1
|
Zhu T, Wang W, Chen Y, Kranzler HR, Li CSR, Bi J. Machine Learning of Functional Connectivity to Biotype Alcohol and Nicotine Use Disorders. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:326-336. [PMID: 37696489 DOI: 10.1016/j.bpsc.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/23/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Magnetic resonance imaging provides noninvasive tools to investigate alcohol use disorder (AUD) and nicotine use disorder (NUD) and neural phenotypes for genetic studies. A data-driven transdiagnostic approach could provide a new perspective on the neurobiology of AUD and NUD. METHODS Using samples of individuals with AUD (n = 140), individuals with NUD (n = 249), and healthy control participants (n = 461) from the UK Biobank, we integrated clinical, neuroimaging, and genetic markers to identify biotypes of AUD and NUD. We partitioned participants with AUD and NUD based on resting-state functional connectivity (FC) features associated with clinical metrics. A multitask artificial neural network was trained to evaluate the cluster-defined biotypes and jointly infer AUD and NUD diagnoses. RESULTS Three biotypes-primary NUD, mixed NUD/AUD with depression and anxiety, and mixed AUD/NUD-were identified. Multitask classifiers incorporating biotype knowledge achieved higher area under the curve (AUD: 0.76, NUD: 0.74) than single-task classifiers without biotype differentiation (AUD: 0.61, NUD: 0.64). Cerebellar FC features were important in distinguishing the 3 biotypes. The biotype of mixed NUD/AUD with depression and anxiety demonstrated the largest number of FC features (n = 5), all related to the visual cortex, that significantly differed from healthy control participants and were validated in a replication sample (p < .05). A polymorphism in TNRC6A was associated with the mixed AUD/NUD biotype in both the discovery (p = 7.3 × 10-5) and replication (p = 4.2 × 10-2) sets. CONCLUSIONS Biotyping and multitask learning using FC features can characterize the clinical and genetic profiles of AUD and NUD and help identify cerebellar and visual circuit markers to differentiate the AUD/NUD group from the healthy control group. These markers support a new growing body of literature.
Collapse
Affiliation(s)
- Tan Zhu
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut
| | - Wuyi Wang
- Data Analytics Department, Yale New Haven Health System, New Haven, Connecticut
| | - Yu Chen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Chiang-Shan R Li
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut; Department of Neuroscience, School of Medicine, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut
| | - Jinbo Bi
- Department of Computer Science and Engineering, School of Engineering, University of Connecticut, Storrs, Connecticut.
| |
Collapse
|
2
|
Vasques JF, Gonçalves RGDJ, Gomes ALT, Campello-Costa P, Serfaty CA, Faria-Melibeu ADC. Signaling pathways modulated by monocular enucleation in the superior colliculus of juvenile rats. Int J Dev Neurosci 2021; 81:249-258. [PMID: 33544920 DOI: 10.1002/jdn.10095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/06/2022] Open
Abstract
Monocular eye enucleation (ME) is a classical paradigm to induce neural plasticity in retinal ganglion cells (RGCs) axons from the intact eye, especially when performed within the critical period of visual system development. However, the precise mechanisms underlying the axonal sprouting and synaptogenesis seen in this model remain poorly understood. In the present work, we investigated the temporal alterations in phosphorylation of three kinases related to axonal growth and synaptogenesis-GSK3β (an important repressor of axonal outgrowth), AKT, and ERK-in superior colliculus of rats submitted to ME during early postnatal development. Western blotting analysis showed an increase in pGSK3β, the inactive form of this enzyme, 24 and 48 hr after ME. Accordingly, an increase in pERK levels was detected 24 hr after ME, indicating that phosphorylation of these enzymes might be related to axonal reorganization induced by ME. Interestingly, AKT phosphorylation was increased just 1 week after ME, suggesting it may be involved in the stabilization of newly formed synapses, rising from the axonal reorganization of remaining eye. A better understanding of how signaling pathways are modulated in a model of intense axonal sprouting can highlight possible therapeutic targets in RGCs injuries in adult individuals, where axonal regrowth is nearly absent.
Collapse
Affiliation(s)
- Juliana Ferreira Vasques
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Renata Guedes de Jesus Gonçalves
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Lucia Tavares Gomes
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Claudio Alberto Serfaty
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
3
|
Espírito-Santo SA, Nunes-Tavares N, Mendonça HR, Serfaty CA, Sholl-Franco A, Campello-Costa P. Intravitreal Interleukin-2 modifies retinal excitatory circuits and retinocollicular innervation. Exp Eye Res 2021; 204:108442. [PMID: 33460624 DOI: 10.1016/j.exer.2021.108442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 12/14/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
Interleukin-2 is a classical immune cytokine whose neural functions have received little attention. Its levels have been found to be increased in some neuropathologies, such as Alzheimer's disease, multiple sclerosis and uveitis. Mechanistically, it has been demonstrated the role of IL-2 in regulating glutamate and acetylcholine transmission, thus being relevant for CNS physiology. In fact, our previous work showed that an acute intravitreal IL-2 injection during retinotectal development promoted contralateral eye axonal plasticity in the superior colliculus, but the involved mechanisms were not explored. So, our present study aimed to investigate the effect of increased intravitreal IL-2 levels on the retinal glutamatergic and cholinergic signalling required for retinotectal normal development. We showed through HRP neuronal tracing that intravitreal IL-2 also induces ipsilateral eye axonal sprouting. Protein level and/or immunolocalization analysis in the retina confirmed IL-2 pathway activation by increased expression of phospho-STAT-3, coupled to transient (24h) reduced levels of Egr1, PSD-95 and nicotinic acetylcholine receptor β2 subunit, suggesting reduced neural activity and synaptic sites. Also, AChE activity and GluN2B and GluA2 contents were reduced within 96h after IL-2 treatment. Therefore, IL-2-induced retinotectal plasticity might be driven by changes in cholinergic and glutamatergic pathways of the retina.
Collapse
Affiliation(s)
- S A Espírito-Santo
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil; Instituto de Biofísica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Universidade Do Estado de Minas Gerais, Departamento de Ciências Biológicas, Minas Gerais, Brazil
| | - N Nunes-Tavares
- Instituto de Biofísica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Mendonça
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil; Laboratório Integrado de Morfologia, Instituto de Biodiversidade e Sustentabilidade NUPEM, Universidade Federal Do Rio de Janeiro, Campus Macaé, Brazil
| | - C A Serfaty
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil
| | - A Sholl-Franco
- Instituto de Biofísica, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P Campello-Costa
- Instituto de Biologia, Programa de Pós-Graduação Em Neurociências, Universidade Federal Fluminense, Niterói, Brazil.
| |
Collapse
|
4
|
He W, Tu M, Du Y, Li J, Pang Y, Dong Z. Nicotine Promotes AβPP Nonamyloidogenic Processing via RACK1-Dependent Activation of PKC in SH-SY5Y-AβPP695 Cells. J Alzheimers Dis 2020; 75:451-460. [PMID: 32250310 DOI: 10.3233/jad-200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Accumulation of amyloid-β (Aβ) peptides, generated from amyloid-β precursor protein (AβPP) amyloidogenic processing, is one of the most salient disease hallmarks of Alzheimer's disease (AD). Nicotine is able to promote α-secretase-mediated AβPP nonamyloidogenic processing and increase the release of sAβPPα and C-terminal fragment of 83 amino acids (C83). However, the potential molecular mechanism remains elusive. OBJECTIVE The aim of the present study was to investigate the effect of nicotine on AβPP processing in SH-SY5Y cells that stably express human Swedish mutant AβPP695 (SH-SY5Y-AβPP695). METHODS The expression of AβPP and its C-terminal fragments including C99, C89, and C83, was measured in SH-SY5Y-AβPP695 cells treated with nicotine for 6 h. Protein kinase C (PKC) antagonist Ro30-8220 or agonist PMA was used to determine the role of PKC in AβPP processing. Lentivirus-mediated shRNA targeting receptor for activated C-kinase 1 (RACK1) gene was added into the media to knockdown RACK1 expression, and then AβPP processing was examined. RESULTS The results showed that 6 h of nicotine exposure increased the expression of α-secretase (ADAM10) and C83 in a dose dependent manner. While the β-secretase (BACE1), AβPP amyloidogenic processing products C89 and C99 as well as Aβ peptides (including Aβ40 and Aβ42) remained unchanged. We also found that nicotine elevated the expression of phosphorylated PKC (P-PKC) and RACK1 on the cytomembrane. PKC antagonist Ro30-8220 treatment prevented the increase of ADAM10 and C83 by nicotine. Genetic knockdown RACK1 significantly inhibited P-PKC, and consequently abolished the increase of ADAM10 and C83 by nicotine. CONCLUSION Taken together, these results indicate that nicotine effectively promotes AβPP nonamyloidogenic processing via RACK1-dependent activation of PKC in SH-SY5Y-AβPP695 cells and could be a potential molecule for AD treatment.
Collapse
Affiliation(s)
- Wenting He
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Man Tu
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yehong Du
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Li
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yayan Pang
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifang Dong
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Vasques JF, Heringer PVB, Gonçalves RGDJ, Campello-Costa P, Serfaty CA, Faria-Melibeu ADC. Monocular denervation of visual nuclei modulates APP processing and sAPPα production: A possible role on neural plasticity. Int J Dev Neurosci 2017; 60:16-25. [PMID: 28323038 DOI: 10.1016/j.ijdevneu.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022] Open
Abstract
Amyloid precursor protein (APP) is essential to physiological processes such as synapse formation and neural plasticity. Sequential proteolysis of APP by beta- and gamma-secretases generates amyloid-beta peptide (Aβ), the main component of senile plaques in Alzheimer Disease. Alternative APP cleavage by alpha-secretase occurs within Aβ domain, releasing soluble α-APP (sAPPα), a neurotrophic fragment. Among other functions, sAPPα is important to synaptogenesis, neural survival and axonal growth. APP and sAPPα levels are increased in models of neuroplasticity, which suggests an important role for APP and its metabolites, especially sAPPα, in the rearranging brain. In this work we analyzed the effects of monocular enucleation (ME), a classical model of lesion-induced plasticity, upon APP content, processing and also in secretases levels. Besides, we addressed whether α-secretase activity is crucial for retinotectal remodeling after ME. Our results showed that ME induced a transient reduction in total APP content. We also detected an increase in α-secretase expression and in sAPP production concomitant with a reduction in Aβ and β-secretase contents. These data suggest that ME facilitates APP processing by the non-amyloidogenic pathway, increasing sAPPα levels. Indeed, the pharmacological inhibition of α-secretase activity reduced the axonal sprouting of ipsilateral retinocollicular projections from the intact eye after ME, suggesting that sAPPα is necessary for synaptic structural rearrangement. Understanding how APP processing is regulated under lesion conditions may provide new insights into APP physiological role on neural plasticity.
Collapse
Affiliation(s)
- Juliana Ferreira Vasques
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Pedro Vinícius Bastos Heringer
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Renata Guedes de Jesus Gonçalves
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Paula Campello-Costa
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Claudio Alberto Serfaty
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Programa de Neurociências, Departamento de Neurobiologia, Instituto de Biologia, Universidade Federal Fluminense, CEP 24001-970, Niterói 100180, RJ, Brazil.
| |
Collapse
|