation mediates emotional valence updating of contextual memory in mice with protracted morphine withdrawal. Behav Brain Res 2023; 438:114212. [PMID: 36370948 DOI: 10.1016/j.bbr.2022.114212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/29/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Mice subjected to morphine locomotor sensitization develop increased anxiety-behavior expression during protracted morphine withdrawal. This behavioral change is dependent on reexposure to the context of locomotor sensitization and reflects a state of conditioned anxiety. In this study, the effect of memory reconsolidation on the expression of conditioned anxiety in mice with protracted morphine withdrawal was examined. Five experimental protocols involving male C57BL/6 mice were used in which the animals were subjected to locomotor sensitization induced by morphine and reexposed to the context associated with the drug effect 28 days after locomotor sensitization and immediately after subjected to elevated plus maze. In experiment 1, mice were subjected or not to memory reactivation session and was observed that memory reactivation 27 days after sensitization reduced conditioned anxiety. In experiment 2, mice were subjected to memory reactivation, 24 h, 6 h or 1 h before contextual reexposure, and the effect of memory reactivation coincided with the temporal requirement for reconsolidation. In experiment 3, which involved exposure to a situation of acute stress immediately before memory reactivation, the mice demonstrated a return to increased conditioned anxiety. To confirm the influence of reconsolidation, in experiments 4 and 5, mice subjected to memory reactivation were treated with Nimodipine, diazepam or cyclohexamine, substances commonly used as pharmacological controls in reconsolidation experiments. Treatment with each substance separately inhibited the effect of reactivation in experiment 5 (presence of acute stressor) but not in experiment 4 (absence of acute stressor). These results suggest that, in our experimental model, reconsolidation is mediated through updating of the emotional valence of contextual memory associated with the administration of morphine.
Collapse
Affiliation(s)
- Nelson Francisco Correa-Netto
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil.
| | - Márcia Yuriko Masukawa
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Alessandro Marcos Silva-Gomes
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Alessandra Linardi
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| | - Jair Guilherme Santos-Junior
- Department of Physiological Sciences, Santa Casa of São Paulo Medical School, Rua Cesário Mota Junior, 61, Vila Buarque, São Paulo 01221-020, SP, Brazil
| |
Collapse
|
3
|
Kreifeldt M, Herman MA, Sidhu H, Okhuarobo A, Macedo GC, Shahryari R, Gandhi PJ, Roberto M, Contet C. Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice. Mol Psychiatry 2022; 27:2502-2513. [PMID: 35264727 PMCID: PMC9149056 DOI: 10.1038/s41380-022-01496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Melissa A Herman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Giovana C Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Roxana Shahryari
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
4
|
Secretagogin marks amygdaloid PKCδ interneurons and modulates NMDA receptor availability. Proc Natl Acad Sci U S A 2021; 118:1921123118. [PMID: 33558223 DOI: 10.1073/pnas.1921123118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The perception of and response to danger is critical for an individual's survival and is encoded by subcortical neurocircuits. The amygdaloid complex is the primary neuronal site that initiates bodily reactions upon external threat with local-circuit interneurons scaling output to effector pathways. Here, we categorize central amygdala neurons that express secretagogin (Scgn), a Ca2+-sensor protein, as a subset of protein kinase Cδ (PKCδ)+ interneurons, likely "off cells." Chemogenetic inactivation of Scgn+/PKCδ+ cells augmented conditioned response to perceived danger in vivo. While Ca2+-sensor proteins are typically implicated in shaping neurotransmitter release presynaptically, Scgn instead localized to postsynaptic compartments. Characterizing its role in the postsynapse, we found that Scgn regulates the cell-surface availability of NMDA receptor 2B subunits (GluN2B) with its genetic deletion leading to reduced cell membrane delivery of GluN2B, at least in vitro. Conclusively, we describe a select cell population, which gates danger avoidance behavior with secretagogin being both a selective marker and regulatory protein in their excitatory postsynaptic machinery.
Collapse
|
5
|
Abstract
The neural regulation of feeding behaviour, as an essential factor for survival, is an important research area today. Feeding behaviour and other lifestyle habits play a major role in optimising health and obesity control. Feeding behaviour is physiologically controlled through processes associated with energy and nutrient needs. Different brain nuclei are involved in the neural regulation of feeding behaviours. Therefore, understanding the function of these brain nuclei helps develop feeding control methods. Among important brain nuclei, there is scant literature on the central amygdala (CeA) nucleus and feeding behaviour. The CeA is one of the critical brain regions that play a significant role in various physiological and behavioural responses, such as emotional states, reward processing, energy balance and feeding behaviour. It contains γ-aminobutyric acid neurons. Also, it is the major output region of the amygdaloidal complex. Moreover, the CeA is also involved in multiple molecular and biochemical factors and has extensive connections with other brain nuclei and their neurotransmitters, highlighting its role in feeding behaviour. This review aims to highlight the significance of the CeA nucleus on food consumption by its interaction with the performance of reward, digestive and emotional systems.
Collapse
|
6
|
Neuroendocrine control of appetite and metabolism. Exp Mol Med 2021; 53:505-516. [PMID: 33837263 PMCID: PMC8102538 DOI: 10.1038/s12276-021-00597-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 02/02/2023] Open
Abstract
Body homeostasis is predominantly controlled by hormones secreted by endocrine organs. The central nervous system contains several important endocrine structures, including the hypothalamic-pituitary axis. Conventionally, neurohormones released by the hypothalamus and the pituitary gland (hypophysis) have received much attention owing to the unique functions of the end hormones released by their target peripheral organs (e.g., glucocorticoids released by the adrenal glands). Recent advances in mouse genetics have revealed several important metabolic functions of hypothalamic neurohormone-expressing cells, many of which are not readily explained by the action of the corresponding classical downstream hormones. Notably, the newly identified functions are better explained by the action of conventional neurotransmitters (e.g., glutamate and GABA) that constitute a neuronal circuit. In this review, we discuss the regulation of appetite and metabolism by hypothalamic neurohormone-expressing cells, with a focus on the distinct contributions of neurohormones and neurotransmitters released by these neurons.
Collapse
|
7
|
Wang Y, Hu P, Shan Q, Huang C, Huang Z, Chen P, Li A, Gong H, Zhou JN. Single-cell morphological characterization of CRH neurons throughout the whole mouse brain. BMC Biol 2021; 19:47. [PMID: 33722214 PMCID: PMC7962243 DOI: 10.1186/s12915-021-00973-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corticotropin-releasing hormone (CRH) is an important neuromodulator that is widely distributed in the brain and plays a key role in mediating stress responses and autonomic functions. While the distribution pattern of fluorescently labeled CRH-expressing neurons has been studied in different transgenic mouse lines, a full appreciation of the broad diversity of this population and local neural connectivity can only come from integration of single-cell morphological information as a defining feature. However, the morphologies of single CRH neurons and the local circuits formed by these neurons have not been acquired at brain-wide and dendritic-scale levels. RESULTS We screened the EYFP-expressing CRH-IRES-Cre;Ai32 mouse line to reveal the morphologies of individual CRH neurons throughout the whole mouse brain by using a fluorescence micro-optical sectioning tomography (fMOST) system. Diverse dendritic morphologies and projection fibers of CRH neurons were found in various brain regions. Follow-up reconstructions showed that hypothalamic CRH neurons had the smallest somatic volumes and simplest dendritic branches and that CRH neurons in several brain regions shared a common bipolar morphology. Further investigations of local CRH neurons in the medial prefrontal cortex unveiled somatic depth-dependent morphologies of CRH neurons that exhibited three types of mutual connections: basal dendrites (upper layer) with apical dendrites (layer 3); dendritic-somatic connections (in layer 2/3); and dendritic-dendritic connections (in layer 4). Moreover, hypothalamic CRH neurons were classified into two types according to their somatic locations and characteristics of dendritic varicosities. Rostral-projecting CRH neurons in the anterior parvicellular area had fewer and smaller dendritic varicosities, whereas CRH neurons in the periventricular area had more and larger varicosities that were present within dendrites projecting to the third ventricle. Arborization-dependent dendritic spines of CRH neurons were detected, among which the most sophisticated types were found in the amygdala and the simplest types were found in the hypothalamus. CONCLUSIONS By using the CRH-IRES-Cre;Ai32 mouse line and fMOST imaging, we obtained region-specific morphological distributions of CRH neurons at the dendrite level in the whole mouse brain. Taken together, our findings provide comprehensive brain-wide morphological information of stress-related CRH neurons and may facilitate further studies of the CRH neuronal system.
Collapse
Affiliation(s)
- Yu Wang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Pu Hu
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Qinghong Shan
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Chuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Zhaohuan Huang
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Peng Chen
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Anan Li
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Gong
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China. .,Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jiang-Ning Zhou
- Chinese Academy of Science Key Laboratory of Brain Function and Diseases, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
8
|
Bertagna NB, Dos Santos PGC, Queiroz RM, Fernandes GJD, Cruz FC, Miguel TT. Involvement of the ventral, but not dorsal, hippocampus in anxiety-like behaviors in mice exposed to the elevated plus maze: participation of CRF1 receptor and PKA pathway. Pharmacol Rep 2020; 73:57-72. [PMID: 33175366 DOI: 10.1007/s43440-020-00182-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The hippocampus is a limbic structure involved in anxiety-like behaviors. We aimed to evaluate the role of the dorsal (DH) and ventral (VH) hippocampus in anxiety-like behaviors in the elevated plus maze (EPM). METHODS We inhibited these brain regions using cobalt chloride (CoCl2: 1.0 nmol) microinjections. We also investigated the involvement of corticotropin-releasing factor (CRF) action and protein kinase A (PKA) pathway using intra-DH and intra-VH microinjections of the CRF1 receptor antagonist CP376395 (0, 3.0, or 6.0 nmol) and the PKA inhibitor H-89 (0, 2.5, or 5.0 nmol). RESULTS The results indicated that intra-VH CoCl2 microinjection increased the percentage of time spent and entries in the open arms. The mice also exhibited fewer stretch attend postures in the protected area and increased percentage of open arm entries. Further, intra-VH injection of 3.0 nmol CP376395 increased time spent in the open arms. Intra-DH injection of 6.0 nmol CP376395 increased the frequency of unprotected head dipping, whereas intra-VH injection of 6 nmol CP376395 increased the frequency of protected head dipping. Intra-VH, but not intra-DH, microinjection of 2.5 nmol H-89 increased the percentages of open arm entries and time spent in the open arms. Microinjection of 2.5 and 5.0 nmol H-89 reduced the frequency of protected head dipping behavior. CONCLUSIONS This study demonstrated that VH modulates anxiety-like behaviors in EPM. Moreover, CRF and the cAMP/PKA pathway seem to modulate these effects.
Collapse
Affiliation(s)
- Natalia Bonetti Bertagna
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Paulla Giovanna Cabral Dos Santos
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Rafaella Misael Queiroz
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Gustavo Juliate Damaceno Fernandes
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil
| | - Fabio Cardoso Cruz
- Psychopharmacology Laboratory, Pharmacology Department, Federal University of São Paulo, São Paulo, Brazil
| | - Tarciso Tadeu Miguel
- Pharmacology Laboratory, Pharmacology Department, Biomedical Sciences Institute, Federal University of Uberlândia (UFU), Av. Pará, 1720, Bloco 2A, Uberlândia, MG, 38405-320, Brazil.
| |
Collapse
|
9
|
Cornejo MP, Mustafá ER, Barrile F, Cassano D, De Francesco PN, Raingo J, Perello M. THE INTRIGUING LIGAND-DEPENDENT AND LIGAND-INDEPENDENT ACTIONS OF THE GROWTH HORMONE SECRETAGOGUE RECEPTOR ON REWARD-RELATED BEHAVIORS. Neurosci Biobehav Rev 2020; 120:401-416. [PMID: 33157147 DOI: 10.1016/j.neubiorev.2020.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The growth hormone secretagogue receptor (GHSR) is a G-protein-coupled receptor (GPCR) highly expressed in the brain, and also in some peripheral tissues. GHSR activity is evoked by the stomach-derived peptide hormone ghrelin and abrogated by the intestine-derived liver-expressed antimicrobial peptide 2 (LEAP2). In vitro, GHSR displays ligand-independent actions, including a high constitutive activity and an allosteric modulation of other GPCRs. Beyond its neuroendocrine and metabolic effects, cumulative evidence shows that GHSR regulates the activity of the mesocorticolimbic pathway and modulates complex reward-related behaviors towards different stimuli. Here, we review current evidence indicating that ligand-dependent and ligand-independent actions of GHSR enhance reward-related behaviors towards appetitive stimuli and drugs of abuse. We discuss putative neuronal networks and molecular mechanisms that GHSR would engage to modulate such reward-related behaviors. Finally, we briefly discuss imaging studies showing that ghrelin would also regulate reward processing in humans. Overall, we conclude that GHSR is a key regulator of the mesocorticolimbic pathway that influences its activity and, consequently, modulates reward-related behaviors via ligand-dependent and ligand-independent actions.
Collapse
Affiliation(s)
- María P Cornejo
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Emilio R Mustafá
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Daniela Cassano
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Pablo N De Francesco
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina
| | - Jesica Raingo
- Laboratory of Electrophysiology of the IMBICE, 1900 La Plata, Buenos Aires, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology of the Multidisciplinary Institute of Cell Biology [IMBICE, Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA). National University of La Plata], 1900 La Plata, Buenos Aires, Argentina.
| |
Collapse
|
10
|
Comeras LB, Herzog H, Tasan RO. Neuropeptides at the crossroad of fear and hunger: a special focus on neuropeptide Y. Ann N Y Acad Sci 2019; 1455:59-80. [PMID: 31271235 PMCID: PMC6899945 DOI: 10.1111/nyas.14179] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022]
Abstract
Survival in a natural environment forces an individual into constantly adapting purposive behavior. Specified interoceptive neurons monitor metabolic and physiological balance and activate dedicated brain circuits to satisfy essential needs, such as hunger, thirst, thermoregulation, fear, or anxiety. Neuropeptides are multifaceted, central components within such life‐sustaining programs. For instance, nutritional depletion results in a drop in glucose levels, release of hormones, and activation of hypothalamic and brainstem neurons. These neurons, in turn, release several neuropeptides that increase food‐seeking behavior and promote food intake. Similarly, internal and external threats activate neuronal pathways of avoidance and defensive behavior. Interestingly, specific nuclei of the hypothalamus and extended amygdala are activated by both hunger and fear. Here, we introduce the relevant neuropeptides and describe their function in feeding and emotional‐affective behaviors. We further highlight specific pathways and microcircuits, where neuropeptides may interact to identify prevailing homeostatic needs and direct respective compensatory behaviors. A specific focus will be on neuropeptide Y, since it is known for its pivotal role in metabolic and emotional pathways. We hypothesize that the orexigenic and anorexigenic properties of specific neuropeptides are related to their ability to inhibit fear and anxiety.
Collapse
Affiliation(s)
- Lucas B Comeras
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ramon O Tasan
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
De Francesco PN, Cornejo MP, Barrile F, García Romero G, Valdivia S, Andreoli MF, Perello M. Inter-individual Variability for High Fat Diet Consumption in Inbred C57BL/6 Mice. Front Nutr 2019; 6:67. [PMID: 31143766 PMCID: PMC6520645 DOI: 10.3389/fnut.2019.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Since inbred C57BL/6 mice are known to show inter-individual phenotypic variability for some traits, we tested the hypothesis that inbred C57BL/6 mice display a different tendency to consume a high fat (HF) diet. For this purpose, we used a compilation of HF intake data from an experimental protocol in which satiated mice were exposed to a HF pellet every morning for 2-h over 4 consecutive days. We found that mice displayed a large degree of variability in HF intake. Since day 1 HF intake significantly correlated with HF intake in successive days, we applied a hierarchical clustering algorithm on HF intake measurements in days 2, 3, and 4 in order to classify mice into “low” or “high” HF intake groups. “Low” HF intake group showed a day 1 HF intake similar to that seen in mice exposed to regular chow, while “high” HF intake group showed a higher day 1 HF intake as compared to “low” HF intake group. Both groups of mice increased HF consumption over the successive days, but “high” HF intake group always displayed a higher HF consumption than the “low” HF intake group. As compared to “low” HF intake group, “high” HF intake group showed a higher number of dopamine neurons positive for c-Fos in the VTA after the last event of HF intake. Thus, inbred C57BL/6 mice show inter-individual variability for HF intake and such feature may be linked to a different response to the rewarding properties of the HF diet.
Collapse
Affiliation(s)
- Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - María F Andreoli
- Laboratory of Experimental Neurodevelopment, Institute of Development and Pediatric Research (IDIP), La Plata Children's Hospital and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| |
Collapse
|
12
|
Kaffman A, White JD, Wei L, Johnson FK, Krystal JH. Enhancing the Utility of Preclinical Research in Neuropsychiatry Drug Development. Methods Mol Biol 2019; 2011:3-22. [PMID: 31273690 DOI: 10.1007/978-1-4939-9554-7_1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Most large pharmaceutical companies have downscaled or closed their clinical neuroscience research programs in response to the low clinical success rate for drugs that showed tremendous promise in animal experiments intended to model psychiatric pathophysiology. These failures have raised serious concerns about the role of preclinical research in the identification and evaluation of new pharmacotherapies for psychiatry. In the absence of a comprehensive understanding of the neurobiology of psychiatric disorders, the task of developing "animal models" seems elusive. The purpose of this review is to highlight emerging strategies to enhance the utility of preclinical research in the drug development process. We address this issue by reviewing how advances in neuroscience, coupled with new conceptual approaches, have recently revolutionized the way we can diagnose and treat common psychiatric conditions. We discuss the implications of these new tools for modeling psychiatric conditions in animals and advocate for the use of systematic reviews of preclinical work as a prerequisite for conducting psychiatric clinical trials. We believe that work in animals is essential for elucidating human psychopathology and that improving the predictive validity of animal models is necessary for developing more effective interventions for mental illness.
Collapse
Affiliation(s)
- Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Jordon D White
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Lan Wei
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Frances K Johnson
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
13
|
Cornejo MP, De Francesco PN, García Romero G, Portiansky EL, Zigman JM, Reynaldo M, Perello M. Ghrelin receptor signaling targets segregated clusters of neurons within the nucleus of the solitary tract. Brain Struct Funct 2018; 223:3133-3147. [DOI: 10.1007/s00429-018-1682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/09/2018] [Indexed: 11/29/2022]
|
14
|
Gutiérrez-Rodríguez A, Bonilla-Del Río I, Puente N, Gómez-Urquijo SM, Fontaine CJ, Egaña-Huguet J, Elezgarai I, Ruehle S, Lutz B, Robin LM, Soria-Gómez E, Bellocchio L, Padwal JD, van der Stelt M, Mendizabal-Zubiaga J, Reguero L, Ramos A, Gerrikagoitia I, Marsicano G, Grandes P. Localization of the cannabinoid type-1 receptor in subcellular astrocyte compartments of mutant mouse hippocampus. Glia 2018; 66:1417-1431. [PMID: 29480581 DOI: 10.1002/glia.23314] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 11/07/2022]
Abstract
Astroglial type-1 cannabinoid (CB1 ) receptors are involved in synaptic transmission, plasticity and behavior by interfering with the so-called tripartite synapse formed by pre- and post-synaptic neuronal elements and surrounding astrocyte processes. However, little is known concerning the subcellular distribution of astroglial CB1 receptors. In particular, brain CB1 receptors are mostly localized at cells' plasmalemma, but recent evidence indicates their functional presence in mitochondrial membranes. Whether CB1 receptors are present in astroglial mitochondria has remained unknown. To investigate this issue, we included conditional knock-out mice lacking astroglial CB1 receptor expression specifically in glial fibrillary acidic protein (GFAP)-containing astrocytes (GFAP-CB1 -KO mice) and also generated genetic rescue mice to re-express CB1 receptors exclusively in astrocytes (GFAP-CB1 -RS). To better identify astroglial structures by immunoelectron microscopy, global CB1 knock-out (CB1 -KO) mice and wild-type (CB1 -WT) littermates were intra-hippocampally injected with an adeno-associated virus expressing humanized renilla green fluorescent protein (hrGFP) under the control of human GFAP promoter to generate GFAPhrGFP-CB1 -KO and -WT mice, respectively. Furthermore, double immunogold (for CB1 ) and immunoperoxidase (for GFAP or hrGFP) revealed that CB1 receptors are present in astroglial mitochondria from different hippocampal regions of CB1 -WT, GFAP-CB1 -RS and GFAPhrGFP-CB1 -WT mice. Only non-specific gold particles were detected in mouse hippocampi lacking CB1 receptors. Altogether, we demonstrated the existence of a precise molecular architecture of the CB1 receptor in astrocytes that will have to be taken into account in evaluating the functional activity of cannabinergic signaling at the tripartite synapse.
Collapse
Affiliation(s)
- Ana Gutiérrez-Rodríguez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Sonia M Gómez-Urquijo
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Christine J Fontaine
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| | - Jon Egaña-Huguet
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Izaskun Elezgarai
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Sabine Ruehle
- Institute of Physiological Chemistry and German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry and German Resilience Center, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, 55128, Germany
| | - Laurie M Robin
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Edgar Soria-Gómez
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Luigi Bellocchio
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Jalindar D Padwal
- Department of Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, CC, 2333, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden University, Einsteinweg 55, Leiden, CC, 2333, The Netherlands
| | - Juan Mendizabal-Zubiaga
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Leire Reguero
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Almudena Ramos
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Giovanni Marsicano
- INSERM, U1215 Neurocentre Magendie, Endocannabinoids and Neuroadaptation, Bordeaux, F-33077, France
- Université de Bordeaux, Bordeaux, F-33077, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa, E-48940, Spain
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|
15
|
Lactic Acid Bacteria Isolated from Japanese Fermented Fish (Funa-Sushi) Inhibit Mesangial Proliferative Glomerulonephritis by Alcohol Intake with Stress. J Nutr Metab 2018; 2018:6491907. [PMID: 29607219 PMCID: PMC5828048 DOI: 10.1155/2018/6491907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to examine the effect of heat-killed Lactobacillus paracasei NFRI 7415 on kidney and bone in mice fed an ethanol-containing diet with stress. Eight-week-old Cril : CD1 mice were fed a control diet (CD), an alcohol diet (AD) (35.8% of total energy from ethanol), or an alcohol diet containing 20% heat-killed Lb. paracasei NFRI 7415 (107 CFU/g) (LD) for 4 weeks. Mice in the AD and LD groups also underwent restraint stress for two weeks from 13 days. The mice were placed in a 50 mL plastic tube, which had a small hole drilled around its base to allow ventilation, and restrained for 1 h every day. High final body weight was in the following order: CD, LD, and AD (p < 0.05). The heat-killed Lb. paracasei NFRI 7415 lowered liver total cholesterol concentration and plasma glutamic-oxaloacetic transaminase (GOT) level. In addition, fecal bile acids of the LD group were higher than in the AD group (p < 0.05). The glomerulus of the kidney in the AD group was observed to be more fibrotic than in the CD and LD groups with azan stain. Immunostaining confirmed that brown areas indicating the existence of mesangial cells were increased in the AD group, but not in the CD and LD groups. These results indicated that the heat-killed Lb. paracasei NFRI 7415 inhibited mesangial proliferative glomerulonephritis by alcohol intake with stress.
Collapse
|
16
|
Andreoli M, Marketkar T, Dimitrov E. Contribution of amygdala CRF neurons to chronic pain. Exp Neurol 2017; 298:1-12. [PMID: 28830762 DOI: 10.1016/j.expneurol.2017.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/03/2017] [Accepted: 08/18/2017] [Indexed: 12/30/2022]
Abstract
We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over-activation of amygdala CRF neurons is very likely an important contributing factor for pain chronification.
Collapse
Affiliation(s)
- Matthew Andreoli
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Tanvi Marketkar
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| | - Eugene Dimitrov
- Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, Unites States.
| |
Collapse
|
17
|
Peng J, Long B, Yuan J, Peng X, Ni H, Li X, Gong H, Luo Q, Li A. A Quantitative Analysis of the Distribution of CRH Neurons in Whole Mouse Brain. Front Neuroanat 2017; 11:63. [PMID: 28790896 PMCID: PMC5524767 DOI: 10.3389/fnana.2017.00063] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/11/2017] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing hormone (CRH), with widespread expression in the brain, plays a key role in modulating a series of behaviors, including anxiety, arousal, motor function, learning and memory. Previous studies have focused on some brain regions with densely distributed CRH neurons such as paraventricular hypothalamic nucleus (PVH) and bed nuclei of the stria terminalis (BST) and revealed some basic structural and functional knowledge of CRH neurons. However, there is no systematic analysis of brain-wide distribution of CRH neurons. Here, we performed a comprehensive study of CRH neurons in CRH-IRES-Cre;Ai3 mice via automatic imaging and stereoscopic cell counting in a whole mouse brain. We acquired four datasets of the CRH distributions with co-localized cytoarchitecture at a voxel resolution of 0.32 μm × 0.32 μm × 2 μm using brain-wide positioning system (BPS). Next, we precisely located and counted the EYFP-labeled neurons in different regions according to propidium iodide counterstained anatomical reference using Neuronal Global Position System. In particular, dense EYFP expression was found in piriform area, BST, central amygdalar nucleus, PVH, Barrington's nucleus, and inferior olivary complex. Considerable CRH neurons were also found in main olfactory bulb, medial preoptic nucleus, pontine gray, tegmental reticular nucleus, external cuneate nucleus, and midline thalamus. We reconstructed and compared the soma morphology of CRH neurons in 11 brain regions. The results demonstrated that CRH neurons had regional diversities of both cell distribution and soma morphology. This anatomical knowledge enhances the current understanding of the functions of CRH neurons. These results also demonstrated the ability of our platform to accurately orient, reconstruct and count neuronal somas in three-dimension for type-specific neurons in the whole brain, making it feasible to answer the fundamental neuroscience question of exact numbers of various neurons in the whole brain.
Collapse
Affiliation(s)
- Jie Peng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Ben Long
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Jing Yuan
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Xue Peng
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Hong Ni
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Xiangning Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Hui Gong
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Qingming Luo
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| | - Anan Li
- Collaborative Innovation Center for Biomedical Engineering, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and TechnologyWuhan, China.,Britton Chance Center, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China.,MOE Key Laboratory for Biomedical Photonics, School of Engineering Sciences, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
18
|
Xu WX. Central and Peripheral Modulation of Visceral Pain and Visceral Hypersensitivity by the CRF-CRFR System. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/ghoa.2017.06.00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Hu MH, Bashir Z, Li XF, O'Byrne KT. Posterodorsal Medial Amygdala Mediates Tail-Pinch Induced Food Intake in Female Rats. J Neuroendocrinol 2016; 28. [PMID: 27028781 PMCID: PMC4949627 DOI: 10.1111/jne.12390] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/25/2016] [Accepted: 03/29/2016] [Indexed: 01/05/2023]
Abstract
Comfort eating during periods of stress is a common phenomenon observed in both animals and humans. However, the underlying mechanisms of stress-induced food intake remain elusive. The amygdala plays a central role in higher-order emotional processing and the posterodorsal subnucleus of the medial amygdala (MePD), in particular, is involved in food intake. Extra-hypothalamic corticotrophin-releasing factor (CRF) is well recognised for mediating behavioural responses to stress. To explore the possible role of amygdala CRF receptor activation in stress-induced food intake, we evaluated whether a stressor such as tail-pinch, which reliably induces food intake, would fail to do so in animals bearing bilateral neurotoxic lesions of the MePD. Our results showed that ibotenic acid induced lesions of the MePD markedly reduced tail-pinch induced food intake in ovariectomised, 17β-oestradiol replaced rats. In addition, intra-MePD (right side only) administration of CRF (0.002 or 0.02 ng) via chronically implanted cannulae resulted in a dose-dependent increase in food intake, although higher doses of 0.2 and 2 ng CRF had less effect, producing a bell shaped curve. Furthermore, intra-MePD (bilateral) administration of the CRF receptor antagonist, astressin (0.3 μg per side) effectively blocked tail-pinch induced food intake. These data suggest that the MePD is involved in stress-induced food intake and that the amygdala CRF system may be a mediator of comfort eating.
Collapse
Affiliation(s)
- M H Hu
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Z Bashir
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - X F Li
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - K T O'Byrne
- Division of Women's Health, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
20
|
Cabral A, Portiansky E, Sánchez-Jaramillo E, Zigman JM, Perello M. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology 2016; 67:27-39. [PMID: 26874559 PMCID: PMC4808343 DOI: 10.1016/j.psyneuen.2016.01.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 01/29/2016] [Indexed: 10/22/2022]
Abstract
Previous work has established that the hormone ghrelin engages the hypothalamic-pituitary-adrenal neuroendocrine axis via activation of corticotropin-releasing factor (CRF) neurons of the hypothalamic paraventricular nucleus (PVN). The neuronal circuitry that mediates this effect of ghrelin is currently unknown. Here, we show that ghrelin-induced activation of PVN CRF neurons involved inhibition of γ-aminobutyric acid (GABA) inputs, likely via ghrelin binding sites that were localized at GABAergic terminals within the PVN. While ghrelin activated PVN CRF neurons in the presence of neuropeptide Y (NPY) receptor antagonists or in arcuate nucleus (ARC)-ablated mice, it failed to do it so in mice with ghrelin receptor expression limited to ARC agouti gene related protein (AgRP)/NPY neurons. These data support the notion that ghrelin activates PVN CRF neurons via inhibition of local GABAergic tone, in an ARC-independent manner. Furthermore, these data suggest that the neuronal circuits mediating ghrelin's orexigenic action vs. its role as a stress signal are anatomically dissociated.
Collapse
Affiliation(s)
| | | | | | | | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [IMBICE-Argentine Research Council (CONICET) and Scientific Research Commission, Province of Buenos Aires (CIC-PBA)], La Plata, Buenos Aires, Argentina.
| |
Collapse
|
21
|
Butler RK, Oliver EM, Sharko AC, Parilla-Carrero J, Kaigler KF, Fadel JR, Wilson MA. Activation of corticotropin releasing factor-containing neurons in the rat central amygdala and bed nucleus of the stria terminalis following exposure to two different anxiogenic stressors. Behav Brain Res 2016; 304:92-101. [PMID: 26821289 DOI: 10.1016/j.bbr.2016.01.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 12/20/2022]
Abstract
Rats exposed to the odor of a predator or to the elevated plus maze (EPM) express unique unconditioned fear behaviors. The extended amygdala has previously been demonstrated to mediate the response to both predator odor and the EPM. We seek to determine if divergent amygdalar microcircuits are associated with the different behavioral responses. The current experiments compared activation of corticotropin-releasing factor (CRF)-containing neuronal populations in the central amygdala and bed nucleus of the stria terminalis (BNST) of rats exposed to either the EPM (5 min) versus home cage controls, or predator (ferret) odor versus butyric acid, or no odor (30 min). Sections of the brains were prepared for dual-labeled immunohistochemistry and counts of c-Fos co-localized with CRF were made in the centrolateral and centromedial amygdala (CLA and CMA) as well as the dorsolateral (dl), dorsomedial (dm), and ventral (v) BNST. Ferret odor-exposed rats displayed an increase in duration and a decrease in latency of defensive burying versus control rats. Exposure to both predator stress and EPM induced neuronal activation in the BNST, but not the central amygdala, and similar levels of neuronal activation were seen in both the high and low anxiety groups in the BNST after EPM exposure. Dual-labeled immunohistochemistry showed a significant increase in the percentage of CRF/c-Fos co-localization in the vBNST of ferret odor-exposed rats compared to control and butyric acid-exposed groups as well as EPM-exposed rats compared to home cage controls. In addition, an increase in the percentage of CRF-containing neurons co-localized with c-Fos was observed in the dmBNST after EPM exposure. No changes in co-localization of CRF with c-Fos was observed with these treatments in either the CLA or CMA. These results suggest that predator odor and EPM exposure activates CRF neurons in the BNST to a much greater extent than CRF neurons of the central amygdala, and indicates unconditioned anxiogenic stimuli may activate unique anatomical circuits in the extended amygdala.
Collapse
Affiliation(s)
- Ryan K Butler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA.
| | - Elisabeth M Oliver
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Amanda C Sharko
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC,USA
| | - Jeffrey Parilla-Carrero
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Kris F Kaigler
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Jim R Fadel
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Marlene A Wilson
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA; WJB Dorn Veterans Affairs Medical Center, Columbia, SC,USA
| |
Collapse
|
22
|
Corticotropin-releasing factor receptor type 1 and type 2 interaction in irritable bowel syndrome. J Gastroenterol 2015; 50:819-30. [PMID: 25962711 DOI: 10.1007/s00535-015-1086-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/25/2015] [Indexed: 02/06/2023]
Abstract
Irritable bowel syndrome (IBS) displays chronic abdominal pain or discomfort with altered defecation, and stress-induced altered gut motility and visceral sensation play an important role in the pathophysiology. Corticotropin-releasing factor (CRF) is a main mediator of stress responses and mediates these gastrointestinal functional changes. CRF in brain and periphery acts through two subtype receptors such as CRF receptor type 1 (CRF1) and type 2 (CRF2), and activating CRF1 exclusively stimulates colonic motor function and induces visceral hypersensitivity. Meanwhile, several recent studies have demonstrated that CRF2 has a counter regulatory action against CRF1, which may imply that CRF2 inhibits stress response induced by CRF1 in order to prevent it from going into an overdrive state. Colonic contractility and sensation may be explained by the state of the intensity of CRF1 signaling. CRF2 signaling may play a role in CRF1-triggered enhanced colonic functions through modulation of CRF1 activity. Blocking CRF2 further enhances CRF-induced stimulation of colonic contractility and activating CRF2 inhibits stress-induced visceral sensitization. Therefore, we proposed the hypothesis, i.e., balance theory of CRF1 and CRF2 signaling as follows. Both CRF receptors may be activated simultaneously and the signaling balance of CRF1 and CRF2 may determine the functional changes of gastrointestinal tract induced by stress. CRF signaling balance might be abnormally shifted toward CRF1, leading to enhanced colonic motility and visceral sensitization in IBS. This theory may lead to understanding the pathophysiology and provide the novel therapeutic options targeting altered signaling balance of CRF1 and CRF2 in IBS.
Collapse
|