1
|
Alotaibi A, Travaglianti S, Wong W, Abou-Gharbia M, Childers W, Sari Y. Effects of MC-100093 on Ethanol Drinking and the Expression of Astrocytic Glutamate Transporters in the Mesocorticolimbic Brain Regions of Male and Female Alcohol-Preferring Rats. Neuroscience 2024; 552:89-99. [PMID: 38909675 PMCID: PMC11407434 DOI: 10.1016/j.neuroscience.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Chronic ethanol consumption increased extracellular glutamate concentrations in several reward brain regions. Glutamate homeostasis is regulated in majority by astrocytic glutamate transporter 1 (GLT-1) as well as the interactive role of cystine/glutamate antiporter (xCT). In this study, we aimed to determine the attenuating effects of a novel beta-lactam MC-100093, lacking the antibacterial properties, on ethanol consumption and GLT-1 and xCT expression in the subregions of nucleus accumbens (NAc core and NAc shell) and medial prefrontal cortex (Infralimbic, mPFC-IL and Prelimbic, mPFC-PL) in male and female alcohol-preferring (P) rats. Female and male rats were exposed to free access to ethanol (15% v/v) and (30% v/v) and water for five weeks, and on Week 6, rats were administered 100 mg/kg (i.p) of MC-100093 or saline for five days. MC-100093 reduced ethanol consumption in both male and female P rats from Day 1-5. Additionally, MC-100093 upregulated GLT-1 and xCT expression in the mPFC and NAc subregions as compared to ethanol-saline groups in female and male rats. Chronic ethanol intake reduced GLT-1 and xCT expression in the IL and PL in female and male rats, except there was no reduction in GLT-1 expression in the mPFC-PL in female rats. Although, MC-100093 upregulated GLT-1 and xCT expression in the subregions of NAc, we did not observe any reduction in GLT-1 and xCT expression with chronic ethanol intake in female rats. These findings strongly suggest that MC-100093 treatment effectively reduced ethanol intake and upregulated GLT-1 and xCT expression in the mPFC and NAc subregions in male and female P rats.
Collapse
Affiliation(s)
- Ahmed Alotaibi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Shelby Travaglianti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
2
|
Travaglianti S, Alotaibi A, Wong W, Abou-Gharbia M, Childers W, Sari Y. Effects of novel GLT-1 modulator, MC-100093, on neuroinflammatory and neurotrophic biomarkers in mesocorticolimbic brain regions of male alcohol preferring rats exposed chronically to ethanol. Brain Res Bull 2024; 211:110935. [PMID: 38570076 PMCID: PMC11056292 DOI: 10.1016/j.brainresbull.2024.110935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Chronic ethanol consumption can lead to increased extracellular glutamate concentrations in key reward brain regions, such as medial prefrontal cortex (mPFC) and nucleus accumbens (NAc), and consequently leading to oxidative stress and neuroinflammation. Previous studies from our lab tested β-lactam antibiotics and novel beta-lactam non-antibiotic, MC-100093, and showed these β-lactam upregulated the major astrocytic glutamate transporter, GLT-1, and consequently reduced ethanol intake and normalized glutamate homeostasis. This present study tested the effects of novel synthetic β-lactam non-antibiotic drug, MC-100093, in chronic ethanol intake and neuroinflammatory and trophic factors in subregions of the NAc (NAc core and shell) and mPFC (Prelimbic, PL; and Infralimbic, IL) of male P rats. MC-100093 treatment reduced ethanol intake after 5-week drinking regimen. Importantly, MC-100093 attenuated ethanol-induced downregulation of brain derived neurotrophic factor (BDNF) expression in these brain regions. In addition, MC-100093 attenuated ethanol-induced upregulation of pro-inflammatory cytokines such as TNF-a and HMGB1 in all these brain regions. Furthermore, MC-100093 treatment attenuated ethanol-induced increase in RAGE in these brain regions. MC-100093 prevented neuroinflammation caused by ethanol intake as well as increased neurotrophic factor in mesocorticolimbic brain regions. MC-100093 treatment reduced ethanol intake and this behavioral effect was associated with attenuation of reduced trophic factors and increased pro-inflammatory factors. MC-100093 is considered a small molecule that may have potential therapeutic effects for the treatment of the effects of chronic exposure to ethanol.
Collapse
Affiliation(s)
- Shelby Travaglianti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Ahmed Alotaibi
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Woonyen Wong
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Magid Abou-Gharbia
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Wayne Childers
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
3
|
Alasmari MS, Almohammed OA, Hammad AM, Altulayhi KA, Alkadi BK, Alasmari AF, Alqahtani F, Sari Y, Alasmari F. Effects of Beta Lactams on Behavioral Outcomes of Substance Use Disorders: A Meta-Analysis of Preclinical Studies. Neuroscience 2024; 537:58-83. [PMID: 38036059 DOI: 10.1016/j.neuroscience.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/31/2023] [Accepted: 11/15/2023] [Indexed: 12/02/2023]
Abstract
INTRODUCTION Preclinical studies demonstrated that beta-lactams have neuroprotective effects in conditions involving glutamate neuroexcitotoxicity, including substance use disorders (SUDs). This meta-analysis aims to analyze the existing evidences on the effects of beta-lactams as glutamate transporter 1 (GLT-1) upregulators in animal models of SUDs, identification of gaps in the literature, and setting the stage for potential translation into clinical phases. METHODS Meta-analysis was conducted on preclinical studies retrieved systematically from MEDLINE and ScienceDirect databases. Abused substances were identified by refereeing to the National Institute on Drug Abuse (NIDA). The results were quantitatively described with a focus on the behavioral outcomes. Treatment effect sizes were described using standardized mean difference, and they were pooled using random effect model. I2-statistic was used to assess heterogeneity, and Funnel plot and Egger's test were used for assessment of publication bias. RESULTS Literature search yielded a total of 71 studies that were eligible to be included in the analysis. Through these studies, the effects of beta-lactams were evaluated in animal models of nicotine, cannabis, amphetamines, synthetic cathinone, opioids, ethanol, and cocaine use disorders as well as steroids-related aggressive behaviors. Meta-analysis showed that treatments with beta-lactams consistently reduced the pooled undesired effects of the abused substances in several paradigms, including drug-self administration, conditioned place preference, drug seeking behaviors, hyperlocomotion, withdrawal syndromes, tolerance to analgesic effects, hyperalgesia, and hyperthermia. CONCLUSION This meta-analysis revealed that enhancing GLT-1 expression in the brain through beta-lactams seemed to be a promising treatment approach in the context of substance use disorders, as indicated by results in animal models.
Collapse
Affiliation(s)
- Mohammed S Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Omar A Almohammed
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Saudi Arabia
| | - Alaa M Hammad
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Khalid A Altulayhi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Bader K Alkadi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, the University of Toledo, OH, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Saudi Arabia.
| |
Collapse
|
4
|
Esmaili-Shahzade-Ali-Akbari P, Ghaderi A, Hosseini SMM, Nejat F, Saeedi-Mofrad M, Karimi-Houyeh M, Ghattan A, Etemadi A, Rasoulian E, Khezri A. β_lactam antibiotics against drug addiction: A novel therapeutic option. Drug Dev Res 2023; 84:1411-1426. [PMID: 37602907 DOI: 10.1002/ddr.22110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/25/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
Drug addiction as a problem for the health of the individual and the society is the result of a complex process in which there is an interaction between brain nuclei and neurotransmitters (such as glutamate). β-lactam antibiotics, due to their enhancing properties on the glutamate transporter glutamate transporter-1, can affect and counteract the addictive mechanisms of drugs through the regulation of extracellular glutamate. Since glutamate is a key neurotransmitter in the development of drug addiction, it seems that β-lactams can be considered as a promising treatment for addiction. However, more research in this field is necessary to identify other mechanisms involved in their effectiveness. This article is a review of the studies conducted on the effect of β-lactam administration in preventing the development of drug addiction, as well as their possible cellular and molecular mechanisms. This review suggests the clinical use of β-lactam antibiotics that have weak antimicrobial properties (such as clavulanic acid) in the treatment of drug dependence.
Collapse
Affiliation(s)
| | - Amir Ghaderi
- Department of Addiction Studies, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Fatemeh Nejat
- Department of Biology and Health Sciences, Meredith College, Raleigh, North Carolina, USA
| | | | | | - Alireza Ghattan
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirreza Etemadi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Rasoulian
- Department of Medical-Surgical Nursing, School of Nursing Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arina Khezri
- Department of Anesthesia, School of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Abulseoud OA, Alasmari F, Hussein AM, Sari Y. Ceftriaxone as a Novel Therapeutic Agent for Hyperglutamatergic States: Bridging the Gap Between Preclinical Results and Clinical Translation. Front Neurosci 2022; 16:841036. [PMID: 35864981 PMCID: PMC9294323 DOI: 10.3389/fnins.2022.841036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Dysregulation of glutamate homeostasis is a well-established core feature of neuropsychiatric disorders. Extracellular glutamate concentration is regulated by glutamate transporter 1 (GLT-1). The discovery of a beta-lactam antibiotic, ceftriaxone (CEF), as a safe compound with unique ability to upregulate GLT-1 sparked the interest in testing its efficacy as a novel therapeutic agent in animal models of neuropsychiatric disorders with hyperglutamatergic states. Indeed, more than 100 preclinical studies have shown the efficacy of CEF in attenuating the behavioral manifestations of various hyperglutamatergic brain disorders such as ischemic stroke, amyotrophic lateral sclerosis (ALS), seizure, Huntington’s disease, and various aspects of drug use disorders. However, despite rich and promising preclinical data, only one large-scale clinical trial testing the efficacy of CEF in patients with ALS is reported. Unfortunately, in that study, there was no significant difference in survival between placebo- and CEF-treated patients. In this review, we discussed the translational potential of preclinical efficacy of CEF based on four different parameters: (1) initiation of CEF treatment in relation to induction of the hyperglutamatergic state, (2) onset of response in preclinical models in relation to onset of GLT-1 upregulation, (3) mechanisms of action of CEF on GLT-1 expression and function, and (4) non-GLT-1-mediated mechanisms for CEF. Our detailed review of the literature brings new insights into underlying molecular mechanisms correlating the preclinical efficacy of CEF. We concluded here that CEF may be clinically effective in selected cases in acute and transient hyperglutamatergic states such as early drug withdrawal conditions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Alex School of Medicine at Mayo Clinic, Phoenix, AZ, United States
- *Correspondence: Osama A. Abulseoud,
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdelaziz M. Hussein
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
- Youssef Sari,
| |
Collapse
|
6
|
Holbrook OT, Molligoda B, Bushell KN, Gobrogge KL. Behavioral consequences of the downstream products of ethanol metabolism involved in alcohol use disorder. Neurosci Biobehav Rev 2021; 133:104501. [PMID: 34942269 DOI: 10.1016/j.neubiorev.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 01/04/2023]
Abstract
Research concerning Alcohol Use Disorder (AUD) has previously focused primarily on either the behavioral or chemical consequences experienced following ethanol intake, but these areas of research have rarely been considered in tandem. Compared with other drugs of abuse, ethanol has been shown to have a unique metabolic pathway once it enters the body, which leads to the formation of downstream metabolites which can go on to form biologically active products. These metabolites can mediate a variety of behavioral responses that are commonly observed with AUD, such as ethanol intake, reinforcement, and vulnerability to relapse. The following review considers the preclinical and chemical research implicating these downstream products in AUD and proposes a chemobehavioral model of AUD.
Collapse
Affiliation(s)
- Otto T Holbrook
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA.
| | - Brandon Molligoda
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA.
| | - Kristen N Bushell
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA
| | - Kyle L Gobrogge
- Program in Neuroscience, Boston University, Boston, MA, 02215-2425, USA
| |
Collapse
|
7
|
Angoa-Pérez M, Kuhn DM. Evidence for Modulation of Substance Use Disorders by the Gut Microbiome: Hidden in Plain Sight. Pharmacol Rev 2021; 73:571-596. [PMID: 33597276 PMCID: PMC7896134 DOI: 10.1124/pharmrev.120.000144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The gut microbiome modulates neurochemical function and behavior and has been implicated in numerous central nervous system (CNS) diseases, including developmental, neurodegenerative, and psychiatric disorders. Substance use disorders (SUDs) remain a serious threat to the public well-being, yet gut microbiome involvement in drug abuse has received very little attention. Studies of the mechanisms underlying SUDs have naturally focused on CNS reward circuits. However, a significant body of research has accumulated over the past decade that has unwittingly provided strong support for gut microbiome participation in drug reward. β-Lactam antibiotics have been employed to increase glutamate transporter expression to reverse relapse-induced release of glutamate. Sodium butyrate has been used as a histone deacetylase inhibitor to prevent drug-induced epigenetic alterations. High-fat diets have been used to alter drug reward because of the extensive overlap of the circuitry mediating them. This review article casts these approaches in a different light and makes a compelling case for gut microbiome modulation of SUDs. Few factors alter the structure and composition of the gut microbiome more than antibiotics and a high-fat diet, and butyrate is an endogenous product of bacterial fermentation. Drugs such as cocaine, alcohol, opiates, and psychostimulants also modify the gut microbiome. Therefore, their effects must be viewed on a complex background of cotreatment-induced dysbiosis. Consideration of the gut microbiome in SUDs should have the beneficial effects of expanding the understanding of SUDs and aiding in the design of new therapies based on opposing the effects of abused drugs on the host's commensal bacterial community. SIGNIFICANCE STATEMENT: Proposed mechanisms underlying substance use disorders fail to acknowledge the impact of drugs of abuse on the gut microbiome. β-Lactam antibiotics, sodium butyrate, and high-fat diets are used to modify drug seeking and reward, overlooking the notable capacity of these treatments to alter the gut microbiome. This review aims to stimulate research on substance abuse-gut microbiome interactions by illustrating how drugs of abuse share with antibiotics, sodium butyrate, and fat-laden diets the ability to modify the host microbial community.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, and Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
8
|
Qin C, Hu J, Wan Y, Cai M, Wang Z, Peng Z, Liao Y, Li D, Yao P, Liu L, Rong S, Bao W, Xu G, Yang W. Narrative review on potential role of gut microbiota in certain substance addiction. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110093. [PMID: 32898589 DOI: 10.1016/j.pnpbp.2020.110093] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/22/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022]
Abstract
As a neuropsychiatric disorder, substance addiction represents a major public health issue with high prevalence and mortality in many countries. Recently, gut microbiota has been certified to play a part in substance addiction through various mechanisms. Hence, we mainly focused on three substance including alcohol, cocaine and methamphetamine in this review, and summarized their relationships with gut microbiota, respectively. Besides, we also concluded the possible treatments for substance addiction from the perspective of applying gut microbiota. This review aims to build a bridge between substance addiction and gut microbiota according to existing evidences, so as to excavate the possible bi-directional function of microbiota-gut-brain axis in substance addiction for developing therapeutic strategies in the future.
Collapse
Affiliation(s)
- Chenyuan Qin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Jiawei Hu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yiming Wan
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Mengyao Cai
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhenting Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China
| | - Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Bao
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA
| | - Guifeng Xu
- Department of Epidemiology, College of Public Health, University of Iowa, IA 52242, USA; Center for Disabilities and Development, University of Iowa Stead Family Children's Hospital, Iowa City, IA 52242, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China; Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, 430030 Wuhan, China.
| |
Collapse
|
9
|
Hammad AM, Alasmari F, Sari Y. Effect of Modulation of the Astrocytic Glutamate Transporters' Expression on Cocaine-Induced Reinstatement in Male P Rats Exposed to Ethanol. Alcohol Alcohol 2021; 56:210-219. [PMID: 33063090 PMCID: PMC11004936 DOI: 10.1093/alcalc/agaa104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 11/14/2022] Open
Abstract
AIM Reinforcing properties of ethanol and cocaine are mediated in part through the glutamatergic system. Extracellular glutamate concentration is strictly maintained through several glutamate transporters, such as glutamate transporter 1 (GLT-1), cystine/glutamate transporter (xCT) and glutamate aspartate transporter (GLAST). Previous findings revealed that cocaine and ethanol exposure downregulated GLT-1 and xCT, and that β-lactam antibiotics restored their expression. METHODS In this study, we investigated the effect of ampicillin/sulbactam (AMP/SUL) (200 mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement and locomotor activity in male alcohol preferring (P) rats using free choice ethanol (15 and 30%, v/v) and water. We also investigated the effect of co-exposure to ethanol and cocaine (20 mg/kg, i.p.) on GLT-1, xCT and GLAST expression in the nucleus accumbens (NAc) core, NAc shell and dorsomedial prefrontal cortex (dmPFC). RESULTS Cocaine exposure decreased ethanol intake and preference. Cocaine and ethanol co-exposure acquired place preference and increased locomotor activity compared to ethanol-exposed rats. GLT-1 and xCT expression were downregulated after cocaine and ethanol co-exposure in the NAc core and shell, but not in dmPFC. AMP/SUL attenuated reinstatement to cocaine as well attenuated the decrease in locomotor activity and ethanol intake and preference. These effects were associated with upregulation of GLT-1 and xCT expression in the NAc core/shell and dmPFC. GLAST expression was not affected after ethanol and cocaine co-exposure or AMP/SUL treatment. CONCLUSION Our findings demonstrate that astrocytic glutamate transporters within the mesocorticolimbic area are critical targets in modulating cocaine-seeking behavior while being consuming ethanol.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
10
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Churchwell M, Bachu R, Dass A, To E, Boddu SS, Jung R. Physical compatibility, antimicrobial activity, and stability of cefazolin combined with gentamicin or ethanol in sodium citrate as a catheter lock solution. J Pharm Bioallied Sci 2021; 13:298-304. [PMID: 35017885 PMCID: PMC8698077 DOI: 10.4103/jpbs.jpbs_619_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/19/2021] [Accepted: 03/10/2021] [Indexed: 11/04/2022] Open
|
12
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
13
|
Effects of N-acetylcysteine treatment on ethanol's rewarding properties and dopaminergic alterations in mesocorticolimbic and nigrostriatal pathways. Behav Pharmacol 2020; 32:239-250. [PMID: 33290342 DOI: 10.1097/fbp.0000000000000613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent reports have shown that N-acetylcysteine (N-AC) has beneficial effects in the treatment of cocaine and nicotine abuse. Considering the similar neurobiologic mechanisms involved in the development of addiction to different drugs, N-AC treatment could be useful in the treatment of ethanol abuse. The rewarding properties of the drugs of abuse plays an important role in the development of addiction and can be studied using the conditioned place preference (CPP) paradigm. Thus, to study the effects of N-AC treatment in the rewarding effects of ethanol, we investigated the effects of N-AC administration in the ethanol-induced CPP and neurochemical alterations within the mesocorticolimbic and the nigrostriatal dopaminergic pathways. Adult male Swiss mice were pretreated with N-AC (60 or 120 mg/kg intraperitoneal) and tested for the development, expression, or extinction of the ethanol-induced CPP. Another cohort of animals received N-AC (60 or 120 mg/kg intraperitoneal) 2-h before an acute administration of ethanol and had their brains removed for dopamine and its metabolites quantification in the mesocorticolimbic and nigrostriatal pathways. Pretreatment with N-AC (120 mg/kg) blocked the development of ethanol-induced CPP. On the other hand, N-AC at both doses did not alter the expression nor the extinction of ethanol-induced CPP. N-AC increased 3,4-dihydroxyphenylacetic acid content in the medial prefrontal cortex and dopaminergic turnover within the substantia nigra. Besides that, there was an increase in dopamine content in the nucleus accumbens of ethanol-treated animals. In summary, N-AC treatment blocked the development of ethanol CPP, without altering ethanol effects on dopaminergic neurotransmission.
Collapse
|
14
|
Neurobiology, Functions, and Relevance of Excitatory Amino Acid Transporters (EAATs) to Treatment of Refractory Epilepsy. CNS Drugs 2020; 34:1089-1103. [PMID: 32926322 DOI: 10.1007/s40263-020-00764-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epilepsy is one of the most prevalent and devastating neurological disorders characterized by episodes of unusual sensations, loss of awareness, and reoccurring seizures. The frequency and intensity of epileptic fits can vary to a great degree, with almost a third of all cases resistant to available therapies. At present, there is a major unmet need for effective and specific therapeutic intervention. Impairments of the exquisite balance between excitatory and inhibitory synaptic processes in the brain are considered key in the onset and pathophysiology of the disease. As the primary excitatory neurotransmitter in the central nervous system, glutamate has been implicated in the process, with the glutamatergic system holding center stage in the pathobiology as well as in developing disease-modifying therapies. Emerging data pinpoint impairments of glutamate clearance as one of the key causative factors in drug-resistant disease forms. Reinstatement of glutamate homeostasis using pharmacological and genetic modulation of glutamate clearance is therefore considered to be of major translational relevance. In this article, we review the neurobiological and clinical evidence suggesting complex aberrations in the activity and functions of excitatory amino acid transporters (EAATs) in epilepsy, with knock-on effects on glutamate homeostasis as a leading cause for the development of refractory forms. We consider the emerging data on pharmacological and genetic manipulations of EAATs, with reference to seizures and glutamate dyshomeostasis, and review their fundamental and translational relevance. We discuss the most recent advances in the EAATs research in human and animal models, along with numerous questions that remain open for debate and critical appraisal. Contrary to the widely held view on EAATs as a promising therapeutic target for management of refractory epilepsy as well as other neurological and psychiatric conditions related to glutamatergic hyperactivity and glutamate-induced cytotoxicity, we stress that the true relevance of EAAT2 as a target for medical intervention remains to be fully appreciated and verified. Despite decades of research, the emerging properties and functional characteristics of glutamate transporters and their relationship with neurophysiological and behavioral correlates of epilepsy challenge the current perception of this disease and fit unambiguously in neither EAATs functional deficit nor in reversal models. We stress the pressing need for new approaches and models for research and restoration of the physiological activity of glutamate transporters and synaptic transmission to achieve much needed therapeutic effects. The complex mechanism of EAATs regulation by multiple factors, including changes in the electrochemical environment and ionic gradients related to epileptic hyperactivity, impose major therapeutic challenges. As a final note, we consider the evolving views and present a cautious perspective on the key areas of future progress in the field towards better management and treatment of refractory disease forms.
Collapse
|
15
|
McColl ER, Piquette‐Miller M. SLC Neurotransmitter Transporters as Therapeutic Targets for Alcohol Use Disorder: A Narrative Review. Alcohol Clin Exp Res 2020; 44:1965-1976. [DOI: 10.1111/acer.14445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Eliza R. McColl
- From the Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada
| | - Micheline Piquette‐Miller
- From the Department of Pharmaceutical Sciences Leslie Dan Faculty of Pharmacy University of Toronto Toronto Ontario Canada
| |
Collapse
|
16
|
Quintanilla ME, Ezquer F, Morales P, Ezquer M, Olivares B, Santapau D, Herrera-Marschitz M, Israel Y. N-Acetylcysteine and Acetylsalicylic Acid Inhibit Alcohol Consumption by Different Mechanisms: Combined Protection. Front Behav Neurosci 2020; 14:122. [PMID: 32848653 PMCID: PMC7412547 DOI: 10.3389/fnbeh.2020.00122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic ethanol intake results in brain oxidative stress and neuroinflammation, which have been postulated to perpetuate alcohol intake and to induce alcohol relapse. The present study assessed the mechanisms involved in the inhibition of: (i) oxidative stress; (ii) neuroinflammation; and (iii) ethanol intake that follow the administration of the antioxidant N-acetylcysteine (NAC) and the anti-inflammatory acetylsalicylic acid (ASA) to animals that had consumed ethanol chronically. At doses used clinically, NAC [40 mg/kg per day orally (p.o.)] and ASA (15 mg/kg per day p.o.) significantly inhibited chronic alcohol intake and relapse intake in alcohol-preferring rats. The coadministration of both drugs reduced ethanol intake by 65% to 70%. N-acetylcysteine administration: (a) induced the Nrf2-ARE system, lowering the hippocampal oxidative stress assessed as the ratio of oxidized glutathione (GSSG)/reduced glutathione (GSH); (b) reduced the neuroinflammation assessed by astrocyte and microglial activation by immunofluorescence; and (c) inhibited chronic and relapse ethanol intake. These effects were blocked by sulfasalazine, an inhibitor of the xCT transporter, which incorporates cystine (precursor of GSH) and extrudes extracellular glutamate, an agonist of the inhibitory mGlu2/3 receptor, which lowers the synaptic glutamatergic tone. The inhibitor of mGlu2/3 receptor (LY341495) blocked the NAC-induced inhibition of both relapse ethanol intake and neuroinflammation without affecting the GSSG/GSH ratio. Unlike N-acetylcysteine, ASA inhibited chronic alcohol intake and relapse via lipoxin A4, a strong anti-inflammatory metabolite of arachidonic acid generated following the ASA acetylation of cyclooxygenases. Accordingly, the lipoxin A4 receptor inhibitor, WRW4, blocked the ASA-induced reduction of ethanol intake. Overall, via different mechanisms, NAC and ASA administered in clinically relevant doses combine their effects inhibiting ethanol intake.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Belen Olivares
- Centro de Química Médica, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
17
|
Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020; 10:biom10071030. [PMID: 32664441 PMCID: PMC7407831 DOI: 10.3390/biom10071030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Woonyen Wong
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| |
Collapse
|
18
|
Hammad AM, Sari Y. Effects of Cocaine Exposure on Astrocytic Glutamate Transporters and Relapse-Like Ethanol-Drinking Behavior in Male Alcohol-Preferring Rats. Alcohol Alcohol 2020; 55:254-263. [PMID: 32099993 PMCID: PMC7171926 DOI: 10.1093/alcalc/agaa010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
AIM Glutamate has been considered as neurotransmitter that is critical in triggering relapse to drugs of abuse, including ethanol and cocaine. Extracellular glutamate concentrations are tightly regulated by several mechanisms, including reuptake through glutamate transporters. Glutamate transporter type 1 (GLT-1) is responsible for clearing the majority of extracellular glutamate. The astrocytic cystine/glutamate antiporter (xCT) regulates also glutamate homeostasis. In this study, we investigated the effects of cocaine exposure and ampicillin/sulbactam (AMP/SUL), a β-lactam antibiotic known to upregulate GLT-1 and xCT, on relapse-like ethanol intake and the expression of astrocytic glutamate transporters in mesocorticolimbic brain regions. METHODS Male alcohol-preferring (P) rats had free access to ethanol for 5 weeks. On Week 6, rats were exposed to either cocaine (20 mg/kg, i.p.) or saline for 12 consecutive days. Ethanol bottles were then removed for 7 days; during the last 5 days, either AMP/SUL (100 or 200 mg/kg, i.p.) or saline was administered to the P rats. Ethanol bottles were reintroduced, and ethanol intake was measured for 4 days. RESULTS Cocaine exposure induced an alcohol deprivation effect (ADE), which was associated in part by a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc) core. AMP/SUL (100 mg/kg, i.p.) attenuated the ADE, while AMP/SUL (200 mg/kg, i.p.) reduced ethanol intake during 4 days of ethanol re-exposure and upregulated GLT-1 and xCT expression in the NAc core, NAc shell and dorsomedial prefrontal cortex (dmPFC). CONCLUSION This study suggests that these astrocytic glutamate transporters might be considered as potential targets for the treatment of polysubstance abuse.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave, Toledo, OH, USA
- Department of Pharmacy, College of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130 Amman, 11733, Jordan
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, 3000 Arlington Ave, Toledo, OH, USA
| |
Collapse
|
19
|
Pajarillo E, Rizor A, Lee J, Aschner M, Lee E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019; 161:107559. [PMID: 30851309 PMCID: PMC6731169 DOI: 10.1016/j.neuropharm.2019.03.002] [Citation(s) in RCA: 247] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS) which initiates rapid signal transmission in the synapse before its re-uptake into the surrounding glia, specifically astrocytes. The astrocytic glutamate transporters glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) and their human homologs excitatory amino acid transporter 1 (EAAT1) and 2 (EAAT2), respectively, are the major transporters which take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with various neurological disorders, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), manganism, ischemia, schizophrenia, epilepsy, and autism. While the mechanisms of neurological disorders are not well understood, the dysregulation of GLAST/GLT-1 may play a significant role in excitotoxicity and associated neuropathogenesis. The expression and function of GLAST/GLT-1 may be dysregulated at the genetic, epigenetic, transcriptional or translational levels, leading to high levels of extracellular glutamate and excitotoxicity. Consequently, understanding the regulatory mechanisms of GLAST/GLT-1 has been an area of interest in developing therapeutics for the treatment of neurological disorders. Pharmacological agents including β-lactam antibiotics, estrogen/selective estrogen receptor modulators (SERMs), growth factors, histone deacetylase inhibitors (HDACi), and translational activators have shown significant efficacy in enhancing the expression and function of GLAST/GLT-1 and glutamate uptake both in vitro and in vivo. This comprehensive review will discuss the regulatory mechanisms of GLAST/GLT-1, their association with neurological disorders, and the pharmacological agents which mediate their expression and function. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Edward Pajarillo
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Asha Rizor
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA
| | - Jayden Lee
- Department of Speech, Language & Hearing Sciences, Boston University, Boston, MA, 02215, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Eunsook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
20
|
Niedzielska-Andres E, Mizera J, Sadakierska-Chudy A, Pomierny-Chamioło L, Filip M. Changes in the glutamate biomarker expression in rats vulnerable or resistant to the rewarding effects of cocaine and their reversal by ceftriaxone. Behav Brain Res 2019; 370:111945. [DOI: 10.1016/j.bbr.2019.111945] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
21
|
Savchenko E, Teku GN, Boza-Serrano A, Russ K, Berns M, Deierborg T, Lamas NJ, Wichterle H, Rothstein J, Henderson CE, Vihinen M, Roybon L. FGF family members differentially regulate maturation and proliferation of stem cell-derived astrocytes. Sci Rep 2019; 9:9610. [PMID: 31270389 PMCID: PMC6610107 DOI: 10.1038/s41598-019-46110-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/23/2019] [Indexed: 12/20/2022] Open
Abstract
The glutamate transporter 1 (GLT1) is upregulated during astrocyte development and maturation in vivo and is vital for astrocyte function. Yet it is expressed at low levels by most cultured astrocytes. We previously showed that maturation of human and mouse stem cell-derived astrocytes – including functional glutamate uptake – could be enhanced by fibroblast growth factor (FGF)1 or FGF2. Here, we examined the specificity and mechanism of action of FGF2 and other FGF family members, as well as neurotrophic and differentiation factors, on mouse embryonic stem cell-derived astrocytes. We found that some FGFs – including FGF2, strongly increased GLT1 expression and enhanced astrocyte proliferation, while others (FGF16 and FGF18) mainly affected maturation. Interestingly, BMP4 increased astrocytic GFAP expression, and BMP4-treated astrocytes failed to promote the survival of motor neurons in vitro. Whole transcriptome analysis showed that FGF2 treatment regulated multiple genes linked to cell division, and that the mRNA encoding GLT1 was one of the most strongly upregulated of all astrocyte canonical markers. Since GLT1 is expressed at reduced levels in many neurodegenerative diseases, activation of this pathway is of potential therapeutic interest. Furthermore, treatment with FGFs provides a robust means for expansion of functionally mature stem cell-derived astrocytes for preclinical investigation.
Collapse
Affiliation(s)
- Ekaterina Savchenko
- Department of Experimental Medical Science, BMC D10, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden.,MultiPark and Lund Stem Cell Center, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden
| | - Gabriel N Teku
- Department of Experimental Medical Science, Faculty of Medicine, BMC B13, Lund University, SE-22184, Lund, Sweden
| | - Antonio Boza-Serrano
- Department of Experimental Medical Science, Faculty of Medicine, BMC B11, Lund University, SE-22184, Lund, Sweden
| | - Kaspar Russ
- Department of Experimental Medical Science, BMC D10, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden.,MultiPark and Lund Stem Cell Center, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden
| | - Manon Berns
- Department of Experimental Medical Science, BMC D10, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden.,MultiPark and Lund Stem Cell Center, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden
| | - Tomas Deierborg
- Department of Experimental Medical Science, Faculty of Medicine, BMC B11, Lund University, SE-22184, Lund, Sweden
| | - Nuno J Lamas
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal, and ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Anatomic Pathology Service, Pathology Department, Hospital and University Center of Porto, Largo Professor Abel Salazar, 4099-001, Porto, Portugal
| | - Hynek Wichterle
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY, 10032, USA
| | - Jeffrey Rothstein
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Christopher E Henderson
- Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia Translational Neuroscience Initiative, Columbia University, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Neurology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Project A.L.S./Jenifer Estess Laboratory for Stem Cell Research, New York, NY, 10032, USA.,Department of Rehabilitation and Regenerative Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.,Target ALS Foundation, New York, NY, 10032, USA.,Biogen Inc., Cambridge, MA, 02142, USA
| | - Mauno Vihinen
- Department of Experimental Medical Science, Faculty of Medicine, BMC B13, Lund University, SE-22184, Lund, Sweden
| | - Laurent Roybon
- Department of Experimental Medical Science, BMC D10, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden. .,MultiPark and Lund Stem Cell Center, Faculty of Medicine, Lund University, SE-22184, Lund, Sweden.
| |
Collapse
|
22
|
Nonphosphorylatable Src Ser75 Mutation Increases Ethanol Preference and Consumption in Mice. eNeuro 2019; 6:eN-NWR-0418-18. [PMID: 30963106 PMCID: PMC6451160 DOI: 10.1523/eneuro.0418-18.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 11/21/2022] Open
Abstract
Src is highly expressed in CNS neurons and contributes not only to developmental proliferation and differentiation but also to high-order brain functions, such as those contributing to alcohol consumption. Src knock-out mice exhibit no CNS abnormalities, presumably due to compensation by other Src family kinases (SFKs), but have a shortened lifespan and osteopetrosis-associated defects, impeding investigations of the role of Src on behavior in adult mice. However, the Unique domain of Src differs from those in other SFKs and is phosphorylated by cyclin-dependent kinase 1 (Cdk1) and Cdk5 at Ser75, which influences its postmitotic function in neurons. Therefore, ethanol consumption in mice harboring nonphosphorylatable (Ser75Ala) or phosphomimetic (Ser75Asp) Src mutants was investigated. Mice harboring the Ser75Ala Src mutant, but not the Ser75Asp mutant, had a higher preference for and consumption of solutions containing 5% and 10% ethanol than wild-type mice. However, plasma ethanol concentrations and sensitivities to the sedative effects of ethanol were not different among the groups. In mice harboring the Ser75Ala Src mutant, the activity of Rho-associated kinase (ROCK) in the striatum was significantly lower and Akt Ser473 phosphorylation was significantly higher than in wild-type mice. These results suggest that Src regulates voluntary ethanol drinking in a manner that depends on Ser75 phosphorylation.
Collapse
|
23
|
Siemsen BM, Reichel CM, Leong KC, Garcia-Keller C, Gipson CD, Spencer S, McFaddin JA, Hooker KN, Kalivas PW, Scofield MD. Effects of Methamphetamine Self-Administration and Extinction on Astrocyte Structure and Function in the Nucleus Accumbens Core. Neuroscience 2019; 406:528-541. [PMID: 30926546 PMCID: PMC6545487 DOI: 10.1016/j.neuroscience.2019.03.040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 01/01/2023]
Abstract
Astrocytes provide support for neurons, regulate metabolic processes, and influence neuronal communication in a variety of ways, including through the homeostatic regulation of glutamate. Following 2-h cocaine or methamphetamine self-administration (SA) and extinction, rodents display decreased levels of basal glutamate in the nucleus accumbens core (NAcore), which transitions to elevated glutamate levels during drug seeking. We hypothesized that, like cocaine, this glutamate 'overflow' during methamphetamine seeking arises via decreased expression of the astroglial glutamate transporter GLT-1, and withdrawal of perisynaptic astroglial processes (PAPs) from synapses. As expected, methamphetamine self-administration and extinction decreased the level of contact made by PAPs in the NAcore, yet did not impact glutamate uptake, GLT-1 expression, or the general structural characteristics of astrocytes. Interestingly, systemic administration of N-acetylcysteine (NAC), a drug that both upregulates GLT-1 and promotes glial-glutamate release, reduced cued methamphetamine seeking. In order to test the impact of astrocyte activation and the induction of glial glutamate release within the NAcore, we employed astrocyte-specific expression of designer receptors exclusively activated by designer drugs (DREADDs). We show here that acute activation of Gq-coupled DREADDs in this region inhibited cued methamphetamine seeking. Taken together, these data indicate that cued methamphetamine seeking following two-hour SA is not mediated by deficient glutamate clearance in the NAcore, yet can be inhibited by engaging NAcore astrocytes.
Collapse
Affiliation(s)
- B M Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C M Reichel
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - K C Leong
- Department of Psychology, Trinity University, San Antonio, TX, USA
| | - C Garcia-Keller
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - C D Gipson
- Department of Psychology, Arizona State University, Tempe, AZ, USA
| | - S Spencer
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - J A McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - K N Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - M D Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
24
|
Linker KE, Cross SJ, Leslie FM. Glial mechanisms underlying substance use disorders. Eur J Neurosci 2018; 50:2574-2589. [PMID: 30240518 DOI: 10.1111/ejn.14163] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/28/2022]
Abstract
Addiction is a devastating disorder that produces persistent maladaptive changes to the central nervous system, including glial cells. Although there is an extensive body of literature examining the neuronal mechanisms of substance use disorders, effective therapies remain elusive. Glia, particularly microglia and astrocytes, have an emerging and meaningful role in a variety of processes beyond inflammation and immune surveillance, and may represent a promising therapeutic target. Indeed, glia actively modulate neurotransmission, synaptic connectivity and neural circuit function, and are critically poised to contribute to addictive-like brain states and behaviors. In this review, we argue that glia influence the cellular, molecular, and synaptic changes that occur in neurons following drug exposure, and that this cellular relationship is critically modified following drug exposure. We discuss direct actions of abused drugs on glial function through immune receptors, such as Toll-like receptor 4, as well as other mechanisms. We highlight how drugs of abuse affect glia-neural communication, and the profound effects that glial-derived factors have on neuronal excitability, structure, and function. Recent research demonstrates that glia have brain region-specific functions, and glia in different brain regions have distinct contributions to drug-associated behaviors. We will also evaluate the evidence demonstrating that glial activation is essential for drug reward and drug-induced dopamine release, and highlight clinical evidence showing that glial mechanisms contribute to drug abuse liability. In this review, we synthesize the extensive evidence that glia have a unique, pivotal, and underappreciated role in the development and maintenance of addiction.
Collapse
Affiliation(s)
- K E Linker
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - S J Cross
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - F M Leslie
- Department of Pharmacology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
25
|
Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog Neurobiol 2018; 171:32-49. [PMID: 30316901 DOI: 10.1016/j.pneurobio.2018.10.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/08/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
Abstract
Emerging evidence demonstrates that alcohol dependence is associated with dysregulation of several neurotransmitters. Alterations in dopamine, glutamate and gamma-aminobutyric acid release are linked to chronic alcohol exposure. The effects of alcohol on the glutamatergic system in the mesocorticolimbic areas have been investigated extensively. Several studies have demonstrated dysregulation in the glutamatergic systems in animal models exposed to alcohol. Alcohol exposure can lead to an increase in extracellular glutamate concentrations in mesocorticolimbic brain regions. In addition, alcohol exposure affects the expression and functions of several glutamate receptors and glutamate transporters in these brain regions. In this review, we discussed the effects of alcohol exposure on glutamate receptors, glutamate transporters and glutamate homeostasis in each area of the mesocorticolimbic system. In addition, we discussed the genetic aspect of alcohol associated with glutamate and reward circuitry. We also discussed the potential therapeutic role of glutamate receptors and glutamate transporters in each brain region for the treatment of alcohol dependence. Finally, we provided some limitations on targeting the glutamatergic system for potential therapeutic options for the treatment alcohol use disorders.
Collapse
|
26
|
Drugs to Alter Extracellular Concentration of Glutamate: Modulators of Glutamate Uptake Systems. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-1-4939-7228-9_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Bell RL, Hauser SR, Liang T, Sari Y, Maldonado-Devincci A, Rodd ZA. Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology 2017; 122:201-243. [PMID: 28215999 PMCID: PMC5659204 DOI: 10.1016/j.neuropharm.2017.02.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 01/21/2023]
Abstract
The purpose of this review is to present animal research models that can be used to screen and/or repurpose medications for the treatment of alcohol abuse and dependence. The focus will be on rats and in particular selectively bred rats. Brief introductions discuss various aspects of the clinical picture, which provide characteristics of individuals with alcohol use disorders (AUDs) to model in animals. Following this, multiple selectively bred rat lines will be described and evaluated in the context of animal models used to screen medications to treat AUDs. Next, common behavioral tests for drug efficacy will be discussed particularly as they relate to stages in the addiction cycle. Tables highlighting studies that have tested the effects of compounds using the respective techniques are included. Wherever possible the Tables are organized chronologically in ascending order to describe changes in the focus of research on AUDs over time. In general, high ethanol-consuming selectively bred rats have been used to test a wide range of compounds. Older studies usually followed neurobiological findings in the selected lines that supported an association with a propensity for high ethanol intake. Most of these tests evaluated the compound's effects on the maintenance of ethanol drinking. Very few compounds have been tested during ethanol-seeking and/or relapse and fewer still have assessed their effects during the acquisition of AUDs. Overall, while a substantial number of neurotransmitter and neuromodulatory system targets have been assessed; the roles of sex- and age-of-animal, as well as the acquisition of AUDs, ethanol-seeking and relapse continue to be factors and behaviors needing further study. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA.
| | - Sheketha R Hauser
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| | - Tiebing Liang
- Indiana University School of Medicine, Department of Gastroenterology, Indianapolis, IN 46202, USA
| | - Youssef Sari
- University of Toledo, Department of Pharmacology, Toledo, OH 43614, USA
| | | | - Zachary A Rodd
- Indiana University School of Medicine, Department of Psychiatry, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Liu L, Huang C, Bian Y, Miao L. GC-MS based metabolomics of CSF and blood serum: Metabolic phenotype for a rat model of cefoperazone-induced disulfiram-like reaction. Biochem Biophys Res Commun 2017; 490:1066-1073. [DOI: 10.1016/j.bbrc.2017.06.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 12/01/2022]
|
29
|
Hammad AM, Alasmari F, Althobaiti YS, Sari Y. Modulatory effects of Ampicillin/Sulbactam on glial glutamate transporters and metabotropic glutamate receptor 1 as well as reinstatement to cocaine-seeking behavior. Behav Brain Res 2017. [PMID: 28624317 DOI: 10.1016/j.bbr.2017.06.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutamatergic system has an important role in cocaine-seeking behavior. Studies have reported that chronic exposure to cocaine induces downregulation of glutamate transporter-1 (GLT-1) and cystine/glutamate exchanger (xCT) in the central reward brain regions. Ceftriaxone, a β-lactam antibiotic, restored GLT-1 expression and consequently reduced cue-induced reinstatement of cocaine-seeking behavior. In this study, we investigated the reinstatement to cocaine (20mg/kg, i.p.) seeking behavior using a conditioned place preference (CPP) paradigm in male alcohol-preferring (P) rats. In addition, we investigated the effects of Ampicillin/Sulbactam (AMP/SUL) (200mg/kg, i.p.), a β-lactam antibiotic, on cocaine-induced reinstatement. We also investigated the effects of AMP/SUL on the expression of glial glutamate transporters and metabotropic glutamate receptor 1 (mGluR1) in the nucleus accumbens (NAc) core and shell and the dorsomedial prefrontal cortex (dmPFC). We found that AMP/SUL treatment reduced cocaine-triggered reinstatement. This effect was associated with a decrease in locomotor activity. Moreover, GLT-1 and xCT were downregulated in the NAc core and shell, but not in the dmPFC, following cocaine-primed reinstatement. However, cocaine exposure increased the expression of mGluR1 in the NAc core, but not in the NAc shell or dmPFC. Importantly, AMP/SUL treatment normalized GLT-1 and xCT expression in the NAc core and shell; however, the drug normalized mGluR1 expression in the NAc core only. Additionally, AMP/SUL increased the expression of GLT-1 and xCT in the dmPFC as compared to the water naïve group. These findings demonstrated that glial glutamate transporters and mGluR1 in the mesocorticolimbic area could be potential therapeutic targets for the attenuation of reinstatement to cocaine-seeking behavior.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
30
|
Spencer S, Kalivas PW. Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 2017; 20:797-812. [PMID: 28605494 PMCID: PMC5632313 DOI: 10.1093/ijnp/pyx050] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/09/2017] [Indexed: 02/06/2023] Open
Abstract
Drug addiction has often been described as a "hijacking" of the brain circuits involved in learning and memory. Glutamate is the principal excitatory neurotransmitter in the brain, and its contribution to synaptic plasticity and learning processes is well established in animal models. Likewise, over the past 20 years the addiction field has ascribed a critical role for glutamatergic transmission in the development of addiction. Chronic drug use produces enduring neuroadaptations in corticostriatal projections that are believed to contribute to a maladaptive deficit in inhibitory control over behavior. Much of this research focuses on the role played by ionotropic glutamate receptors directly involved in long-term potentiation and depression or metabotropic receptors indirectly modulating synaptic plasticity. Importantly, the balance between glutamate release and clearance tightly regulates the patterned activation of these glutamate receptors, emphasizing an important role for glutamate transporters in maintaining extracellular glutamate levels. Five excitatory amino acid transporters participate in active glutamate reuptake. Recent evidence suggests that these glutamate transporters can be modulated by chronic drug use at a variety of levels. In this review, we synopsize the evidence and mechanisms associated with drug-induced dysregulation of glutamate transport. We then summarize the preclinical and clinical data suggesting that glutamate transporters offer an effective target for the treatment of drug addiction. In particular, we focus on the role that altered glutamate transporters have in causing drug cues and contexts to develop an intrusive quality that guides maladaptive drug seeking behaviors.
Collapse
Affiliation(s)
- Sade Spencer
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.,Correspondence: Sade Spencer, PhD, Medical University of South Carolina, 173 Ashley Avenue, BSB, 403- MSC 510, Charleston, SC 29425 ()
| | - Peter W Kalivas
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
31
|
Contrasting the Role of xCT and GLT-1 Upregulation in the Ability of Ceftriaxone to Attenuate the Cue-Induced Reinstatement of Cocaine Seeking and Normalize AMPA Receptor Subunit Expression. J Neurosci 2017; 37:5809-5821. [PMID: 28495973 DOI: 10.1523/jneurosci.3717-16.2017] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/28/2017] [Accepted: 05/01/2017] [Indexed: 11/21/2022] Open
Abstract
Long-term treatment with ceftriaxone attenuates the reinstatement of cocaine seeking while increasing the function of the glutamate transporter 1 (GLT-1) and system xC- (Sxc) in the nucleus accumbens core (NAc). Sxc contributes the majority of nonsynaptic extracellular glutamate in the NAc, while GLT-1 is responsible for the majority of glutamate uptake. Here we used antisense to decrease the expression of GLT-1 and xCT (a catalytic subunit of Sxc) to determine the relative importance of both proteins in mediating the ability of ceftriaxone to prevent cue-induced reinstatement of cocaine seeking and normalize glutamatergic proteins in the NAc of rats. Intra-NAc xCT knockdown prevented ceftriaxone from attenuating reinstatement and from upregulating GLT-1 and resulted in increased surface expression of AMPA receptor subunits GluA1 and GluA2. Intra-NAc GLT-1 knockdown also prevented ceftriaxone from attenuating reinstatement and from upregulating xCT expression, without affecting GluA1 and GluA2 expression. In the absence of cocaine or ceftriaxone treatment, xCT knockdown in the NAc increased the expression of both GluA1 and GluA2 without affecting GLT-1 expression while GLT-1 knockdown had no effect. PCR and immunoprecipitation of GLT-1 revealed that ceftriaxone does not upregulate GLT-1 and xCT through a transcriptional mechanism, and their coregulation by ceftriaxone is not mediated by physical interaction. These data support important and distinct roles for xCT and GLT-1 in the actions of ceftriaxone and add to a body of literature finding evidence for coregulation of these transporters. Our results also point to xCT expression and subsequent basal glutamate levels as being a key mediator of AMPA receptor expression in the NAc.SIGNIFICANCE STATEMENT Ceftriaxone attenuates the reinstatement of cocaine, alcohol, and heroin seeking. The mechanism of action of this behavioral effect has been attributed to glutamate transporter 1 (GLT-1) and xCT (a catalytic subunit of Sxc)/Sxc upregulation in the nucleus accumbens core. Here we used an antisense strategy to knock down GLT-1 or xCT in the nucleus accumbens core and examined the behavioral and molecular consequences. While upregulation of both xCT and GLT-1 are essential to the ability of ceftriaxone to attenuate cue-induced reinstatement of cocaine seeking, each protein uniquely affects the expression of other glutamate receptor and transporter proteins. We also report that reducing basal glutamate levels through the manipulation of xCT expression increases the surface expression of AMPA receptor subunits, providing insight to the mechanism by which cocaine alters AMPA surface expression.
Collapse
|
32
|
Hammad AM, Althobaiti YS, Das SC, Sari Y. Effects of repeated cocaine exposure and withdrawal on voluntary ethanol drinking, and the expression of glial glutamate transporters in mesocorticolimbic system of P rats. Mol Cell Neurosci 2017; 82:58-65. [PMID: 28442364 DOI: 10.1016/j.mcn.2017.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/18/2017] [Accepted: 04/20/2017] [Indexed: 11/26/2022] Open
Abstract
Glutamatergic neurotransmission within the brain's reward circuits plays a major role in the reinforcing properties of both ethanol and cocaine. Glutamate homeostasis is regulated by several glutamate transporters, including glutamate transporter type 1 (GLT-1), cystine/glutamate transporter (xCT), and glutamate aspartate transporter (GLAST). Cocaine exposure has been shown to induce a dysregulation in glutamate homeostasis and a decrease in the expression of GLT-1 and xCT in the nucleus accumbens (NAc). In this study, alcohol preferring (P) rats were exposed to free-choice of ethanol (15% and 30%) and/or water for five weeks. On Week 6, rats were administered (i.p.) cocaine (10 and 20mg/kg) or saline for 12 consecutive days. This study tested two groups of rats: the first group was euthanized after seven days of repeated cocaine i.p. injection, and the second group was deprived from cocaine for five days and euthanized at Day 5 after cocaine withdrawal. Only repeated cocaine (20mg/kg, i.p.) exposure decreased ethanol intake from Day 3 through Day 8. Co-exposure of cocaine and ethanol decreased the relative mRNA expression and the expression of GLT-1 in the NAc but not in the medial prefrontal cortex (mPFC). Importantly, co-exposure of cocaine and ethanol decreased relative expression of xCT in the NAc but not in the mPFC. Our findings demonstrated that chronic cocaine exposure affects ethanol intake; and ethanol and cocaine co-abuse alters the expression of glial glutamate transporters.
Collapse
Affiliation(s)
- Alaa M Hammad
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Yusuf S Althobaiti
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Sujan C Das
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
33
|
Goodwani S, Saternos H, Alasmari F, Sari Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 2017; 77:14-31. [PMID: 28242339 DOI: 10.1016/j.neubiorev.2017.02.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 12/16/2022]
Abstract
Emerging evidence indicates that dysfunctional glutamate neurotransmission is critical in the initiation and development of alcohol and drug dependence. Alcohol consumption induced downregulation of glutamate transporter 1 (GLT-1) as reported in previous studies from our laboratory. Glutamate is the major excitatory neurotransmitter in the brain, which acts via interactions with several glutamate receptors. Alcohol consumption interferes with the glutamatergic signal transmission by altering the functions of these receptors. Among the glutamate receptors involved in alcohol-drinking behavior are the metabotropic receptors such as mGluR1/5, mGluR2/3, and mGluR7, as well as the ionotropic receptors, NMDA and AMPA. Preclinical studies using agonists and antagonists implicate these glutamatergic receptors in the development of alcohol use disorder (AUD). Therefore, the purpose of this review is to discuss the neurocircuitry involving glutamate transmission in animals exposed to alcohol and further outline the role of metabotropic and ionotropic receptors in the regulation of alcohol-drinking behavior. This review provides ample information about the potential therapeutic role of glutamatergic receptors for the treatment of AUD.
Collapse
Affiliation(s)
- Sunil Goodwani
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA; The Neurodegeneration Consortium, Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Hannah Saternos
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Fawaz Alasmari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH 43614, USA.
| |
Collapse
|
34
|
Morais-Silva G, Alves GC, Marin MT. N-acetylcysteine treatment blocks the development of ethanol-induced behavioural sensitization and related ΔFosB alterations. Neuropharmacology 2016; 110:135-142. [PMID: 27401790 DOI: 10.1016/j.neuropharm.2016.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/30/2022]
Abstract
Ethanol addiction is a serious public health problem that still needs more effective pharmacological treatment. A key factor in the development and maintenance of this disease is the advent of neuroadaptations in the mesocorticolimbic brain pathway upon chronic ethanol abuse. In general, these neuroadaptations are maladaptive and affect numerous neurotransmitter systems and intracellular molecules. One of these molecules is ΔFosB, a transcription factor that is altered after chronic drug use. Behavioural sensitization is a useful model for the study of the neuroadaptations related to addiction. Recent works have shown a role for the imbalance of glutamatergic neurotransmission in the symptoms found in addicted people. In this sense, the treatment with N-acetylcysteine, a l-cysteine prodrug that acts by restoring extrasynaptic concentrations of glutamate through the activation of cystine-glutamate antiporter, has shown promising results in the treatment of addiction. Thus, an animal model of behavioural sensitization was used to evaluate the effects of N-acetylcysteine treatment in the behavioural and molecular alterations induced by chronic ethanol administration. Swiss mice were subject to 13 days of daily ethanol administration to induce behavioural sensitization. Two hours before each ethanol administration and locomotor activity evaluation, the animals received intraperitoneally N-acetylcysteine injections. Immediately after the last test session, their brains were removed for ΔFosB and cystine-glutamate antiporter quantification. It was found that N-acetylcysteine treatment blocked ethanol-induced behavioural sensitization, the increase of ΔFosB content in the prefrontal cortex, and its reduction in the nucleus accumbens. The results suggest a possible use of N-acetylcysteine in ethanol-related disorders.
Collapse
Affiliation(s)
- Gessynger Morais-Silva
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint Graduate Programme in Physiological Sciences, UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil
| | - Gabrielle Cunha Alves
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil
| | - Marcelo T Marin
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Univ Estadual Paulista - UNESP, Araraquara, SP, Brazil; Joint Graduate Programme in Physiological Sciences, UFSCar/UNESP, São Carlos/Araraquara, SP, Brazil.
| |
Collapse
|
35
|
Bell RL, Hauser S, Rodd ZA, Liang T, Sari Y, McClintick J, Rahman S, Engleman EA. A Genetic Animal Model of Alcoholism for Screening Medications to Treat Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:179-261. [PMID: 27055615 PMCID: PMC4851471 DOI: 10.1016/bs.irn.2016.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of this review is to present up-to-date pharmacological, genetic, and behavioral findings from the alcohol-preferring P rat and summarize similar past work. Behaviorally, the focus will be on how the P rat meets criteria put forth for a valid animal model of alcoholism with a highlight on its use as an animal model of polysubstance abuse, including alcohol, nicotine, and psychostimulants. Pharmacologically and genetically, the focus will be on the neurotransmitter and neuropeptide systems that have received the most attention: cholinergic, dopaminergic, GABAergic, glutamatergic, serotonergic, noradrenergic, corticotrophin releasing hormone, opioid, and neuropeptide Y. Herein, we sought to place the P rat's behavioral and neurochemical phenotypes, and to some extent its genotype, in the context of the clinical literature. After reviewing the findings thus far, this chapter discusses future directions for expanding the use of this genetic animal model of alcoholism to identify molecular targets for treating drug addiction in general.
Collapse
Affiliation(s)
- R L Bell
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - S Hauser
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Z A Rodd
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - T Liang
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Y Sari
- University of Toledo, Toledo, OH, United States
| | - J McClintick
- Center for Medical Genomics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - S Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - E A Engleman
- Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
36
|
Alasmari F, Rao PSS, Sari Y. Effects of cefazolin and cefoperazone on glutamate transporter 1 isoforms and cystine/glutamate exchanger as well as alcohol drinking behavior in male alcohol-preferring rats. Brain Res 2016; 1634:150-157. [PMID: 26790351 DOI: 10.1016/j.brainres.2016.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/09/2015] [Accepted: 01/07/2016] [Indexed: 12/22/2022]
Abstract
Previously, we have reported that cefazolin and cefoperazone treatments attenuated ethanol consumption, at least in part, through upregulation of GLT-1 expression in male alcohol-preferring (P) rats. In this study, we determined the effects of these compounds on the expression of GLT-1 isoforms (GLT-1a and GLT-1b), cysteine/glutamate exchanger (xCT), which is another glial glutamate transporter co-localized with GLT-1, and glutamate/aspartate transporter (GLAST). We found that cefazolin and cefoperazone treatments decreased ethanol intake and upregulated both GLT-1 isoforms, GLT-1a and GLT-1b, in nucleus accumbens (NAc) and prefrontal cortex (PFC) compared to saline treated group. In addition, cefazolin increased the expression of xCT in NAc and PFC, while cefoperazone upregulated xCT expression only in NAc. However, we did not find any significant differences in GLAST expression between the treated and control groups. Overall, our findings suggest that cefazolin and cefoperazone may be considered as potential compounds for the treatment of ethanol dependence.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - P S S Rao
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA.
| |
Collapse
|
37
|
Bell RL, Hauser SR, McClintick J, Rahman S, Edenberg HJ, Szumlinski KK, McBride WJ. Ethanol-Associated Changes in Glutamate Reward Neurocircuitry: A Minireview of Clinical and Preclinical Genetic Findings. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 137:41-85. [PMID: 26809998 DOI: 10.1016/bs.pmbts.2015.10.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Herein, we have reviewed the role of glutamate, the major excitatory neurotransmitter in the brain, in a number of neurochemical, -physiological, and -behavioral processes mediating the development of alcohol dependence. The findings discussed include results from both preclinical as well as neuroimaging and postmortem clinical studies. Expression levels for a number of glutamate-associated genes and/or proteins are modulated by alcohol abuse and dependence. These changes in expression include metabotropic receptors and ionotropic receptor subunits as well as different glutamate transporters. Moreover, these changes in gene expression parallel the pharmacologic manipulation of these same receptors and transporters. Some of these gene expression changes may have predated alcohol abuse and dependence because a number of glutamate-associated polymorphisms are related to a genetic predisposition to develop alcohol dependence. Other glutamate-associated polymorphisms are linked to age at the onset of alcohol-dependence and initial level of response/sensitivity to alcohol. Finally, findings of innate and/or ethanol-induced glutamate-associated gene expression differences/changes observed in a genetic animal model of alcoholism, the P rat, are summarized. Overall, the existing literature indicates that changes in glutamate receptors, transporters, enzymes, and scaffolding proteins are crucial for the development of alcohol dependence and there is a substantial genetic component to these effects. This indicates that continued research into the genetic underpinnings of these glutamate-associated effects will provide important novel molecular targets for treating alcohol abuse and dependence.
Collapse
Affiliation(s)
- Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA.
| | - Sheketha R Hauser
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jeanette McClintick
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, South Dakota, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana , USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, California, USA
| | - William J McBride
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
38
|
D'Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015; 9:404. [PMID: 26594139 PMCID: PMC4633516 DOI: 10.3389/fnins.2015.00404] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022] Open
Abstract
Individuals addicted to drugs of abuse such as alcohol, nicotine, cocaine, and heroin are a significant burden on healthcare systems all over the world. The positive reinforcing (rewarding) effects of the above mentioned drugs play a major role in the initiation and maintenance of the drug-taking habit. Thus, understanding the neurochemical mechanisms underlying the reinforcing effects of drugs of abuse is critical to reducing the burden of drug addiction in society. Over the last two decades, there has been an increasing focus on the role of the excitatory neurotransmitter glutamate in drug addiction. In this review, pharmacological and genetic evidence supporting the role of glutamate in mediating the rewarding effects of the above described drugs of abuse will be discussed. Further, the review will discuss the role of glutamate transmission in two complex heterogeneous brain regions, namely the nucleus accumbens (NAcc) and the ventral tegmental area (VTA), which mediate the rewarding effects of drugs of abuse. In addition, several medications approved by the Food and Drug Administration that act by blocking glutamate transmission will be discussed in the context of drug reward. Finally, this review will discuss future studies needed to address currently unanswered gaps in knowledge, which will further elucidate the role of glutamate in the rewarding effects of drugs of abuse.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Pharmaceutical and Biomedical Sciences, Raabe College of Pharmacy, Ohio Northern University Ada, OH, USA
| |
Collapse
|
39
|
Fontana ACK. Current approaches to enhance glutamate transporter function and expression. J Neurochem 2015; 134:982-1007. [DOI: 10.1111/jnc.13200] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Andréia C. K. Fontana
- Department of Pharmacology and Physiology; Drexel University College of Medicine; Philadelphia Pennsylvania USA
| |
Collapse
|
40
|
Alasmari F, Abuhamdah S, Sari Y. Effects of ampicillin on cystine/glutamate antiporter and glutamate transporter 1 isoforms as well as ethanol drinking in male P rats. Neurosci Lett 2015; 600:148-52. [PMID: 26071905 DOI: 10.1016/j.neulet.2015.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 05/15/2015] [Accepted: 06/06/2015] [Indexed: 01/29/2023]
Abstract
Evidence demonstrated that glial cells, mainly astrocytes, regulate glutamate uptake through several glutamate transporters. Among these glutamate transporters, glutamate transporter 1 (GLT-1; its human homolog is excitatory amino acid transporter-2) is responsible for the majority of glutamate uptake. Cystine-glutamate antiporter (xCT) is another glial protein critical in regulating glutamate transmission. Several studies from our laboratory demonstrated that attenuation of ethanol intkae was associated in part with upregulation of xCT and GLT-1 expression suggesting the important role of these transporters in the treatment of ethanol dependence. We found recently that β-lactam antibiotic, ampicillin, upregulated GLT-1 expression in the prefrontal cortex (PFC) and nucleus accumbens (NAc) and consequently reduced ethanol intake in alcohol-preferring (P) rats. In this study, we investigated the effects of ampicillin on the expression of xCT and GLT-1 isoforms (GLT-1a and GLT-1b) as well as on GLAST expression. We found that ampicillin reduced ethanol intake as compared to the saline (control)-treated group. In addition, we found that ampicillin induced upregulation of xCT, GLT-1a, and GLT-1b expression in both the PFC and NAc, but had no effect on GLAST expression. Our findings provide significant role of ampicillin on upregulating xCT and GLT-1 isoforms expression, might be suggested as possible targets for the attenuation of ethanol consumption.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Sawsan Abuhamdah
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH, USA.
| |
Collapse
|
41
|
Rao PSS, Yallapu MM, Sari Y, Fisher PB, Kumar S. Designing Novel Nanoformulations Targeting Glutamate Transporter Excitatory Amino Acid Transporter 2: Implications in Treating Drug Addiction. JOURNAL OF PERSONALIZED NANOMEDICINE 2015; 1:3-9. [PMID: 26635971 PMCID: PMC4666545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic drug abuse is associated with elevated extracellular glutamate concentration in the brain reward regions. Deficit of glutamate clearance has been identified as a contributing factor that leads to enhanced glutamate concentration following extended drug abuse. Importantly, normalization of glutamate level through induction of glutamate transporter 1 (GLT1)/ excitatory amino acid transporter 2 (EAAT2) expression has been described in several in vivo studies. GLT1 upregulators including ceftriaxone, a beta-lactam antibiotic, have been effective in attenuating drug-seeking and drug-consumption behavior in rodent models. However, potential obstacles toward clinical translation of GLT1 (EAAT2) upregulators as treatment for drug addiction might include poor gastrointestinal absorption, serious peripheral adverse effects, and/or suboptimal CNS concentrations. Given the growing success of nanotechnology in targeting CNS ailments, nanoformulating known GLT1 (EAAT2) upregulators for selective uptake across the blood brain barrier presents an ideal therapeutic approach for treating drug addiction. In this review, we summarize the results obtained with promising GLT1 (EAAT2) inducing compounds in animal models recapitulating drug addiction. Additionally, the various nanoformulations that can be employed for selectively increasing the CNS bioavailability of GLT1 (EAAT2) upregulators are discussed. Finally, the applicability of GLT1 (EAAT2) induction via central delivery of drug-loaded nanoformulations is described.
Collapse
Affiliation(s)
- PSS Rao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA,Corresponding authors: (P.S.S.R), Tel: 901-448-7146. (S.K), Tel: 901-448-7157
| | - Murali M. Yallapu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Paul B. Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA 23298, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA,Corresponding authors: (P.S.S.R), Tel: 901-448-7146. (S.K), Tel: 901-448-7157
| |
Collapse
|