1
|
Li Y, Badawi Y, Meriney SD. Age-Related Homeostatic Plasticity at Rodent Neuromuscular Junctions. Cells 2024; 13:1684. [PMID: 39451202 PMCID: PMC11506802 DOI: 10.3390/cells13201684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Motor ability decline remains a major threat to the quality of life of the elderly. Although the later stages of aging co-exist with degenerative pathologies, the long process of aging is more complicated than a simple and gradual degeneration. To combat senescence and the associated late-stage degeneration of the neuromuscular system, it is imperative to examine changes that occur during the long process of aging. Prior to late-stage degeneration, age-induced changes in the neuromuscular system trigger homeostatic plasticity. This unique phenomenon may be important for the maintenance of the neuromuscular system during the early stages of aging. In this review, we will focus on age-induced changes in neurotransmission at the neuromuscular junction, providing the potential mechanisms responsible for these changes. The goal is to highlight these key elements and their role in regulating neurotransmission, facilitating future research efforts to combat late-stage degeneration in the neuromuscular system by preserving the functional and structural integrity of these elements prior to the late stage of aging.
Collapse
Affiliation(s)
| | | | - Stephen D. Meriney
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; (Y.L.); (Y.B.)
| |
Collapse
|
2
|
Pabla P, Jones E, Piasecki M, Phillips B. Skeletal muscle dysfunction with advancing age. Clin Sci (Lond) 2024; 138:863-882. [PMID: 38994723 PMCID: PMC11250095 DOI: 10.1042/cs20231197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
As a result of advances in medical treatments and associated policy over the last century, life expectancy has risen substantially and continues to increase globally. However, the disconnect between lifespan and 'health span' (the length of time spent in a healthy, disease-free state) has also increased, with skeletal muscle being a substantial contributor to this. Biological ageing is accompanied by declines in both skeletal muscle mass and function, termed sarcopenia. The mechanisms underpinning sarcopenia are multifactorial and are known to include marked alterations in muscle protein turnover and adaptations to the neural input to muscle. However, to date, the relative contribution of each factor remains largely unexplored. Specifically, muscle protein synthetic responses to key anabolic stimuli are blunted with advancing age, whilst alterations to neural components, spanning from the motor cortex and motoneuron excitability to the neuromuscular junction, may explain the greater magnitude of function losses when compared with mass. The consequences of these losses can be devastating for individuals, their support networks, and healthcare services; with clear detrimental impacts on both clinical (e.g., mortality, frailty, and post-treatment complications) and societal (e.g., independence maintenance) outcomes. Whether declines in muscle quantity and quality are an inevitable component of ageing remains to be completely understood. Nevertheless, strategies to mitigate these declines are of vital importance to improve the health span of older adults. This review aims to provide an overview of the declines in skeletal muscle mass and function with advancing age, describes the wide-ranging implications of these declines, and finally suggests strategies to mitigate them, including the merits of emerging pharmaceutical agents.
Collapse
Affiliation(s)
- Pardeep Pabla
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Eleanor J. Jones
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
| | - Mathew Piasecki
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing and Physiology (COMAP), School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, DE22 3DT, U.K
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR), U.K
- NIHR Nottingham Biomedical Research Centre (BRC), U.K
| |
Collapse
|
3
|
Wang Q, Cui C, Zhang N, Lin W, Chai S, Chow SKH, Wong RMY, Hu Y, Law SW, Cheung WH. Effects of physical exercise on neuromuscular junction degeneration during ageing: A systematic review. J Orthop Translat 2024; 46:91-102. [PMID: 38817243 PMCID: PMC11137388 DOI: 10.1016/j.jot.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 03/31/2024] [Indexed: 06/01/2024] Open
Abstract
The neuromuscular junction (NMJ) is a specialized chemical synapse that converts neural impulses into muscle action. Age-associated NMJ degeneration, which involves nerve terminal and postsynaptic decline, denervation, and loss of motor units, significantly contributes to muscle weakness and dysfunction. Although physical training has been shown to make substantial modifications in NMJ of both young and aged animals, the results are often influenced by methodological variables in existing studies. Moreover, there is still lack of strong consensus on the specific effects of exercise on improving the morphology and function of the ageing NMJ. Consequently, the purpose of this study was to conduct a systematic review to elucidate the effects of exercise training on NMJ compartments in the elderly. We conducted a systematic review using PubMed, Embase, and Web of Science databases, employing relevant keywords. Two independent reviewers selected studies that detailed NMJ changes during exercise in ageing, written in English, and available in full text. In total, 20 papers were included. We examined the altered adaptation of the NMJ to exercise, focusing on presynaptic and postsynaptic structures and myofibers in older animals or humans. Our findings indicated that aged NMJs exhibited different adaptive responses to physical exercise compared to younger counterparts. Endurance training, compared with resistance and voluntary exercise regimens, was found to have a more pronounced effect on NMJ structural remodeling, particularly in fast twitch muscle fibers. Physical exercise was observed to promote the formation and maintenance of acetylcholine receptor (AChR) clusters by increasing the recombinant docking protein 7 (Dok7) expression and stabilizing Agrin and lipoprotein receptor-related protein 4 (LRP4). These insights suggest that research on exercise-related therapies could potentially attenuate the progression of neuromuscular degeneration. Translational potential of this article: This systematic review provides a detailed overview of the effects of different types of physical exercise on improving NMJ in the elderly, providing scientific support for the timely intervention of muscle degeneration in the elderly by physical exercise, and providing help for the development of new therapeutic interventions in the future.
Collapse
Affiliation(s)
- Qianjin Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wujian Lin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Senlin Chai
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, USA
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Yong Hu
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Sheung Wai Law
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
4
|
Tibúrcio FC, Leite APS, Muller KS, Pinto CG, Valentino E, Castro PATDS, Matsumura CY, de Carvalho SF, Matheus SMM. Effects of Nandrolone Decanoate on Skeletal Muscle and Neuromuscular Junction of Sedentary and Exercised Rats. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1940. [PMID: 38003989 PMCID: PMC10673219 DOI: 10.3390/medicina59111940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023]
Abstract
Background and Objectives: Nandrolone decanoate (ND) is the most widely used among the anabolic androgenic steroids (AAS), synthetic substances derived from testosterone, to improve muscular and health gains associated with exercises. The AAS leads to physical performance enhancement and presents anti-aging properties, but its abuse is associated with several adverse effects. Supraphysiological doses of AAS with or without physical exercise can cause morphological and functional alterations in neuromuscular interactions. This study aims to investigate the effects of ND supraphysiological doses in neuromuscular interactions, focusing on the soleus muscle and its neuromuscular junctions (NMJs) in rats, associated or not with physical exercise. Materials and Methods: Forty male Sprague Dawley rats were divided into four groups: sedentary and exercised groups, with or without ND at the dose of 10 mg/kg/week. The animals were treated for eight weeks, with intramuscular injections, and the soleus muscle was collected for morphological analyses. Results: The supraphysiological doses of ND in the sedentary group caused muscle degeneration, evidenced by splitting fibers, clusters of small fibers, irregular myofibrils, altered sarcomeres, an increase in collagen deposition and in the number of type I muscle fibers (slow-twitch) and central nuclei, as well as a decrease in fibers with peripheral nuclei. On the other hand, in the ND exercise group, there was an increase in the NMJs diameter with scattering of its acetylcholine receptors, although no major morphological changes were found in the skeletal muscle. Thus, the alterations caused by ND in sedentary rats were partially reversed by physical exercise. Conclusions: The supraphysiological ND exposure in the sedentary rats promoted an increase in muscle oxidative pattern and adverse morphological alterations in skeletal muscle, resulting from damage or post-injury regeneration. In the ND-exercised rats, no major morphological changes were found. Thus, the physical exercise partially reversed the alterations caused by ND in sedentary rats.
Collapse
Affiliation(s)
- Felipe Cantore Tibúrcio
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Ana Paula Silveira Leite
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Kevin Silva Muller
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Carina Guidi Pinto
- Medical School, São Paulo State University (Unesp), Botucatu 18618-687, SP, Brazil; (F.C.T.); (A.P.S.L.); (K.S.M.); (C.G.P.)
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Erick Valentino
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Paula Aiello Tomé de Souza Castro
- Department of Physical Therapy, Center for Biological and Health Sciences, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Cintia Yuri Matsumura
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| | - Shelly Favorito de Carvalho
- Electron Microscopy Center, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil;
| | - Selma Maria Michelin Matheus
- Division of Anatomy, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (Unesp), Botucatu 18618-689, SP, Brazil; (C.Y.M.)
| |
Collapse
|
5
|
Jones EJ, Chiou S, Atherton PJ, Phillips BE, Piasecki M. Ageing and exercise-induced motor unit remodelling. J Physiol 2022; 600:1839-1849. [PMID: 35278221 PMCID: PMC9314090 DOI: 10.1113/jp281726] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/14/2022] [Indexed: 11/08/2022] Open
Abstract
A motor unit (MU) comprises the neuron cell body, its corresponding axon and each of the muscle fibres it innervates. Many studies highlight age-related reductions in the number of MUs, yet the ability of a MU to undergo remodelling and to expand to rescue denervated muscle fibres is also a defining feature of MU plasticity. Remodelling of MUs involves two coordinated processes: (i) axonal sprouting and new branching growth from adjacent surviving neurons, and (ii) the formation of key structures around the neuromuscular junction to resume muscle-nerve communication. These processes rely on neurotrophins and coordinated signalling in muscle-nerve interactions. To date, several neurotrophins have attracted focus in animal models, including brain-derived neurotrophic factor and insulin-like growth factors I and II. Exercise in older age has demonstrated benefits in multiple physiological systems including skeletal muscle, yet evidence suggests this may also extend to peripheral MU remodelling. There is, however, a lack of research in humans due to methodological limitations which are easily surmountable in animal models. To improve mechanistic insight of the effects of exercise on MU remodelling with advancing age, future research should focus on combining methodological approaches to explore the in vivo physiological function of the MU alongside alterations of the localised molecular environment.
Collapse
Affiliation(s)
- Eleanor J. Jones
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Shin‐Yi Chiou
- School of SportExercise, and Rehabilitation Sciences, MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research, Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Philip J. Atherton
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Bethan E. Phillips
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| | - Mathew Piasecki
- Centre of Metabolism, Ageing & Physiology (COMAP), MRC–Versus Arthritis Centre of Excellence for Musculoskeletal Ageing ResearchNottingham NIHR Biomedical Research CentreSchool of MedicineUniversity of NottinghamNottinghamUK
| |
Collapse
|
6
|
Deschenes MR, Flannery R, Hawbaker A, Patek L, Mifsud M. Adaptive Remodeling of the Neuromuscular Junction with Aging. Cells 2022; 11:cells11071150. [PMID: 35406714 PMCID: PMC8997609 DOI: 10.3390/cells11071150] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with gradual degeneration, in mass and function, of the neuromuscular system. This process, referred to as “sarcopenia”, is considered a disease by itself, and it has been linked to a number of other serious maladies such as type II diabetes, osteoporosis, arthritis, cardiovascular disease, and even dementia. While the molecular causes of sarcopenia remain to be fully elucidated, recent findings have implicated the neuromuscular junction (NMJ) as being an important locus in the development and progression of that malady. This synapse, which connects motor neurons to the muscle fibers that they innervate, has been found to degenerate with age, contributing both to senescent-related declines in muscle mass and function. The NMJ also shows plasticity in response to a number of neuromuscular diseases such as amyotrophic lateral sclerosis (ALS) and Lambert-Eaton myasthenic syndrome (LEMS). Here, the structural and functional degradation of the NMJ associated with aging and disease is described, along with the measures that might be taken to effectively mitigate, if not fully prevent, that degeneration.
Collapse
|
7
|
Wang M, Kang L, Wang Y, Yang B, Zhang C, Lu Y, Kang L. Microglia in motor neuron disease: Signaling evidence from last 10 years. Dev Neurobiol 2022; 82:625-638. [PMID: 36309345 PMCID: PMC9828749 DOI: 10.1002/dneu.22905] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/09/2022] [Accepted: 10/19/2022] [Indexed: 01/30/2023]
Abstract
Motor neuron disease (MND), including amyotrophic lateral sclerosis, spinal muscular atrophy and others, involved the upper or lower motor neurons selective loss, is characterized by neurodegeneration and neuroinflammation, in conjunction with microglia. We summarized that pathways and key mediators are associated with microglia, such as fractalkine signaling, purinergic signaling, NF-κB signaling, p38 MAPK signaling, TREM2-APOE signaling, ROCK signaling, C1q signaling, and Ion channel, which are involved in the activation, proliferation, and inflammation of microglia. This review aims to identify the microglia-related molecular target and explore potential treatment strategies for MND based on that target.
Collapse
Affiliation(s)
- Min‐Jia Wang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Lu Kang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Yao‐Zheng Wang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Bi‐Ru Yang
- Department of Postpartum RehabilitationSichuan Jinxin Women & Children HospitalChengduChina
| | - Chun Zhang
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Yu‐Feng Lu
- School of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| | - Liang Kang
- Institute of Sports Medicine and HealthChengdu Sports UniversityChengduChina
| |
Collapse
|
8
|
Deschenes MR, Patek LG, Trebelhorn AM, High MC, Flannery RE. Juvenile Neuromuscular Systems Show Amplified Disturbance to Muscle Unloading. Front Physiol 2021; 12:754052. [PMID: 34759841 PMCID: PMC8573242 DOI: 10.3389/fphys.2021.754052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/27/2021] [Indexed: 11/21/2022] Open
Abstract
Muscle unloading results in severe disturbance in neuromuscular function. During juvenile stages of natural development, the neuromuscular system experiences a high degree of plasticity in function and structure. This study aimed to determine whether muscle unloading imposed during juvenile development would elicit more severe disruption in neuromuscular function than when imposed on fully developed, mature neuromuscular systems. Twenty juvenile (3 months old) and 20 mature (8 months old) rats were equally divided into unloaded and control groups yielding a total of four groups (N = 10/each). Following the 2 week intervention period, soleus muscles were surgically extracted and using an ex vivo muscle stimulation and recording system, were examined for neuromuscular function. The unloading protocol was found to have elicited significant (P ≤ 0.05) declines in whole muscle wet weight in both juvenile and mature muscles, but of a similar degree (P = 0.286). Results also showed that juvenile muscles displayed significantly greater decay in peak force due to unloading than mature muscles, such a finding was also made for specific tension or force/muscle mass. When examining neuromuscular efficiency, i.e., function of the neuromuscular junction, it again was noted that juvenile systems were more negatively affected by muscle unloading than mature systems. These results indicate that juvenile neuromuscular systems are more sensitive to the effects of unloading than mature ones, and that the primary locus of this developmental related difference is likely the neuromuscular junction as indicated by age-related differences in neuromuscular transmission efficiency.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology and Health Sciences, College of William & Mary, Williamsburg, VA, United States.,Program in Neuroscience, College of William & Mary, Williamsburg, VA, United States
| | - Leah G Patek
- Department of Kinesiology and Health Sciences, College of William & Mary, Williamsburg, VA, United States
| | - Audrey M Trebelhorn
- Department of Kinesiology and Health Sciences, College of William & Mary, Williamsburg, VA, United States
| | - Madeline C High
- Program in Neuroscience, College of William & Mary, Williamsburg, VA, United States
| | - Rachel E Flannery
- Department of Kinesiology and Health Sciences, College of William & Mary, Williamsburg, VA, United States
| |
Collapse
|
9
|
Burke SK, Fenton AI, Konokhova Y, Hepple RT. Variation in muscle and neuromuscular junction morphology between atrophy-resistant and atrophy-prone muscles supports failed re-innervation in aging muscle atrophy. Exp Gerontol 2021; 156:111613. [PMID: 34740815 DOI: 10.1016/j.exger.2021.111613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
In advanced age, there is an accelerated decline in skeletal muscle mass that appears to be secondary to repeated cycles of denervation-reinnervation and eventually, failed reinnervation. However, whether variation in reinnervation capacity explains why some muscles are less vulnerable to age-related atrophy has not been addressed. In this study we examined changes in neuromuscular junction (NMJ) morphology, fiber cross-sectional area (CSA) and fiber type, accumulation of severely atrophied myofibers, and expression of a marker of denervation in four muscles that exhibit differences in the degree of age-related atrophy and which span the extremes of fiber type composition in 8 mo old (8 M) and 34 mo old (34 M) male Fischer 344 Brown Norway F1 hybrid rats. Aging muscle atrophy was most pronounced in the fast twitch gastrocnemius (Gas; 25%) and similar between extensor digitorum longus (EDL) and slow-twitch soleus (Sol) muscle (14-15%), whereas the slow-twitch adductor longus (AL) increased in mass by 21% between 8 M and 34 M (P < 0.05 for all). Only the Sol exhibited significant alterations in fiber type with aging, and there was a decrease in fiber CSA in the Gas, EDL, and Sol (P < 0.05) with aging that was not seen in the AL. Muscles that atrophied had an increased fraction of severely atrophic myofibers (P < 0.05), but this was not observed in the AL. The Gas and EDL both demonstrated a similar degree of age-related remodeling of pre- and post-synaptic NMJ components. On the other hand, pre- and post-synaptic morphology underwent greater changes with aging in the AL, and many of these same morphological variables were already greater in the Sol vs AL at 8 M, suggesting the Sol had already undergone substantial remodeling and may be nearing its adaptive limits. Consistent with this idea, analysis of NMJ morphology in Sol from 3 M rats exhibited similar values as 8 M AL, and the Sol demonstrated greater expression of the denervation marker neural cell adhesion molecule (NCAM) compared to the AL at 34 M. Collectively, our results are consistent with NMJ remodeling capacity being finite with aging and that maintained remodeling potential confers atrophy protection in aging skeletal muscle by reducing the degree of persistent denervation.
Collapse
Affiliation(s)
- Sarah K Burke
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Andrew I Fenton
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Yana Konokhova
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Russell T Hepple
- Department of Physical Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Barbosa GK, Jacob CDS, Rodrigues MP, Rocha LC, Pimentel Neto J, Ciena AP. Morphological Changes in the Motor Endplate and in the Belly Muscle Induced by Previous Static Stretching to the Climbing Protocol. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 27:1-9. [PMID: 34294184 DOI: 10.1017/s1431927621012253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Static stretching provides benefits to the range of motion, modulates intramuscular connective tissue, and is incorporated into warm-up exercises. In this study, we present the effects in the motor endplate and belly muscle resulting from previous static stretching to climbing training. Twenty-four adult male Wistar rats were divided into four groups (n = 6 each): Sedentary (Sed), Climbing (Clb), Static stretching (Ss), and Static stretching prior to climbing (Ssc). The animals (Clb, Ss, and Ssc groups) were subjected to a training protocol 3×/week for 8 weeks, and the Ssc group was subjected to the Ss and Clb protocols in the same session. Samples from the animals were processed for immunostaining, histochemistry, and light microscopy. The Clb group presented a higher motor endplate; the Ss group presented no changes in the motor endplate; and the Ssc group demonstrated a higher compactness. We concluded that static stretching prior to the climbing protocol maintained the density of the motor endplate and increased the compactness of the neuromuscular junction structure. Also, there was a reduction in the myofibers’ diameter (Type I and IIa), an increase in myofibrillar densities (Type I and IIx, and total), and the reorganization of the myonuclei and the interstitium.
Collapse
Affiliation(s)
- Gabriela K Barbosa
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Carolina Dos S Jacob
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Mariana P Rodrigues
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Lara C Rocha
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Jurandyr Pimentel Neto
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| | - Adriano P Ciena
- Department of Physical Activity, Laboratory of Morphology and Physical Activity - LAMAF, Institute of Biosciences (IB), São Paulo State University - UNESP, Rio Claro13506-900, SP, Brazil
| |
Collapse
|
11
|
Barcellos N, Cechinel LR, de Meireles LCF, Lovatel GA, Bruch GE, Carregal VM, Massensini AR, Dalla Costa T, Pereira LO, Siqueira IR. Effects of exercise modalities on BDNF and IL-1β content in circulating total extracellular vesicles and particles obtained from aged rats. Exp Gerontol 2020; 142:111124. [DOI: 10.1016/j.exger.2020.111124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022]
|
12
|
Rocha LC, Jacob CDS, Barbosa GK, Pimentel Neto J, Krause Neto W, Gama EF, Ciena AP. Remodeling of the skeletal muscle and postsynaptic component after short-term joint immobilization and aquatic training. Histochem Cell Biol 2020; 154:621-628. [PMID: 32797254 DOI: 10.1007/s00418-020-01910-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2020] [Indexed: 12/16/2022]
Abstract
Joint immobilization is commonly used as a conservative treatment for osteoarticular and musculotendinous traumas. However, joint immobilization might elicit degenerative effects on the neuromuscular system and muscle atrophy. For this reason, the choice of strategies that mitigate these effects is essential in the post-immobilization period. Therefore, this study aimed to investigate the impact of aquatic training on the morphology of muscle fibers and motor endplates of the gastrocnemius muscle in the post-immobilization period. Male Wistar rats (90 days old) were divided into groups: Sedentary: no procedure; Immobilization: joint immobilization protocol (10 days); Immobilization/non-training: joint immobilization protocol (10 days) followed by four weeks without exercise intervention; Immobilization/training: joint immobilization protocol (10 days) and post-immobilization aquatic training (4 weeks). After the procedures, we quantified the cross-sectional area (CSA), volume and numerical density of different myofibers types, and total and stained area and perimeter of the motor endplate. We demonstrate the following main results: (a) short-term joint immobilization resulted in myofibers atrophy; however, we verified a small change in the postsynaptic component; (b) the period of inactivity after immobilization caused severe changes in the motor endplate (lower stained area, stained perimeter, total area, and total perimeter) and maintenance of muscle atrophy due to immobilization; (c) the prescription of post-immobilization exercise proved to be effective in restoring muscle morphology and inducing plasticity in the motor endplate. We conclude that short-term joint immobilization (10 days) results in atrophy type I and II myofibers, in addition to a decline in the total perimeter of the motor endplate. Besides, the post-immobilization period appears to be decisive in muscle and postsynaptic remodeling. Thus, aquatic training is effective in stimulating adjustments associated with muscle hypertrophy and plasticity of the motor endplate during the post-immobilization period.
Collapse
Affiliation(s)
- Lara Caetano Rocha
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Carolina Dos Santos Jacob
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Gabriela Klein Barbosa
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Jurandyr Pimentel Neto
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil
| | - Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Eliane Florencio Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Laboratory of Morphology and Physical Activity (LAMAF), Institute of Biosciences, São Paulo State University (UNESP), Avenue 24A, n 1515, Rio Claro, SP, 13506-900, Brazil.
| |
Collapse
|
13
|
Deschenes MR, Tufts HL, Oh J, Li S, Noronha AL, Adan MA. Effects of exercise training on neuromuscular junctions and their active zones in young and aged muscles. Neurobiol Aging 2020; 95:1-8. [PMID: 32739557 DOI: 10.1016/j.neurobiolaging.2020.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
Abstract
The neuromuscular junction (NMJ) connects the motor neuron with myofibers allowing muscle contraction. Both aging and increased activity result in NMJ remodeling. Here, the effects of exercise were examined in young and aged soleus muscles. Using immunofluorescent staining procedures, cellular and active zone components of the NMJ were quantified following a treadmill running program. Immunofluorescence was employed to determine myofiber profiles (size and type). Two-way analysis of variance procedures with main effects of age and treatment showed that when analyzing NMJs at the cellular level, significant (p ≤ 0.05) effects were identified for age, but not treatment. However, when examining subcellular active zones, effects for exercise, but not for age, were detected. Myofiber cross-sectional area showed that aging elicited atrophy and that among younger muscles endurance exercise training yielded decrements in myofiber size. Conversely, among aged muscles training elicited whole muscle and myofiber trends (p < 0.10) toward hypertrophy. Thus, different components of the neuromuscular system harbor unique sensitivities to various stimuli enabling proper adaptations to attain optimal function under differing conditions.
Collapse
Affiliation(s)
- Michael R Deschenes
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA; Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA.
| | - Hannah L Tufts
- Program in Neuroscience, College of William & Mary, Williamsburg, VA, USA
| | - Jeongeun Oh
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Shuhan Li
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Alexa L Noronha
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| | - Matthew A Adan
- Department of Kinesiology & Health Sciences, College of William & Mary, Williamsburg, VA, USA
| |
Collapse
|
14
|
Russ DW, Dimova K, Morris E, Pacheco M, Garvey SM, Scordilis SP. Dietary fish oil supplement induces age-specific contractile and proteomic responses in muscles of male rats. Lipids Health Dis 2020; 19:165. [PMID: 32646455 PMCID: PMC7350698 DOI: 10.1186/s12944-020-01333-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background Dietary fish oil (DFO) has been identified as a micronutrient supplement with the potential to improve musculoskeletal health in old age. Few data are available for effects of DFO on muscle contractility, despite the significant negative impact of muscle weakness on age-related health outcomes. Accordingly, the effects of a DFO intervention on the contractile function and proteomic profile of adult and aged in an animal model of aging were investigated. Methods This preliminary study evaluated 14 adult (8 months) and 12 aged (22 months) male, Sprague-Dawley rats consuming a DFO-supplemented diet or a control diet for 8 weeks (7 adult and 6 aged/dietary group). Animal weight, food intake and grip strength were assessed at the start and end of the FO intervention. In situ force and contractile properties were measured in the medial gastrocnemius muscle following the intervention and muscles were processed for 2-D gel electrophoresis and proteomic analysis via liquid chromatography with tandem mass spectrometry, confirmed by immunoblotting. Effects of age, diet and age x diet interaction were evaluated by 2-way ANOVA. Results A significant (P = 0.022) main effect for DFO to increase (~ 15%) muscle contractile force was observed, without changes in muscle mass. Proteomic analysis revealed a small number of proteins that differed across age and dietary groups at least 2-fold, most of which related to metabolism and oxidative stress. In seven of these proteins (creatine kinase, triosephosphate isomerase, pyruvate kinase, parvalbumin, beta-enolase, NADH dehydrogenase and Parkin7/DJ1), immunoblotting corroborated these findings. Parvalbumin showed only an effect of diet (increased with DFO) (P = 0.003). Significant age x diet interactions were observed in the other proteins, generally demonstrating increased expression in adult and decreased expression aged rats consuming DFO (all P > 0.011). However, correlational analyses revealed no significant associations between contractile parameters and protein abundances. Conclusions Results of this preliminary study support the hypothesis that DFO can enhance musculoskeletal health in adult and aged muscles, given the observed improvement in contractile function. The fish oil supplement also alters protein expression in an age-specific manner, but the relationship between proteomic and contractile responses remains unclear. Further investigation to better understand the magnitude and mechanisms muscular effects of DFO in aged populations is warranted.
Collapse
Affiliation(s)
- David W Russ
- School of Physical Therapy & Rehabilitation Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, MDC77, USA. .,Ohio Musculoskeletal and Neurological Institute (OMNI), Heritage College of Osteopathic Medicine, Athens, OH, USA.
| | - Kalina Dimova
- Center for Proteomics, Smith College, Northampton, MA, USA.,Program in Biochemistry, Smith College, Northampton, MA, USA
| | - Emily Morris
- Program in Biochemistry, Smith College, Northampton, MA, USA
| | | | - Sean M Garvey
- Abbott Nutrition R&D, 3300 Stelzer Road, Columbus, OH, USA.,Present address: BIO-CAT, 9117 3 Notch Rd, Troy, VA, 22974, USA
| | - Stylianos P Scordilis
- Center for Proteomics, Smith College, Northampton, MA, USA.,Program in Biochemistry, Smith College, Northampton, MA, USA
| |
Collapse
|
15
|
Gorzi A, Jamshidi F, Rahmani A, Krause Neto W. Muscle gene expression of CGRP-α, CGRP receptor, nAchR-β, and GDNF in response to different endurance training protocols of Wistar rats. Mol Biol Rep 2020; 47:5305-5314. [PMID: 32621116 DOI: 10.1007/s11033-020-05610-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/20/2020] [Indexed: 12/24/2022]
Abstract
The neuromuscular junction underwent adaptations to meet the demands of muscles following increased muscle activity. This study aimed to investigate the effects of high-intensity interval training (HIIT), endurance training (END), and mixed interval training (MIX) on the gene expression of the calcitonin gene-related peptide-α (CGRP-α), CGRP receptor, nicotinic acetylcholine receptors (nAchR)-β and glial-derived neurotrophic factor (GDNF) among different muscle types. Male Wistar rats were randomly divided into four groups: Control (n = 8), END (n = 8), HIIT (n = 8), and MIX (n = 8). The animals run each training protocol for 8 weeks (five sessions/week). Forty-eight hours after the last training session, the muscles gastrocnemius and soleus were excised under the sterilized situation. After collection, the material was prepared for RNA extraction, Reverse Transcriptase reaction, and qPCR assay. The HIIT training up-regulated the CGRP-α (p < 0.01), CGRP-Rec (p < 0.01), and GDNF (p < 0.01) in soleus as well as the nAchR-β (p < 0.01) and GDNF (p < 0.01) in gastrocnemius muscles. END training down-regulated the gene expression of CGRP-α (p < 0.01), and nAchR-β (p < 0.01) in gastrocnemius but up-regulated nAchR-β (p = 0.037) in soleus and GDNF (p < 0.01) in gastrocnemius muscles. MIX training did not show any significant up or down-regulation. The endurance performance of HIIT and MIX groups was higher than the END group (p < 0.01). All studied genes up-regulated by HIIT training in a muscle type-specific manner. It seems that the improvement of some synaptic indices induced by HIIT resulted in the improvement of endurance performance.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/genetics
- Calcitonin Gene-Related Peptide/metabolism
- Glial Cell Line-Derived Neurotrophic Factor/genetics
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Male
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/physiology
- Physical Conditioning, Animal/methods
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/metabolism
Collapse
Affiliation(s)
- Ali Gorzi
- Department of Sport Sciences, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran.
| | - Firooz Jamshidi
- Department of Sport Sciences, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran
| | - Ahmad Rahmani
- Department of Sport Sciences, University of Zanjan, P.O. Box: 45371-38791, Zanjan, Iran
| | - Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, Universidade São Judas Tadeu, São Paulo, Brazil
| |
Collapse
|
16
|
Boaretto ML, de Andrade BZ, Maciel JIHN, Oliveira MDC, de Oliveira CMT, Guimarães ATB, Torrejais MM, Schneider SCS, Ribeiro LDFC, Bertolini GRF. Alterations in neuromuscular junctions and oxidative stress of the soleus muscle of obese Wistar rats caused by vibratory platform training. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:570-578. [PMID: 33265086 PMCID: PMC7716688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES evaluate the effects that whole-body vibration (WBV) causes on the neuromuscular junctions and oxidative stress of the soleus muscle of obese Wistar rats. METHODS 32 male Wistar rats were used, 16 of which were obesity induced by monosodium glutamate, randomized into four groups: control (GC), control with WBV (GCP), obese (GO) and obese with WBV (GOP). At the 70 days old, the training on WBV was started, performed 3 times a week, during 8 consecutive weeks. At the 130 days old, the animals were euthanized and the soleus muscles were collected. RESULTS Regarding the analysis of the neuromuscular junctions, the obese groups had lower mean size when compared to the control groups. On the other hand, the WBV presented higher averages when compared to the groups that did not perform the training. Regarding the oxidative stress, for the lipid peroxidation there was a significant difference between obese and non-obese animals, however, there was no difference between the animals WBV and those who did not. CONCLUSION WBV promotes beneficial changes such as increased measurements of the structures of the neuromuscular junctions, but is not able to promote changes in the concentration of the cholinesterase enzyme in the synaptic cleft.
Collapse
Affiliation(s)
- Mariana Laís Boaretto
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Bárbara Zanardini de Andrade
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Jhyslayne Ignácia Hoff Nunes Maciel
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Mylena de Campos Oliveira
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Camila Maria Toigo de Oliveira
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Ana Tereza Bittencourt Guimarães
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Márcia Miranda Torrejais
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Sara Cristina Sagae Schneider
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Lucinéia de Fátima Chasko Ribeiro
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil
| | - Gladson Ricardo Flor Bertolini
- Laboratório de Estudo de Lesões e Recursos Fisioterapêuticos e Laboratório de Biologia Estrutural e Funcional, da Universidade Estadual do Oeste do Paraná (UNIOESTE), Cascavel, Paraná, Brasil,Corresponding author: Gladson Ricardo Flor Bertolini, Universidade Estadual do Oeste do Paraná, Campus Cascavel, Centro de Ciências Biológicas e da Saúde, Universitária St, 2069 – 85819110 Cascavel, PR – Brasil E-mail:
| |
Collapse
|
17
|
Peretti AL, Kakihata CMM, Wutzke MLS, Torrejais MM, Ribeiro LDFC, Bertolini GRF. Effects of Mechanical Vibration in Neuromuscular Junctions and Fiber Type of the Soleus Muscle of Oophorectomized Wistar Rats. Rev Bras Ortop 2019; 54:572-578. [PMID: 31686713 PMCID: PMC6819164 DOI: 10.1055/s-0039-1697016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 07/10/2018] [Indexed: 01/18/2023] Open
Abstract
Objective To evaluate the neuromuscular junctions (NMJs) and the type of muscle fibers of the soleus muscle of oophorectomized Wistar rats submitted to a mechanical vibration protocol. Methods A total of 36 randomized rats were used in the pseudo-oophorectomy without and with treatment and oophorectomy without and with treatment groups. The treatment was performed with a vibratory platform, frequency of 60 Hz and duration of 10 minutes, 3 times a week, for 4 weeks. At the end of the intervention period, the animals were euthanized and the soleus muscles were collected and processed for analysis of the NMJs and fiber type. The data were analyzed for normality by the Shapiro-Wilk test and analysis of the 3-way variance using the post-hoc Tukey test, when necessary, and a significance level of 5% was adopted. Results In the analysis of the NMJs, the oophorectomy group presented a smaller area than the pseudo-oophorectomy group, but the oophorectomy with treatment group was equal to the pseudo-oophorectomy with treatment group. For the larger diameter of the joints, the oophorectomy group was also different from the others; however, the oophorectomy and treatment animals were larger than those of the pseudo-oophorectomy and treatment group. There was no distinction of the types of fibers, with the muscle presenting fibers of the oxidative type. Conclusion Hormonal deprivation reduced the area and diameter of the NMJs, with reversion of this process in the groups that underwent vibratory platform treatment for 4 weeks, and both surgery and treatment did not influence the type of soleus muscle fiber, composed of oxidative fibers.
Collapse
Affiliation(s)
- Ana Luiza Peretti
- Universidade Estadual do Oeste do Paraná - Campus Cascavel, Cascavel, PR, Brasil
| | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Laurin JL, Reid JJ, Lawrence MM, Miller BF. Long-term aerobic exercise preserves muscle mass and function with age. CURRENT OPINION IN PHYSIOLOGY 2019. [DOI: 10.1016/j.cophys.2019.04.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Heikkinen A, Härönen H, Norman O, Pihlajaniemi T. Collagen XIII and Other ECM Components in the Assembly and Disease of the Neuromuscular Junction. Anat Rec (Hoboken) 2019; 303:1653-1663. [PMID: 30768864 DOI: 10.1002/ar.24092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/17/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
Alongside playing structural roles, the extracellular matrix (ECM) acts as an interaction platform for cellular homeostasis, organ development, and maintenance. The necessity of the ECM is highlighted by the diverse, sometimes very serious diseases that stem from defects in its components. The neuromuscular junction (NMJ) is a large peripheral motor synapse differing from its central counterparts through the ECM included at the synaptic cleft. Such synaptic basal lamina (BL) is specialized to support NMJ establishment, differentiation, maturation, stabilization, and function and diverges in molecular composition from the extrasynaptic ECM. Mutations, toxins, and autoantibodies may compromise NMJ integrity and function, thereby leading to congenital myasthenic syndromes (CMSs), poisoning, and autoimmune diseases, respectively, and all these conditions may involve synaptic ECM molecules. With neurotransmission degraded or blocked, muscle function is impaired or even prevented. At worst, this can be fatal. The article reviews the synaptic BL composition required for assembly and function of the NMJ molecular machinery through the lens of studies primarily with mouse models but also with human patients. In-depth focus is given to collagen XIII, a postsynaptic-membrane-spanning but also shed ECM protein that in recent years has been revealed to be a significant component for the NMJ. Its deficiency in humans causes CMS, and autoantibodies against it have been recognized in autoimmune myasthenia gravis. Mouse models have exposed numerous details that appear to recapitulate human NMJ phenotypes relatively faithfully and thereby can be readily used to generate information necessary for understanding and ultimately treating human diseases. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heli Härönen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Oula Norman
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Choi YJ, Hee Kim Y, Bae GE, Yu JH, Yoon SZ, Kang HW, Lee KS, Kim JH, Lee YS. Relationship between the muscle relaxation effect and body muscle mass measured using bioelectrical impedance analysis: A nonrandomized controlled trial. J Int Med Res 2019; 47:1521-1532. [PMID: 30719949 PMCID: PMC6460603 DOI: 10.1177/0300060518822197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Objective The dose of neuromuscular blocking drugs is commonly based on body weight, but using muscle mass might be more effective. This study investigated the relationship between the effect of neuromuscular blocking drugs and muscle mass measured using bioelectrical impedance analysis. Methods Patients who were scheduled for elective surgery using a muscle relaxant were screened for inclusion in this study. Under intravenous anaesthesia, 12 mg or 9 mg of rocuronium was administered to males and females, respectively; and the maximal relaxation effect of T1 was measured using a TOF-Watch-SX® acceleromyograph. Results This study enrolled 40 patients; 20 males and 20 females. For both sexes, the maximal relaxation effect of T1 did not correlate with the body weight-based dose of neuromuscular blocking drugs (males, r2 = 0.12; females, r2 = 0.26). Instead, it correlated with the dose based on bioelectrical impedance analysis-measured muscle mass when injected with the same dose of rocuronium (males, r2 = 0.78, female, r2 = 0.82). Conclusions This study showed that the muscle relaxation effect of rocuronium was correlated with muscle mass and did not correlate with body weight when using the same dose. Therefore, a muscle mass-based dose of neuromuscular blocking drugs is recommended.
Collapse
Affiliation(s)
- Yoon-Ji Choi
- 1 Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yun Hee Kim
- 1 Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Go Eun Bae
- 2 Maypure Clinic, Uijeongbu, Republic of Korea
| | - Joon Ho Yu
- 3 Department of Anaesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Seung Zhoo Yoon
- 3 Department of Anaesthesiology and Pain Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Hee Won Kang
- 1 Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Kuen Su Lee
- 1 Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Jae-Hwan Kim
- 1 Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yoon-Sook Lee
- 1 Department of Anaesthesiology and Pain Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| |
Collapse
|
22
|
Xie F, Zhang F, Min S, Chen J, Yang J, Wang X. Glial cell line-derived neurotrophic factor (GDNF) attenuates the peripheral neuromuscular dysfunction without inhibiting the activation of spinal microglia/monocyte. BMC Geriatr 2018; 18:110. [PMID: 29743034 PMCID: PMC5944173 DOI: 10.1186/s12877-018-0796-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Background Peripheral neuromuscular dysfunctions were found in elderly individuals, and spinal microglia/monocyte plays an important role on this process. This study aims to test whether the glial cell line-derived neurotrophic factor (GDNF) could attenuate age-related neuromuscular dysfunction by inhibiting the activation of spinal microglia/monocyte. Methods Male Sprague-Dawley rats were divided into an adult group and an aged group. The aged rats were intrathecally injected with normal saline (NS) and GDNF. All the rats were harvested 5 days after each injection. The muscular function was tested by compound muscle action potential, and the activation of microglia/monocyte was detected by immunofluorescence staining; cytokines were assayed by enzyme-linked immunosorbent assay; the expression level of GDNF and its known receptor GFR-α in the spinal cord, the expression level of neuregulin-1 (NRG-1) in the sciatic nerve, and the expression level of γ- and α7- ε-nicotinic acetylcholine receptors in the tibialis anterior muscle were measured by western blotting. Results The activated microglia/monocyte was found in the aged rats compared to the adult rats. The aged rats showed a significant neuromuscular dysfunction and cytokine release as well as increased expression of γ- and α7-nAChR. The protein expression of GDNF, GFR-α, and NRG-1 in the aged rats were significantly lower than that in the adult rats. However, the exogenous injection of GDNF could alleviate the neuromuscular dysfunction but not inhibit the activation of spinal microglia/monocyte. Furthermore, the levels of GFR-α and NRG-1 also increased after GDNF treatment. Conclusion The GDNF could attenuate the age-related peripheral neuromuscular dysfunction without inhibiting the activation of microglia/monocyte in the spinal cord.
Collapse
Affiliation(s)
- Fei Xie
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Fan Zhang
- Department of Anesthesiology, the People's Hospital of Jianyang City, Chengdu, Sichuan, China
| | - Su Min
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China.
| | - Jingyuan Chen
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Jun Yang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| | - Xin Wang
- Department of Anesthesiology, the First Affiliated Hospital of Chongqing Medical University, Friendship Road 1#, Yuan Jia Gang, Chongqing, 400016, China
| |
Collapse
|
23
|
Tieland M, Trouwborst I, Clark BC. Skeletal muscle performance and ageing. J Cachexia Sarcopenia Muscle 2018; 9:3-19. [PMID: 29151281 PMCID: PMC5803609 DOI: 10.1002/jcsm.12238] [Citation(s) in RCA: 467] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 02/06/2023] Open
Abstract
The world population is ageing rapidly. As society ages, the incidence of physical limitations is dramatically increasing, which reduces the quality of life and increases healthcare expenditures. In western society, ~30% of the population over 55 years is confronted with moderate or severe physical limitations. These physical limitations increase the risk of falls, institutionalization, co-morbidity, and premature death. An important cause of physical limitations is the age-related loss of skeletal muscle mass, also referred to as sarcopenia. Emerging evidence, however, clearly shows that the decline in skeletal muscle mass is not the sole contributor to the decline in physical performance. For instance, the loss of muscle strength is also a strong contributor to reduced physical performance in the elderly. In addition, there is ample data to suggest that motor coordination, excitation-contraction coupling, skeletal integrity, and other factors related to the nervous, muscular, and skeletal systems are critically important for physical performance in the elderly. To better understand the loss of skeletal muscle performance with ageing, we aim to provide a broad overview on the underlying mechanisms associated with elderly skeletal muscle performance. We start with a system level discussion and continue with a discussion on the influence of lifestyle, biological, and psychosocial factors on elderly skeletal muscle performance. Developing a broad understanding of the many factors affecting elderly skeletal muscle performance has major implications for scientists, clinicians, and health professionals who are developing therapeutic interventions aiming to enhance muscle function and/or prevent mobility and physical limitations and, as such, support healthy ageing.
Collapse
Affiliation(s)
- Michael Tieland
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Inez Trouwborst
- Faculty of Sports and NutritionAmsterdam University of Applied SciencesDr. Meurerlaan 81067 SMAmsterdamthe Netherlands
| | - Brian C. Clark
- Ohio Musculoskeletal and Neurological Institute (OMNI)Ohio University250 Irvine HallAthensOH 45701USA
- Department of Biomedical SciencesOhio UniversityAthensOH 45701USA
- Department of Geriatric MedicineOhio UniversityAthensOH 45701USA
| |
Collapse
|
24
|
Abstract
Age-dependent declines in muscle function are observed across species. The loss of mobility resulting from the decline in muscle function represents an important health issue and a key determinant of quality of life for the elderly. It is believed that changes in the structure and function of the neuromuscular junction are important contributors to the observed declines in motor function with increased age. Numerous studies indicate that the aging muscle is an important contributor to the deterioration of the neuromuscular junction but the cellular and molecular mechanisms driving the degeneration of the synapse remain incompletely described. Importantly, growing data from both animal models and humans indicate that exercise can rejuvenate the neuromuscular junction and improve motor function. In this review we will focus on the role of muscle-derived neurotrophin signaling in the rejuvenation of the aged neuromuscular junction in response to exercise.
Collapse
Affiliation(s)
- Tabita Kreko-Pierce
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| | - Benjamin A Eaton
- Department of Cellular and Integrative Physiology, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA.,Barshoph Institute of Longevity and Aging Studies, University of Texas Health Sciences Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
25
|
Willadt S, Nash M, Slater C. Age-related changes in the structure and function of mammalian neuromuscular junctions. Ann N Y Acad Sci 2017; 1412:41-53. [PMID: 29291259 DOI: 10.1111/nyas.13521] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/07/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
Abstract
As mammals age, their neuromuscular junctions (NMJs) change their form, with an increasingly complex system of axonal branches innervating increasingly fragmented regions of postsynaptic differentiation. It has been suggested that this remodeling is associated with impairment of neuromuscular transmission and that this contributes to age-related muscle weakness in mammals, including humans. Here, we review previous work on NMJ aging, most of which has focused on either structure or function, as well as a new study aimed at seeking correlation between the structure and function of individual NMJs. While it is clear that extensive structural changes occur as part of the aging process, it is much less certain how, if at all, these are correlated with an impairment of function. This leaves open the question of whether loss of NMJ function is a significant cause of age-related muscle weakness.
Collapse
Affiliation(s)
- Silvia Willadt
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Mark Nash
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Clarke Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
26
|
Krause Neto W, Silva WDA, Ciena AP, de Souza RR, Anaruma CA, Gama EF. Aging Induces Changes in the Somatic Nerve and Postsynaptic Component without Any Alterations in Skeletal Muscles Morphology and Capacity to Carry Load of Wistar Rats. Front Neurosci 2017; 11:688. [PMID: 29326543 PMCID: PMC5741656 DOI: 10.3389/fnins.2017.00688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to analyze the morphology of the peripheral nerve, postsynaptic compartment, skeletal muscles and weight-bearing capacity of Wistar rats at specific ages. Twenty rats were divided into groups: 10 months-old (ADULT) and 24 months-old (OLD). After euthanasia, we prepared and analyzed the tibial nerve using transmission electron microscopy and the soleus and plantaris muscles for cytofluorescence and histochemistry. For the comparison of the results between groups we used dependent and independent Student's t-test with level of significance set at p ≤ 0.05. For the tibial nerve, the OLD group presented the following alterations compared to the ADULT group: larger area and diameter of both myelinated fibers and axons, smaller area occupied by myelinated and unmyelinated axons, lower numerical density of myelinated fibers, and fewer myelinated fibers with normal morphology. Both aged soleus and plantaris end-plate showed greater total perimeter, stained perimeter, total area and stained area compared to ADULT group (p < 0.05). Yet, aged soleus end-plate presented greater dispersion than ADULT samples (p < 0.05). For the morphology of soleus and plantaris muscles, density of the interstitial volume was greater in the OLD group (p < 0.05). No statistical difference was found between groups in the weight-bearing tests. The results of the present study demonstrated that the aging process induces changes in the peripheral nerve and postsynaptic compartment without any change in skeletal muscles and ability to carry load in Wistar rats.
Collapse
Affiliation(s)
- Walter Krause Neto
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Wellington de Assis Silva
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Adriano P Ciena
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Romeu R de Souza
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| | - Carlos A Anaruma
- Laboratory of Morphology and Physical Activity, Department of Physical Education, São Paulo State University, Rio Claro, Brazil
| | - Eliane F Gama
- Laboratory of Morphoquantitative Studies and Immunohistochemistry, Department of Physical Education, São Judas Tadeu University, São Paulo, Brazil
| |
Collapse
|
27
|
Krause Neto W, de Assis Silva W, Ciena AP, Anaruma CA, Gama EF. Divergent effects of resistance training and anabolic steroid on the postsynaptic region of different skeletal muscles of aged rats. Exp Gerontol 2017; 98:80-90. [PMID: 28811140 DOI: 10.1016/j.exger.2017.08.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 02/01/2023]
Abstract
This study aimed to analyze the effects of resistance training associated with testosterone administration in the neuromuscular junction (NMJ) postsynaptic region of different skeletal muscle types of aged rats. Wistar rats were divided into: SEI - 20-months-old control, SEF - 24-months-old control, T - 20-months-old with testosterone, S - 20-months-old resistance trained and ST - 20-months-old with resistance training associated with testosterone propionate. All groups were submitted to familiarization and maximum load carrying testing (MLCT). The MLCT was applied before and after the resistance training (RT) period. RT (6-8×/session with progressive loads of 50 to 100%, 3×/week and 120s interval) was performed in ladder climbing for 15weeks. The administration of testosterone propionate was performed 2×/week (10mg/kg/body weight). After euthanize, soleus and plantaris muscles were removed and prepared for histochemistry and cytofluorescence. T, S and ST significantly increased their maximum carrying load capacity compared to SEI and SEF (p<0.05). For soleus postsynaptic region, ST had lower total and stained area than SEF (p<0.05). For plantaris, the postsynaptic component of T was statistically larger than SEI (p<0.05). For soleus histochemistry, T, S and ST groups showed the same magnitude of type I myofibers hypertrophy, thus statistically different from SEI and SEF (p<0.05). The cross-sectional area of the type IIa myofibers of the ST was larger than SEF (p<0.05). The volume density of type I myofibers show to be lower in ST than SEI (p<0.05). As for type IIa myofibers, ST increased Vv [type IIa] compared to SEI and SEF (p<0.05). For plantaris, T significantly hypertrophied type I myofibers compared to SEI and SEF (p<0.05). S and ST demonstrated significant increases of type I myofibers compared to SEI and SEF (p<0.05). As for type IIx myofibers, both S and ST showed myofibers larger than SEI (p<0.05). However, only the ST had significant difference compared to SEF (p<0.05). In conclusion, both therapies, alone or combined, have little effect on the morphology of the NMJ postsynaptic region of distinct muscles. Moreover, the three therapies are potentially stimulating for strength gains and muscle hypertrophy.
Collapse
Affiliation(s)
- Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil.
| | - Wellington de Assis Silva
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil
| | - Adriano Polican Ciena
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Carlos Alberto Anaruma
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - Eliane Florencio Gama
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu University, São Paulo, SP, Brazil
| |
Collapse
|
28
|
Navas-Enamorado I, Bernier M, Brea-Calvo G, de Cabo R. Influence of anaerobic and aerobic exercise on age-related pathways in skeletal muscle. Ageing Res Rev 2017; 37:39-52. [PMID: 28487241 PMCID: PMC5549001 DOI: 10.1016/j.arr.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Ignacio Navas-Enamorado
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla 41013, Spain
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
29
|
Krause Neto W, Silva WDA, Ciena AP, Nucci RAB, Anaruma CA, Gama EF. Effects of Strength Training and Anabolic Steroid in the Peripheral Nerve and Skeletal Muscle Morphology of Aged Rats. Front Aging Neurosci 2017; 9:205. [PMID: 28713262 PMCID: PMC5491539 DOI: 10.3389/fnagi.2017.00205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/07/2017] [Indexed: 01/12/2023] Open
Abstract
Thirty male 20-month-old Wistar rats were divided into groups: IC—initial control (n = 6), FC—final control (n = 6), AC—anabolic hormone control (n = 6), ST—strength trained (n = 6) and STA—strength trained with anabolic hormone (n = 6). All groups were submitted to adaptation, familiarization and maximum load carrying test (MLCT). Strength training (6–8×/session with loads of 50%–100% MLCT, 3×/week and pause of 120 s) was performed in ladder climbing (LC) for 15 weeks. The administration of testosterone propionate (TP) was performed 2×/week (10 mg/kg) in animals in the AC and STA groups. After the experimental period, animals were euthanized and the tibial nerve and plantaris muscle removed and prepared for electron transmission and histochemistry. To compare the groups we used one-way ANOVA (post hoc Bonferroni), student’s t-tests for pre vs. post (dependent and independent variables) comparisons and significance level set at p ≤ 0.05. The following significant results were found: (a) aging decreased the number of myelinated axon fibers; (b) use of isolated TP increased the diameter of myelinated fibers, along with increased thickness of myelin sheath; (c) ST increased area of myelinated and unmyelinated fibers, together with the myelin sheath. These changes made it possible to increase the area occupied by myelinated fibers keeping their quantity and also reduce the interstitial space; and (d) association of anabolic steroid and ST increased the area of unmyelinated axons and thickness of the myelin sheath. Compared to ST, both strategies have similar results. However, Schwann cells increased significantly only in this strategy.
Collapse
Affiliation(s)
- Walter Krause Neto
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu UniversitySão Paulo, Brazil
| | - Wellington de A Silva
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu UniversitySão Paulo, Brazil
| | - Adriano P Ciena
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho"Rio Claro, Brazil
| | - Ricardo Aparecido Baptista Nucci
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu UniversitySão Paulo, Brazil
| | - Carlos A Anaruma
- Department of Physical Education, Laboratory of Morphology and Physical Activity, São Paulo State University "Júlio de Mesquita Filho"Rio Claro, Brazil
| | - Eliane F Gama
- Department of Physical Education, Laboratory of Morphoquantitative Studies and Immunohistochemistry, São Judas Tadeu UniversitySão Paulo, Brazil
| |
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Denervation is a hallmark of age-related and other types of muscle wasting. This review focuses on recent insights and current viewpoints regarding the mechanisms and clinical relevance of maintaining the neuromuscular junction to counteract muscle wasting resulting from aging or neural disease/damage. RECENT FINDINGS Activity-dependent regulation of autophagy, the agrin-muscle specific kinase-Lrp4 signaling axis, and sympathetic modulation are principal mechanisms involved in stabilizing the neuromuscular junction. These findings are derived from several animal models and were largely confirmed by human gene expression analysis as well as insights from rare neuromuscular diseases such as amyotrophic lateral sclerosis and congenital myasthenic syndromes. Based on these insights, agrin-derived fragments are currently being evaluated as biomarkers for age-related muscle wasting. Tuning of autophagy, of the agrin pathway, and of sympathetic input are being studied as clinical treatment of muscle wasting disorders. SUMMARY Basic research has revealed that maintenance of neuromuscular junctions and a few signaling pathways are important in the context of age-dependent and other forms of muscle wasting. These findings have recently started to enter clinical practice, but further research needs to substantiate and refine our knowledge.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Interdisciplinary Center for Neuroscience, University of Heidelberg, Germany
- Institute of Molecular and Cell Biology, Mannheim University of Applied Science, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Germany
| | - Michael R. Deschenes
- Department of Kinesiology and Health Sciences, The College of William and Mary, Williamsburg, VA, USA
| | - Marco Sandri
- Department of Biomedical Science, University of Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| |
Collapse
|