1
|
Berns MP, Nunez GM, Zhang X, Chavan A, Zemlianova K, Mowery TM, Yao JD. Auditory decision-making deficits after permanent noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614535. [PMID: 39386692 PMCID: PMC11463679 DOI: 10.1101/2024.09.23.614535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we tested whether a specific sensory deficit, NIHL, can directly impair auditory cognitive function. Gerbils were trained to perform an auditory decision-making task that involves discriminating between slow and fast presentation rates of amplitude-modulated (AM) noise. Decision-making task performance was assessed across pre-versus post-NIHL sessions within the same gerbils. A single exposure session (2 hours) to loud broadband noise (120 dB SPL) produced permanent NIHL with elevated threshold shifts in auditory brainstem responses (ABRs). Following NIHL, decision-making task performance was tested at sensation levels comparable to those prior to noise exposure in all animals. Our findings demonstrate NIHL diminished perceptual acuity, reduced attentional focus, altered choice bias, and slowed down evidence accumulation speed. Finally, video-tracking analysis of motor behavior during task performance demonstrates that NIHL can impact sensory-guided decision-based motor execution. Together, these results suggest that NIHL impairs the sensory, cognitive, and motor factors that support auditory decision-making.
Collapse
|
2
|
Wake N, Shiramatsu TI, Takahashi H. Map plasticity following noise exposure in auditory cortex of rats: implications for disentangling neural correlates of tinnitus and hyperacusis. Front Neurosci 2024; 18:1385942. [PMID: 38881748 PMCID: PMC11176560 DOI: 10.3389/fnins.2024.1385942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction Both tinnitus and hyperacusis, likely triggered by hearing loss, can be attributed to maladaptive plasticity in auditory perception. However, owing to their co-occurrence, disentangling their neural mechanisms proves difficult. We hypothesized that the neural correlates of tinnitus are associated with neural activities triggered by low-intensity tones, while hyperacusis is linked to responses to moderate- and high-intensity tones. Methods To test these hypotheses, we conducted behavioral and electrophysiological experiments in rats 2 to 8 days after traumatic tone exposure. Results In the behavioral experiments, prepulse and gap inhibition tended to exhibit different frequency characteristics (although not reaching sufficient statistical levels), suggesting that exposure to traumatic tones led to acute symptoms of hyperacusis and tinnitus at different frequency ranges. When examining the auditory cortex at the thalamocortical recipient layer, we observed that tinnitus symptoms correlated with a disorganized tonotopic map, typically characterized by responses to low-intensity tones. Neural correlates of hyperacusis were found in the cortical recruitment function at the multi-unit activity (MUA) level, but not at the local field potential (LFP) level, in response to moderate- and high-intensity tones. This shift from LFP to MUA was associated with a loss of monotonicity, suggesting a crucial role for inhibitory synapses. Discussion Thus, in acute symptoms of traumatic tone exposure, our experiments successfully disentangled the neural correlates of tinnitus and hyperacusis at the thalamocortical recipient layer of the auditory cortex. They also suggested that tinnitus is linked to central noise, whereas hyperacusis is associated with aberrant gain control. Further interactions between animal experiments and clinical studies will offer insights into neural mechanisms, diagnosis and treatments of tinnitus and hyperacusis, specifically in terms of long-term plasticity of chronic symptoms.
Collapse
Affiliation(s)
- Naoki Wake
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Tomoyo I Shiramatsu
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Takahashi
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Zhang ZQ, Li JY, Ge ST, Ma TY, Li FY, Lu JL, Si SR, Cui ZZ, Jin YL, Jin XH. Bidirectional associations between sensorineural hearing loss and depression and anxiety: a meta-analysis. Front Public Health 2024; 11:1281689. [PMID: 38259802 PMCID: PMC10800407 DOI: 10.3389/fpubh.2023.1281689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/12/2023] [Indexed: 01/24/2024] Open
Abstract
Background Recently, the prevalence of sensorineural hearing loss (SNL) has been increasing, and several studies have suggested that depression, anxiety, and SNL may be associated with each other, however, individual findings still have discrepancies. To the best of our knowledge, no scholars have systematically elucidated the bidirectional associations between SNL, depression, and anxiety disorders from the perspective of meta-analysis. In this study, we aimed to systematically evaluate the bidirectional associations between SHL and depressive and anxiety symptoms, and to provide evidence-based medical evidence for reducing SNL, depression, and anxiety disorders. Methods We performed systematic review based on priori protocol that was registered with PROSPERO (No. CRD42022365963). Systematic search of PubMed, Embase, and Web of Science databases identified articles published as of June 1, 2023, on the relationship between SNL and depression and anxiety. Meta-analysis was performed to calculate the odds ratios (OR) and 95% confidence intervals (CIs) for the outcome metrics, and the results were combined to assess bivariate associations between the disorders with fixed or random effects. Sensitivity and subgroup analyzes were conducted to analyze sources of heterogeneity, and Egger's and Begg's tests combined with funnel plots were applied to assess publication bias. Results Summary analysis of the results of 20 studies covering 675,291 individuals showed that the bidirectional association between SNL and depression and anxiety disorders. The incidence (OR = 0.17, 95% CI: 0.09-0.28) and risk (OR = 1.43, 95% CI: 1.32-1.55) of depression and morbidity were higher in SNL patients than the general population. Elevated prevalence (OR = 0.46, 95% CI: 0.28-0.65) and risk (OR = 1.30, 95% CI: 1.11-1.48) of SNL were also observed in depressed patients. The prevalence of anxiety disorders among SNL patients was about 40% (OR = 0.40, 95% CI: 0.24%-0.57), which was associated with higher risk (OR = 1.83, 95% CI: 1.42-2.24) of development than the general population. Incidence of SNL in patients with anxiety disorders was approximately 31% (OR = 0.31, 95% CI: 0.29-0.33). Additionally, subgroup analyzes showed that the bidirectional associations between SNL, depression, and anxiety disorders was influenced by age, region, and mode of diagnosis of the disorders (SNL, depression, anxiety). Conclusion There are bidirectional associations between SNL and depression and anxiety disorders, which was influenced by age and region and the method the disorders (SNL, depression, anxiety) were diagnosed.
Collapse
Affiliation(s)
- Zhi-qiang Zhang
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jing-yang Li
- Department of Clinical Medicine, First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Si-tong Ge
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Tian-yi Ma
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Fu-yao Li
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Jun-liang Lu
- Department of Psychiatry, Yanbian University Hospital, Yanji, China
| | - Shu-rui Si
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Zhe-zhu Cui
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| | - Yu-lian Jin
- Department of Otorhinolaryngology, Head and Neck Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Jiaotong University School of Medicine Ear Institute, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Xiang-hua Jin
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Hospital of Yanbian University, Yanji, China
| |
Collapse
|
4
|
Zimdahl JW, Rodger J, Mulders WHAM. Acoustic trauma increases inhibitory effects of amygdala electrical stimulation on thalamic neurons in a rat model. Hear Res 2023; 439:108891. [PMID: 37797476 DOI: 10.1016/j.heares.2023.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/07/2023]
Abstract
Acoustic trauma (AT) induced hearing loss elicits plasticity throughout the central auditory pathway, including at the level of the medial geniculate nucleus (MGN). Hearing loss also results in altered neuronal responses in the amygdala, which is involved in sensory gating at the level of the MGN. However, whether these altered responses in the amygdala affect sensory gating at the level of the MGN requires further evaluation. The current study aimed to investigate the effects of AT-induced hearing loss on the functional connectivity between the amygdala and the MGN. Male Sprague-Dawley rats were exposed to either sham (n = 5; no sound) or AT (n = 6; 16 kHz, 1 h, 124 dB SPL) under full anaesthesia. Auditory brainstem response (ABR) recordings were made to determine hearing thresholds. Two weeks post-exposure, extracellular recordings were used to assess the effect of electrical stimulation of the amygdala on tone-evoked (sham n = 22; AT n = 30) and spontaneous (sham n = 21; AT n = 29) activity of single neurons in the MGN. AT caused a large temporary and small permanent ABR threshold shift. Electrical stimulation of the amygdala induced differential effects (excitatory, inhibitory, or no effect) on both tone-evoked and spontaneous activity. In tone-evoked activity, electrical stimulation at 300 µA, maximum current, caused a significantly larger reduction in firing rate in AT animals compared to sham, due to an increase in the magnitude of inhibitory effects. In spontaneous activity, there was also a significantly larger magnitude of inhibitory effects following AT. The findings confirm that activation of the amygdala results in changes in MGN neuronal activity, and suggest the functional connectivity between the amygdala and the MGN is significantly altered following AT and subsequent hearing loss.
Collapse
Affiliation(s)
- Jack W Zimdahl
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia.
| | - Jennifer Rodger
- School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia; School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia; Perron Institute for Neurological and Translational Research, Crawley, WA 6009, Australia
| | | |
Collapse
|
5
|
Peng X, Mao Y, Tai Y, Luo B, Dai Q, Wang X, Wang H, Liang Y, Guan R, Liu C, Guo Y, Chen L, Zhang Z, Wang H. Characterization of Anxiety-Like Behaviors and Neural Circuitry following Chronic Moderate Noise Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107004. [PMID: 37796530 PMCID: PMC10552915 DOI: 10.1289/ehp12532] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/13/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND Commonly encountered nontraumatic, moderate noise is increasingly implicated in anxiety; however, the neural substrates underlying this process remain unclear. OBJECTIVES We investigated the neural circuit mechanism through which chronic exposure to moderate-level noise causes anxiety-like behaviors. METHODS Mice were exposed to chronic, moderate white noise [85 decibel (dB) sound pressure level (SPL)], 4 h/d for 4 wk to induce anxiety-like behaviors, which were assessed by open field, elevated plus maze, light-dark box, and social interaction tests. Viral tracing, immunofluorescence confocal imaging, and brain slice patch-clamp recordings were used to characterize projections from auditory brain regions to the lateral amygdala. Neuronal activities were characterized by in vivo multielectrode and fiber photometry recordings in awake mice. Optogenetics and chemogenetics were used to manipulate specific neural circuitry. RESULTS Mice chronically (4 wk) exposed to moderate noise (85 dB SPL, 4 h/d) demonstrated greater neuronal activity in the lateral amygdala (LA), and the LA played a critical role in noise-induced anxiety-like behavior in these model mice. Viral tracing showed that the LA received monosynaptic projections from the medial geniculate body (MG) and auditory cortex (ACx). Optogenetic excitation of the MG → LA or ACx → LA circuits acutely evoked anxiety-like behaviors, whereas their chemogenetic inactivation abolished noise-induced anxiety-like behavior. Moreover, mice chronically exposed to moderate noise were more susceptible to acute stress, with more neuronal firing in the LA, even after noise withdrawal. DISCUSSION Mice exposed to 4 wk of moderate noise (85 dB SPL, 4 h/d) demonstrated behavioral and physiological differences compared to controls. The neural circuit mechanisms involved greater excitation from glutamatergic neurons of the MG and ACx to LA neurons under chronic, moderate noise exposure, which ultimately promoted anxiety-like behaviors. Our findings support the hypothesis that nontraumatic noise pollution is a potentially serious but unrecognized public health concern. https://doi.org/10.1289/EHP12532.
Collapse
Affiliation(s)
- Xiaoqi Peng
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yunfeng Mao
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingju Tai
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Luo
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, USTC, Hefei, China
- Department of Psychiatry, The First Affiliated Hospital of USTC, Hefei, China
| | - Qian Dai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Xiyang Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Liang
- Department of Otolaryngology, The First Affiliated Hospital of USTC, Hefei, China
| | - Ruirui Guan
- Department of Otolaryngology, The First Affiliated Hospital of USTC, Hefei, China
| | - Chunhua Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yiping Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Lin Chen
- Auditory Research Laboratory, Department of Neurobiology and Biophysics, Division of Life Sciences and Medicine, USTC, Hefei, China
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haitao Wang
- Department of Anesthesiology, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Jafari Z, Copps T, Hole G, Nyatepe-Coo F, Kolb BE, Mohajerani MH. Tinnitus, sound intolerance, and mental health: the role of long-term occupational noise exposure. Eur Arch Otorhinolaryngol 2022; 279:5161-5170. [PMID: 35359185 DOI: 10.1007/s00405-022-07362-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE Whereas chronic noise exposure (CNE) is a known risk factor for tinnitus, little is known about how a history of CNE impacts tinnitus characteristics and its comorbid symptoms. METHODS Seventy-five participants with chronic tinnitus (59m/16f, 22-78 years, 48 with sensory-neural hearing loss, and 27 with a normal audiogram) including 43 individuals with (Tin-CNE group) and 32 without (Tin group) a history of long-term occupational noise exposure were studied. Tinnitus characteristics were rated by a visual analog scale, and tinnitus comorbid symptoms were scored using self-assessment questionnaires. RESULTS The Tin-CNE group showed reduced uncomfortable loudness level (ULL), sound tolerance, and quality of life (QoL), and increased tinnitus loudness, tinnitus handicap, anxiety, depression, insomnia severity, and tinnitus annoyance scores compared to the Tin group. Higher tinnitus loudness and a lower anxiety score were observed in participants with hearing loss relative to those without. Using a stepwise regression model also showed that tinnitus-related characteristics, hyperacusis, and tinnitus comorbid symptoms enhance one another. CONCLUSIONS The findings were in support of accumulative evidence indicating the adverse auditory and non-auditory effects of CNE, including exacerbated sound intolerance and tinnitus-related psychiatric symptoms. The results also showed that tinnitus alone can affect mental health regardless of hearing loss.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Thomas Copps
- Audiology First, Lethbridge, AB, T1J 4B5, Canada
| | - Glenn Hole
- Audiology First, Lethbridge, AB, T1J 4B5, Canada
| | | | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience (CCBN), University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| |
Collapse
|
7
|
Wilson P, Apawu AK. Deafening noise down-regulates dopamine transmission in the hub of the central auditory system. Neurochem Int 2022; 159:105382. [DOI: 10.1016/j.neuint.2022.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/03/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
|
8
|
Jahn KN. Clinical and investigational tools for monitoring noise-induced hyperacusis. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:553. [PMID: 35931527 PMCID: PMC9448410 DOI: 10.1121/10.0012684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Hyperacusis is a recognized perceptual consequence of acoustic overexposure that can lead to debilitating psychosocial effects. Despite the profound impact of hyperacusis on quality of life, clinicians and researchers lack objective biomarkers and standardized protocols for its assessment. Outcomes of conventional audiologic tests are highly variable in the hyperacusis population and do not adequately capture the multifaceted nature of the condition on an individual level. This presents challenges for the differential diagnosis of hyperacusis, its clinical surveillance, and evaluation of new treatment options. Multiple behavioral and objective assays are emerging as contenders for inclusion in hyperacusis assessment protocols but most still await rigorous validation. There remains a pressing need to develop tools to quantify common nonauditory symptoms, including annoyance, fear, and pain. This review describes the current literature on clinical and investigational tools that have been used to diagnose and monitor hyperacusis, as well as those that hold promise for inclusion in future trials.
Collapse
Affiliation(s)
- Kelly N Jahn
- Department of Speech, Language, and Hearing, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
9
|
Rezaei Z, Jafari Z, Afrashteh N, Torabi R, Singh S, Kolb BE, Davidsen J, Mohajerani MH. Prenatal stress dysregulates resting-state functional connectivity and sensory motifs. Neurobiol Stress 2021; 15:100345. [PMID: 34124321 PMCID: PMC8173309 DOI: 10.1016/j.ynstr.2021.100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal stress (PS) can impact fetal brain structure and function and contribute to higher vulnerability to neurodevelopmental and neuropsychiatric disorders. To understand how PS alters evoked and spontaneous neocortical activity and intrinsic brain functional connectivity, mesoscale voltage imaging was performed in adult C57BL/6NJ mice that had been exposed to auditory stress on gestational days 12-16, the age at which neocortex is developing. PS mice had a four-fold higher basal corticosterone level and reduced amplitude of cortical sensory-evoked responses to visual, auditory, whisker, forelimb, and hindlimb stimuli. Relative to control animals, PS led to a general reduction of resting-state functional connectivity, as well as reduced inter-modular connectivity, enhanced intra-modular connectivity, and altered frequency of auditory and forelimb spontaneous sensory motifs. These resting-state changes resulted in a cortical connectivity pattern featuring disjoint but tight modules and a decline in network efficiency. The findings demonstrate that cortical connectivity is sensitive to PS and exposed offspring may be at risk for adult stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zahra Rezaei
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Navvab Afrashteh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Reza Torabi
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Surjeet Singh
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Bryan E. Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| | - Jörn Davidsen
- Complexity Science Group, Department of Physics and Astronomy, Faculty of Science, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - Majid H. Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada, T1K 3M4
| |
Collapse
|
10
|
Development of ebselen for the treatment of sensorineural hearing loss and tinnitus. Hear Res 2021; 413:108209. [PMID: 33678494 DOI: 10.1016/j.heares.2021.108209] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/29/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023]
Abstract
The global impact of hearing loss and related auditory dysfunction including tinnitus and hyperacusis on human health is significant and growing. A substantial body of literature has found that these hearing diseases and disorders result from significant number of genetic variations and molecular mechanisms. Investigational new drugs have been tested and several approved drugs have been repurposed in clinical trials, but no therapeutics for any auditory related indication have been FDA approved. A unique investigational new drug called ebselen (SPI-1005), that is anti-inflammatory and neuroprotective, has been shown to reduce noise-induced and aminoglycoside-induced hearing loss in animals. Multiple phase 2 clinical trials have demonstrated the safety and efficacy of SPI-1005 treatment in Meniere's disease and acute noise-induced hearing loss. SPI-1005 is currently being tested to prevent and treat tobramycin-induced ototoxicity in cystic fibrosis patients with acute lung infections. This review summarizes the published and presented data involving SPI-1005 and other drugs being tested to prevent or treat sensorineural hearing loss. Additionally, recent clinical data showing the relationship between pure tone audiometry and words-in-noise test results in a Meniere's disease are presented, which may have larger implications for the field of hearing research.
Collapse
|
11
|
Liu X, Chen GD, Salvi R. Neuroplastic changes in auditory cortex induced by long-duration "non-traumatic" noise exposures are triggered by deficits in the neural output of the cochlea. Hear Res 2021; 404:108203. [PMID: 33618162 DOI: 10.1016/j.heares.2021.108203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/14/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022]
Abstract
Long-term exposure to moderate intensity noise that does not cause measureable hearing loss can cause striking changes in sound-evoked neural activity in auditory cortex. It is unclear if these changes originate in the cortex or result from functional deficits in the neural output of the cochlea. To explore this issue, rats were exposed for 6-weeks to 18-24 kHz noise at 45, 65 or 85 dB SPL and then compared the noise-induced changes in the cochlear compound action potential (CAP) with the neurophysiological alterations in the anterior auditory field (AAF) of auditory cortex. The 45-dB exposure, which had no effect on the cochlear CAP also had no effect on the AAF. In contrast, the 85-dB exposure greatly reduced CAP amplitudes at high frequencies, but had little or no effect on low frequencies. Despite the large reduction in high-frequency CAP neural responses, high frequency AAF neural responses (spike rate and local field potential amplitude) remained largely within normal limits, evidence of central gain compensation. AAF responses were also enhanced at the low frequencies even though CAP responses were normal; this AAF hyperactivity only occurred at low-moderate intensities (level-dependent enhanced central gain). The 65-dB exposure also caused a moderate reduction in high-frequency CAP amplitudes. Notwithstanding this cochlear loss, AAF responses were boosted into the normal range, evidence of homeostatic gain compensation. Our results suggest that the noise-induced neuroplastic changes in the auditory cortex from so-called "non-traumatic" exposures are triggered from functional deficits in the neural output of the cochlea.
Collapse
Affiliation(s)
- Xiaopeng Liu
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, 137 Cary Hall, 3435 Main Street, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, 137 Cary Hall, 3435 Main Street, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, 137 Cary Hall, 3435 Main Street, NY 14214, USA
| |
Collapse
|
12
|
Abstract
The neural mechanisms underlying the impacts of noise on nonauditory function, particularly learning and memory, remain largely unknown. Here, we demonstrate that rats exposed postnatally (between postnatal days 9 and 56) to structured noise delivered at a sound pressure level of ∼65 dB displayed significantly degraded hippocampus-related learning and memory abilities. Noise exposure also suppressed the induction of hippocampal long-term potentiation (LTP). In parallel, the total or phosphorylated levels of certain LTP-related key signaling molecules in the synapses of the hippocampus were down-regulated. However, no significant changes in stress-related processes were found for the noise-exposed rats. These results in a rodent model indicate that even moderate-level noise with little effect on stress status can substantially impair hippocampus-related learning and memory by altering the plasticity of synaptic transmission. They support the importance of more thoroughly defining the unappreciated hazards of moderately loud noise in modern human environments.
Collapse
|
13
|
Jeschke M, Happel MFK, Tziridis K, Krauss P, Schilling A, Schulze H, Ohl FW. Acute and Long-Term Circuit-Level Effects in the Auditory Cortex After Sound Trauma. Front Neurosci 2021; 14:598406. [PMID: 33469416 PMCID: PMC7813782 DOI: 10.3389/fnins.2020.598406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/02/2020] [Indexed: 12/31/2022] Open
Abstract
Harmful environmental sounds are a prevailing source of chronic hearing impairments, including noise induced hearing loss, hyperacusis, or tinnitus. How these symptoms are related to pathophysiological damage to the sensory receptor epithelia and its effects along the auditory pathway, have been documented in numerous studies. An open question concerns the temporal evolution of maladaptive changes after damage and their manifestation in the balance of thalamocortical and corticocortical input to the auditory cortex (ACx). To address these issues, we investigated the loci of plastic reorganizations across the tonotopic axis of the auditory cortex of male Mongolian gerbils (Meriones unguiculatus) acutely after a sound trauma and after several weeks. We used a residual current-source density analysis to dissociate adaptations of intracolumnar input and horizontally relayed corticocortical input to synaptic populations across cortical layers in ACx. A pure tone-based sound trauma caused acute changes of subcortical inputs and corticocortical inputs at all tonotopic regions, particularly showing a broad reduction of tone-evoked inputs at tonotopic regions around the trauma frequency. At other cortical sites, the overall columnar activity acutely decreased, while relative contributions of lateral corticocortical inputs increased. After 4-6 weeks, cortical activity in response to the altered sensory inputs showed a general increase of local thalamocortical input reaching levels higher than before the trauma. Hence, our results suggest a detailed mechanism for overcompensation of altered frequency input in the auditory cortex that relies on a changing balance of thalamocortical and intracortical input and along the frequency gradient of the cortical tonotopic map.
Collapse
Affiliation(s)
- Marcus Jeschke
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Institute of Biology (IBIO), Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
- Cognitive Hearing in Primates Group, Auditory Neuroscience and Optogenetics Laboratory, German Primate Center, Göttingen, Germany
- Institute for Auditory Neuroscience Göttingen, University Medical Center, Göttingen, Germany
| | - Max F. K. Happel
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Institute of Biology (IBIO), Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| | - Konstantin Tziridis
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Patrick Krauss
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Achim Schilling
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Schulze
- Experimental Otolaryngology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank W. Ohl
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
- Institute of Biology (IBIO), Otto-von-Guericke University Magdeburg (OVGU), Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany
| |
Collapse
|
14
|
Tang TY, Luan Y, Jiao Y, Zhang J, Ju SH, Teng GJ. Disrupted Amygdala Connectivity Is Associated With Elevated Anxiety in Sensorineural Hearing Loss. Front Neurosci 2020; 14:616348. [PMID: 33362462 PMCID: PMC7758419 DOI: 10.3389/fnins.2020.616348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/19/2020] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose: Hearing loss is associated with rising risks of emotional impairments, suggesting emotional processing networks might be involved in the neural plasticity after hearing loss. This study was conducted to explore how functional connectivity of the amygdala reconfigures in the auditory deprived brain and better understand the neural mechanisms underlying hearing loss-related emotional disturbances. Methods: In total, 38 chronic sensorineural hearing loss (SNHL) patients and 37 healthy controls were recruited for multimodal magnetic resonance imaging scanning and neuropsychological assessments. Voxel-wise functional connectivity (FC) maps of both the left and right amygdala were conducted and compared between the SNHL patients and healthy controls. The uncinate fasciculus (UF), an association fiber pathway, was reconstructed in both groups. The track number, mean track length, fractional anisotropy (FA) and mean diffusion values of the left and right UF were further quantified, respectively. Besides, Pearson's correlation analyses were conducted to investigate the relationship between the functional/structural abnormalities and the negative emotional states in SNHL patients. Results: The SNHL patients presented higher depressive and anxious levels compared to the healthy controls. Decreased FCs were detected between the amygdala and the auditory cortex, striatum, multimodal processing areas, and frontoparietal control areas in the SNHL patients. The amygdala was found to be structurally connected with several FC decreased regions through the UF. Moreover, the hypo-synchronization and the white matter impairment were both found to be associated with patients' elevated anxious status. Conclusions: These functional and structural findings depicted the reconfiguration of the amygdala in SNHL, which provided a new perspective toward the functional circuit mechanisms targeting the emotional impairments related to hearing loss.
Collapse
Affiliation(s)
- Tian-Yu Tang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ying Luan
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yun Jiao
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jian Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Gao-Jun Teng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
15
|
Karem H, Mehla J, Kolb BE, Mohajerani MH. Traffic noise exposure, cognitive decline, and amyloid-beta pathology in an AD mouse model. Synapse 2020; 75:e22192. [PMID: 33096582 DOI: 10.1002/syn.22192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 11/11/2022]
Abstract
Concerns are growing that exposure to environmental pollutants, such as traffic noise, might cause cognitive impairments and predispose individuals toward the development of Alzheimer's disease (AD) dementia. In this study in a knock-in mouse model of AD, we investigated how chronic traffic noise exposure (CTNE) impacts cognitive performance and amyloid-beta (Aβ) pathology. A group of APPNL-G-F/NL-G-F mice was exposed to CTNE (70 dBA , 8 hr/day for 1 month) and compared with nonexposed counterparts. Following CTNE, an increase in hypothalamic-pituitary-adrenal (HPA) axis responsivity was observed by corticosterone assay of the blood. One month after CTNE, the CTNE group demonstrated impairments in cognitive and motor functions, and indications of anxiety-like behavior, relative to the control animals. The noise-exposed group also showed elevated Aβ aggregation, as inferred by a greater number of plaques and larger average plaque size in various regions of the brain, including regions involved in stress regulation. The results support that noise-associated dysregulation of the neuroendocrine system as a potential risk factor for developing cognitive impairment and Aβ pathology, which should be further investigated in human studies.
Collapse
Affiliation(s)
- Hadil Karem
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Jogender Mehla
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
16
|
Jafari Z, Kolb BE, Mohajerani MH. Noise exposure accelerates the risk of cognitive impairment and Alzheimer’s disease: Adulthood, gestational, and prenatal mechanistic evidence from animal studies. Neurosci Biobehav Rev 2020; 117:110-128. [DOI: 10.1016/j.neubiorev.2019.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/18/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022]
|
17
|
Radziwon K, Auerbach BD, Ding D, Liu X, Chen GD, Salvi R. Noise-Induced loudness recruitment and hyperacusis: Insufficient central gain in auditory cortex and amygdala. Neuroscience 2019; 422:212-227. [PMID: 31669363 PMCID: PMC6994858 DOI: 10.1016/j.neuroscience.2019.09.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Abstract
Noise-induced hearing loss generally induces loudness recruitment, but sometimes gives rise to hyperacusis, a debilitating condition in which moderate intensity sounds are perceived abnormally loud. In an attempt to develop an animal model of loudness hyperacusis, we exposed rats to a 16-20 kHz noise at 104 dB SPL for 12 weeks. Behavioral reaction time-intensity functions were used to assess loudness growth functions before, during and 2-months post-exposure. During the exposure, loudness recruitment (R) was present in the region of hearing loss, but subtle evidence of hyperacusis (H) started to emerge at the border of the hearing loss. Unexpectedly, robust evidence of hyperacusis appeared below and near the edge of the hearing loss 2-months post-exposure. To identify the neural correlates of hyperacusis and test the central gain model of hyperacusis, we recorded population neural responses from the cochlea, auditory cortex and lateral amygdala 2-months post-exposure. Compared to controls, the neural output of the cochlea was greatly reduced in the noise group. Consistent with central gain models, the gross neural responses from the auditory cortex and amygdala were proportionately much larger than those from the cochlea. However, despite central amplification, the population responses in the auditory cortex and amygdala were still below the level needed to fully account for hyperacusis and/or recruitment. Having developed procedures that can consistently induce hyperacusis in rats, our results set the stage for future studies that seek to identify the neurobiological events that give rise to hyperacusis and to develop new therapies to treat this debilitating condition.
Collapse
Affiliation(s)
- Kelly Radziwon
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | | | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Xiaopeng Liu
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
18
|
Auerbach BD, Radziwon K, Salvi R. Testing the Central Gain Model: Loudness Growth Correlates with Central Auditory Gain Enhancement in a Rodent Model of Hyperacusis. Neuroscience 2019; 407:93-107. [PMID: 30292765 PMCID: PMC8792806 DOI: 10.1016/j.neuroscience.2018.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
The central gain model of hyperacusis proposes that loss of auditory input can result in maladaptive neuronal gain increases in the central auditory system, leading to the over-amplification of sound-evoked activity and excessive loudness perception. Despite the attractiveness of this model, and supporting evidence for it, a critical test of the central gain theory requires that changes in sound-evoked activity be explicitly linked to perceptual alterations of loudness. Here we combined an operant conditioning task that uses a subject's reaction time to auditory stimuli to produce reliable measures of loudness growth with chronic electrophysiological recordings from the auditory cortex and inferior colliculus of awake, behaviorally-phenotyped animals. In this manner, we could directly correlate daily assessments of loudness perception with neurophysiological measures of sound encoding within the same animal. We validated this novel psychophysical-electrophysiological paradigm with a salicylate-induced model of hearing loss and hyperacusis, as high doses of sodium salicylate reliably induce temporary hearing loss, neural hyperactivity, and auditory perceptual disruptions like tinnitus and hyperacusis. Salicylate induced parallel changes to loudness growth and evoked response-intensity functions consistent with temporary hearing loss and hyperacusis. Most importantly, we found that salicylate-mediated changes in loudness growth and sound-evoked activity were correlated within individual animals. These results provide strong support for the central gain model of hyperacusis and demonstrate the utility of using an experimental design that allows for within-subject comparison of behavioral and electrophysiological measures, thereby making inter-subject variability a strength rather than a limitation.
Collapse
Affiliation(s)
- Benjamin D Auerbach
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | - Kelly Radziwon
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
19
|
Ding YJ, Song Y, Liu JX, Du YL, Zhu L, Ma FR. Effect of Neuronal Excitability in Hippocampal CA1 Area on Auditory Pathway in a Rat Model of Tinnitus. Chin Med J (Engl) 2018; 131:1969-1974. [PMID: 30082529 PMCID: PMC6085865 DOI: 10.4103/0366-6999.238148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Tinnitus is a common disorder that causes significant morbidity; however, the neurophysiological mechanism is not yet fully understood. A relationship between tinnitus and limbic system has been reported. As a significant component of the limbic system, the hippocampus plays an important role in various pathological processes, such as emotional disturbance, decreased learning ability, and deterioration of memory. This study was aimed to explore the role of the hippocampus in the generation of tinnitus by electrophysiological technology. Methods: A tinnitus model was established in rats through intraperitoneal injection of salicylate (SA). Subsequently, the spontaneous firing rate (SFR) of neurons in the hippocampal CA1 area was recorded with in vivo multichannel recording technology to assess changes in excitability induced by SA. To investigate the effect of excitability changes of hippocampus on the auditory pathway, the hippocampus was electrically stimulated and neural excitability in the auditory cortex (AC) was monitored. Results: Totally 65 neurons in the hippocampal CA1 area were recorded, 45 from the SA group (n = 5), and 20 from the saline group (n = 5). Two hours after treatment, mean SFR of neurons in the hippocampal CA1 area had significantly increased from 3.06 ± 0.36 Hz to 9.18 ± 1.30 Hz in the SA group (t = −4.521, P < 0.05), while no significant difference was observed in the saline group (2.66 ± 0.36 Hz vs. 2.16 ± 0.36 Hz, t = 0.902, P > 0.05). In the AC, 79.3% (157/198) of recorded neurons showed responses to electrical stimulation of the hippocampal CA1 area. Presumed pyramidal neurons were excited, while intermediate neurons were inhibited after electrical stimulation of the hippocampus. Conclusions: The study shows that the hippocampus is excited in SA-induced tinnitus, and stimulation of hippocampus could modulate neuronal excitability of the AC. The hippocampus is involved in tinnitus and may also have a regulatory effect on the neural center.
Collapse
Affiliation(s)
- Yu-Jing Ding
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Yu Song
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Jun-Xiu Liu
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Ya-Li Du
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Li Zhu
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| | - Fu-Rong Ma
- Department of Otorhinolaryngology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
20
|
Sheppard A, Liu X, Ding D, Salvi R. Auditory central gain compensates for changes in cochlear output after prolonged low-level noise exposure. Neurosci Lett 2018; 687:183-188. [PMID: 30273699 DOI: 10.1016/j.neulet.2018.09.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/13/2018] [Accepted: 09/27/2018] [Indexed: 01/11/2023]
Abstract
Remarkably, the central auditory system can modify the strength of its sound-evoked neural response based on prior acoustic experiences, a phenomenon referred to as central gain. Gain changes are well documented following traumatic noise exposure, but much less is known about central gain dynamics following prolonged exposure to low-level noise, a common acoustic experience in many urban and work environments. We recently reported that the neural output of the cochlea is reduced, while gain was enhanced in the inferior colliculus (IC) following a 5-week exposure to 75 dB noise. To determine if similar effects were present at even lower intensities, we exposed rats to a 65 dB noise expecting to see little to no change in the cochlea or IC. The exposure had little effect on distortion product otoacoustic emissions and did not cause any hair cell loss. However, the amplitude of the CAP, which reflects the neural output of cochlea, was depressed by 50-75%. Surprisingly, neural responses from the IC were enhanced up to 70%, mainly at frequencies within the noise exposure band. One-week post-exposure, CAP amplitudes returned to normal at frequencies within or above the exposure band, whereas responses evoked by frequencies below the exposure band were enhanced by more than 80%. In contrast, IC responses below the exposure frequency were depressed 10-20% whereas responses within the exposure frequency band were enhanced 10-20%. Thus, the central auditory system dynamically up- and down-regulates its gain to maintain supra-threshold neural responses within a narrow homeostatic range; a function that likely contributes to the prevention of sounds from being perceived as muffled or too loud.
Collapse
Affiliation(s)
- Adam Sheppard
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Xiaopeng Liu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA; Department of Speech Pathology and Audiology, Asia University, Taiwan
| |
Collapse
|
21
|
Central Compensation in Auditory Brainstem after Damaging Noise Exposure. eNeuro 2018; 5:eN-CFN-0250-18. [PMID: 30123822 PMCID: PMC6096756 DOI: 10.1523/eneuro.0250-18.2018] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Noise exposure is one of the most common causes of hearing loss and peripheral damage to the auditory system. A growing literature suggests that the auditory system can compensate for peripheral loss through increased central neural activity. The current study sought to investigate the link between noise exposure, increases in central gain, synaptic reorganization, and auditory function. All axons of the auditory nerve project to the cochlear nucleus, making it a requisite nucleus for sound detection. As the first synapse in the central auditory system, the cochlear nucleus is well positioned to respond plastically to loss of peripheral input. To investigate noise-induced compensation in the central auditory system, we measured auditory brainstem responses (ABRs) and auditory perception and collected tissue from mice exposed to broadband noise. Noise-exposed mice showed elevated ABR thresholds, reduced ABR wave 1 amplitudes, and spiral ganglion neuron loss. Despite peripheral damage, noise-exposed mice were hyperreactive to loud sounds and showed nearly normal behavioral sound detection thresholds. Ratios of late ABR peaks (2–4) relative to the first ABR peak indicated that brainstem pathways were hyperactive in noise-exposed mice, while anatomical analysis indicated there was an imbalance between expression of excitatory and inhibitory proteins in the ventral cochlear nucleus. The results of the current study suggest that a reorganization of excitation and inhibition in the ventral cochlear nucleus may drive hyperactivity in the central auditory system. This increase in central gain can compensate for peripheral loss to restore some aspects of auditory function.
Collapse
|
22
|
Muca A, Standafer E, Apawu AK, Ahmad F, Ghoddoussi F, Hali M, Warila J, Berkowitz BA, Holt AG. Tinnitus and temporary hearing loss result in differential noise-induced spatial reorganization of brain activity. Brain Struct Funct 2018; 223:2343-2360. [PMID: 29488007 PMCID: PMC6129978 DOI: 10.1007/s00429-018-1635-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 02/17/2018] [Indexed: 12/27/2022]
Abstract
Loud noise frequently results in hyperacusis or hearing loss (i.e., increased or decreased sensitivity to sound). These conditions are often accompanied by tinnitus (ringing in the ears) and changes in spontaneous neuronal activity (SNA). The ability to differentiate the contributions of hyperacusis and hearing loss to neural correlates of tinnitus has yet to be achieved. Towards this purpose, we used a combination of behavior, electrophysiology, and imaging tools to investigate two models of noise-induced tinnitus (either with temporary hearing loss or with permanent hearing loss). Manganese (Mn2+) uptake was used as a measure of calcium channel function and as an index of SNA. Manganese uptake was examined in vivo with manganese-enhanced magnetic resonance imaging (MEMRI) in key auditory brain regions implicated in tinnitus. Following acoustic trauma, MEMRI, the SNA index, showed evidence of spatially dependent rearrangement of Mn2+ uptake within specific brain nuclei (i.e., reorganization). Reorganization of Mn2+ uptake in the superior olivary complex and cochlear nucleus was dependent upon tinnitus status. However, reorganization of Mn2+ uptake in the inferior colliculus was dependent upon hearing sensitivity. Furthermore, following permanent hearing loss, reduced Mn2+ uptake was observed. Overall, by combining testing for hearing sensitivity, tinnitus, and SNA, our data move forward the possibility of discriminating the contributions of hyperacusis and hearing loss to tinnitus.
Collapse
Affiliation(s)
- Antonela Muca
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Emily Standafer
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Aaron K Apawu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Farhan Ahmad
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Farhad Ghoddoussi
- Department of Anesthesiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mirabela Hali
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - James Warila
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
| | - Bruce A Berkowitz
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Avril Genene Holt
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 550 East Canfield Ave., Detroit, MI, 48201, USA.
- John D. Dingell VAMC, Detroit, MI, USA.
| |
Collapse
|
23
|
Ahsan SF, Luo H, Zhang J, Kim E, Xu Y. An animal model of deep brain stimulation for treating tinnitus: A proof of concept study. Laryngoscope 2017; 128:1213-1222. [PMID: 28925013 DOI: 10.1002/lary.26876] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This proof-of-concept study aimed to demonstrate therapeutic effects of deep brain stimulation (DBS) on noise-induced tinnitus. STUDY DESIGN Experimental animal study. METHODS After Institutional Animal Care and Use Committee approval, nine adult rats were implanted in the caudate nucleus with custom-made electrode array. The rats were exposed to noise to induce tinnitus. Auditory brainstem response was performed to evaluate hearing threshold changes. Noise-induced tinnitus and its suppression by DBS were evaluated using the gap-detection acoustic startle reflex behavioral paradigm and electrophysiological evaluation of modulatory effects on neural correlates of tinnitus. Various stimulation parameters were used to determine the most effective ones in affecting behavioral changes, along with corresponding neural activity in the caudate nucleus. The correlation between the caudate nucleus and auditory cortex also was determined. Analysis of variance with Bonferroni correction was performed to examine DBS-induced effects on behavioral evidence of tinnitus. RESULTS Bursting activity, a neural marker of tinnitus, was noted to decrease compared to baseline in tinnitus (+) animals. After stimulation, spontaneous and bursting activity increased in the tinnitus (+) animals but decreased in the tinnitus (-) animals. Behavioral data suggested suppression of tinnitus after DBS. These effects lasted up to 5 days. To our knowledge, this is the first development of an animal model to test deep brain stimulation of the caudate region for the treatment of tinnitus. CONCLUSIONS Deep brain stimulation of the caudate nucleus can modulate tinnitus in a rat model of tinnitus. LEVEL OF EVIDENCE NA. Laryngoscope, 128:1213-1222, 2018.
Collapse
Affiliation(s)
- Syed F Ahsan
- Otology/Neurotology, Department of Otolaryngology/Head and Neck Surgery, Kaiser Permanente-Orange County, Anaheim, California
| | - Hao Luo
- Department of Otolaryngology/Head and Neck Surgery, Wayne State University, Detroit, Michigan, U.S.A
| | - Jinsheng Zhang
- Department of Otolaryngology/Head and Neck Surgery, Wayne State University, Detroit, Michigan, U.S.A.,Department of Communication Sciences and Disorders, Wayne State University, Detroit, Michigan, U.S.A
| | - Eric Kim
- Department of Engineering, Wayne State University School of Medicine, Detroit, Michigan, U.S.A
| | - Yong Xu
- Department of Engineering, Wayne State University School of Medicine, Detroit, Michigan, U.S.A
| |
Collapse
|
24
|
Eggermont JJ. Effects of long-term non-traumatic noise exposure on the adult central auditory system. Hearing problems without hearing loss. Hear Res 2017; 352:12-22. [DOI: 10.1016/j.heares.2016.10.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
25
|
Sheppard AM, Chen GD, Manohar S, Ding D, Hu BH, Sun W, Zhao J, Salvi R. Prolonged low-level noise-induced plasticity in the peripheral and central auditory system of rats. Neuroscience 2017; 359:159-171. [PMID: 28711622 DOI: 10.1016/j.neuroscience.2017.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 02/06/2023]
Abstract
Prolonged low-level noise exposure alters loudness perception in humans, presumably by decreasing the gain of the central auditory system. Here we test the central gain hypothesis by measuring the acute and chronic physiologic changes at the level of the cochlea and inferior colliculus (IC) after a 75-dB SPL, 10-20-kHz noise exposure for 5weeks. The compound action potential (CAP) and summating potential (SP) were used to assess the functional status of the cochlea and 16 channel electrodes were used to measure the local field potentials (LFP) and multi-unit spike discharge rates (SDR) from the IC immediately after and one-week post-exposure. Measurements obtained immediately post-exposure demonstrated a significant reduction in supra-threshold CAP amplitudes. In contrast to the periphery, sound-evoked activity in the IC was enhanced in a frequency-dependent manner consistent with models of enhanced central gain. Surprisingly, one-week post-exposure supra-threshold responses from the cochlea had not only recovered, but were significantly larger than normal, and thresholds were significantly better than controls. Moreover, sound-evoked hyperactivity in the IC was sustained within the noise exposure frequency band but suppressed at higher frequencies. When response amplitudes representing the neural output of the cochlea and IC activity at one-week post exposure were compared with control animal responses, a central attenuation phenomenon becomes evident, which may play a key role in understanding why low-level noise can sometimes ameliorate tinnitus and hyperacusis percepts.
Collapse
Affiliation(s)
- Adam M Sheppard
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Dalian Ding
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bo-Hua Hu
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Wei Sun
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Jiwei Zhao
- Department of Biostatistics, School of Public Health and Health Professions, State University of New York at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
26
|
Manohar S, Spoth J, Radziwon K, Auerbach BD, Salvi R. Noise-induced hearing loss induces loudness intolerance in a rat Active Sound Avoidance Paradigm (ASAP). Hear Res 2017; 353:197-203. [PMID: 28705607 DOI: 10.1016/j.heares.2017.07.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 11/24/2022]
Abstract
Hyperacusis is a loudness hypersensitivity disorder in which moderate-intensity sounds are perceived as extremely loud, aversive and/or painful. To assess the aversive nature of sounds, we developed an Active Sound Avoidance Paradigm (ASAP) in which rats altered their place preference in a Light/Dark shuttle box in response to sound. When no sound (NS) was present, rats spent more than 95% of the time in the Dark Box versus the transparent Light Box. However, when a 60 or 90 dB SPL noise (2-20 kHz, 2-8 kHz, or 16-20 kHz bandwidth) was presented in the Dark Box, the rats'' preference for the Dark Box significantly decreased. Percent time in the dark decreased as sound intensity in the Dark Box increased from 60 dB to 90 dB SPL. Interestingly, the magnitude of the decrease was not a monotonic function of intensity for the 16-20 kHz noise and not related to the bandwidth of the 2-20 kHz and 2-8 kHz noise bands, suggesting that sound avoidance is not solely dependent on loudness but the aversive quality of the noise as well. Afterwards, we exposed the rats for 28 days to a 16-20 kHz noise at 102 dB SPL; this exposure produced a 30-40 dB permanent threshold shift at 16 and 32 kHz. Following the noise exposure, the rats were then retested on the ASAP paradigm. High-frequency hearing loss did not alter Dark Box preference in the no-sound condition. However, when the 2-20 kHz or 2-8 kHz noise was presented at 60 or 90 dB SPL, the rats avoided the Dark Box significantly more than they did before the exposure, indicating these two noise bands with energy below the region of hearing loss were perceived as more aversive. In contrast, when the 16-20 kHz noise was presented at 60 or 90 dB SPL, the rats remained in the Dark Box presumably because the high-frequency hearing loss made 16-20 kHz noise less audible and less aversive. These results indicate that when rats develop a high-frequency hearing loss, they become less tolerant of low frequency noise, i.e., high intensity sounds are perceived as more aversive and should be avoided.
Collapse
Affiliation(s)
- Senthilvelan Manohar
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA.
| | - Jaclyn Spoth
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Kelly Radziwon
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Benjamin D Auerbach
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, 137 Cary Hall, University at Buffalo, Buffalo, NY 14214, USA; Department of Audiology and Speech-Language Pathology, Asia University, Taichung, Taiwan
| |
Collapse
|
27
|
Jiang C, Luo B, Manohar S, Chen GD, Salvi R. Plastic changes along auditory pathway during salicylate-induced ototoxicity: Hyperactivity and CF shifts. Hear Res 2017; 347:28-40. [PMID: 27989950 PMCID: PMC5403591 DOI: 10.1016/j.heares.2016.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 09/30/2016] [Accepted: 10/26/2016] [Indexed: 12/27/2022]
Abstract
High dose of salicylate, the active ingredient in aspirin, has long been known to induce transient hearing loss, tinnitus and hyperacusis making it a powerful experimental tool. These salicylate-induced perceptual disturbances are associated with a massive reduction in the neural output of the cochlea. Paradoxically, the diminished neural output of the cochlea is accompanied by a dramatic increase in sound-evoked activity in the auditory cortex (AC) and several other parts of the central nervous system. Exactly where the increase in neural activity begins and builds up along the central auditory pathway are not fully understood. To address this issue, we measured sound-evoked neural activity in the cochlea, cochlear nucleus (CN), inferior colliculus (IC), and AC before and after administering a high dose of sodium salicylate (SS, 300 mg/kg). The SS-treatment abolished low-level sound-evoked responses along the auditory pathway resulting in a 20-30 dB threshold shift. While the neural output of the cochlea was substantially reduced at high intensities, the neural responses in the CN were only slightly reduced; those in the IC were nearly normal or slightly enhanced while those in the AC considerably enhanced, indicative of a progress increase in central gain. The SS-induced increase in central response in the IC and AC was frequency-dependent with the greatest increase occurring in the mid-frequency range the putative pitch of SS-induced tinnitus. This frequency-dependent hyperactivity appeared to result from shifts in the frequency receptive fields (FRF) such that the response areas of many FRF shifted/expanded toward the mid-frequencies. Our results suggest that the SS-induced threshold shift originates in the cochlea. In contrast, enhanced central gain is not localized to one region, but progressively builds up at successively higher stage of the auditory pathway either through a loss of inhibition and/or increased excitation.
Collapse
Affiliation(s)
- Chen Jiang
- Department of Neurosurgery, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui 230001, China; Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Bin Luo
- Department of Neurosurgery, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui 230001, China; Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Richard Salvi
- Center for Hearing and Deafness, State University of New York at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, USA
| |
Collapse
|
28
|
Xiong B, Alkharabsheh A, Manohar S, Chen GD, Yu N, Zhao X, Salvi R, Sun W. Hyperexcitability of inferior colliculus and acoustic startle reflex with age-related hearing loss. Hear Res 2017; 350:32-42. [PMID: 28431308 DOI: 10.1016/j.heares.2017.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/04/2017] [Accepted: 03/24/2017] [Indexed: 10/19/2022]
Abstract
Chronic tinnitus and hyperacusis often develop with age-related hearing loss presumably due to aberrant neural activity in the central auditory system (CAS) induced by cochlear pathologies. However, the full spectrum of physiological changes that occur in the CAS as a result age-related hearing loss are still poorly understood. To address this issue, neurophysiological measures were obtained from the cochlea and the inferior colliculus (IC) of 2, 6 and 12 month old C57BL/6J mice, a mouse model for early age-related hearing loss. Thresholds of the compound action potentials (CAP) in 6 and 12 month old mice were significantly higher than in 2 month old mice. The sound driven and spontaneous firing rates of IC neurons, recorded with 16 channel electrodes, revealed mean IC thresholds of 22.8 ± 6.5 dB (n = 167) at 2 months, 37.9 ± 6.2 dB (n = 132) at 6 months and 47.1 ± 15.3 dB (n = 151) at 12 months of age consistent with the rise in CAP thresholds. The characteristic frequencies (CF) of IC neurons ranged from 3 to 32 kHz in 2 month old mice; the upper CF ranged decreased to 26 kHz and 16 kHz in 6 and 12 month old mice respectively. The percentage of IC neurons with CFs between 8 and 12 kHz increased from 36.5% in 2 month old mice, to 48.8% and 76.2% in 6 and 12 month old mice, respectively, suggesting a downshift of IC CFs due to the high-frequency hearing loss. The average spontaneous firing rate (SFRs) of all recorded neurons in 2 month old mice was 3.2 ± 2.5 Hz (n = 167). For 6 and 12 month old mice, the SFRs of low CF neurons (<8 kHz) was maintained at 3-6 spikes/s; whereas SFRs of IC neurons with CFs > 8 kHz increased to 13.0 ± 15.4 (n = 68) Hz at 6 months of age and then declined to 4.8 ± 7.4 (n = 110) spikes/s at 12 months of age. In addition, sound-evoked activity at suprathreshold levels at 6 months of age was much higher than at 2 and 12 months of age. To evaluate the behavioral consequences of sound evoked hyperactivity in the IC, the amplitude of the acoustic startle reflex was measured at 4, 8 and 16 kHz using narrow band noise bursts. Acoustic startle reflex amplitudes in 6 and 12 month old mice (n = 4) were significantly larger than 2 month old mice (n = 4) at 4 and 8 kHz, but not 16 kHz. The enhanced reflex amplitudes suggest that high-intensity, low-frequency sounds are perceived as louder than normal in 6 and 12 month old mice compared to 2 month olds. The increased spontaneous activity, particularly at 6 months, may be related to tinnitus whereas the increase in sound-evoked activity and startle reflex amplitudes may be related to hyperacusis.
Collapse
Affiliation(s)
- Binbin Xiong
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China; Center for Hearing & Deafness, Department of Communicative Disorders and Science, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States
| | - Ana'am Alkharabsheh
- Center for Hearing & Deafness, Department of Communicative Disorders and Science, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States
| | - Senthilvelan Manohar
- Center for Hearing & Deafness, Department of Communicative Disorders and Science, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States
| | - Guang-Di Chen
- Center for Hearing & Deafness, Department of Communicative Disorders and Science, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States
| | - Ning Yu
- Research Institute of Otolaryngology, General Hospital of PLA, 28 Fuxing Road, Beijing, 100853, PR China
| | - Xiaoming Zhao
- Department of Otolaryngology, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, PR China
| | - Richard Salvi
- Center for Hearing & Deafness, Department of Communicative Disorders and Science, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States
| | - Wei Sun
- Center for Hearing & Deafness, Department of Communicative Disorders and Science, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, United States.
| |
Collapse
|
29
|
Chen YC, Chen GD, Auerbach BD, Manohar S, Radziwon K, Salvi R. Tinnitus and hyperacusis: Contributions of paraflocculus, reticular formation and stress. Hear Res 2017; 349:208-222. [PMID: 28286099 DOI: 10.1016/j.heares.2017.03.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Revised: 02/23/2017] [Accepted: 03/04/2017] [Indexed: 12/21/2022]
Abstract
Tinnitus and hyperacusis are common and potentially serious hearing disorders associated with noise-, age- or drug-induced hearing loss. Accumulating evidence suggests that tinnitus and hyperacusis are linked to excessive neural activity in a distributed brain network that not only includes the central auditory pathway, but also brain regions involved in arousal, emotion, stress and motor control. Here we examine electrophysiological changes in two novel non-auditory areas implicated in tinnitus and hyperacusis: the caudal pontine reticular nucleus (PnC), involved in arousal, and the paraflocculus lobe of the cerebellum (PFL), implicated in head-eye coordination and gating tinnitus and we measure the changes in corticosterone stress hormone levels. Using the salicylate-induced model of tinnitus and hyperacusis, we found that long-latency (>10 ms) sound-evoked response components in both the brain regions were significantly enhanced after salicylate administration, while the short-latency responses were reduced, likely reflecting cochlear hearing loss. These results are consistent with the central gain model of tinnitus and hyperacusis, which proposes that these disorders arise from the amplification of neural activity in central auditory pathway plus other regions linked to arousal, emotion, tinnitus gating and motor control. Finally, we demonstrate that salicylate results in an increase in corticosterone level in a dose-dependent manner consistent with the notion that stress may interact with hearing loss in tinnitus and hyperacusis development. This increased stress response has the potential to have wide-ranging effects on the central nervous system and may therefore contribute to brain-wide changes in neural activity.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China; Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA.
| | | | | | - Kelly Radziwon
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| | - Richard Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
30
|
Salvi R, Sun W, Ding D, Chen GD, Lobarinas E, Wang J, Radziwon K, Auerbach BD. Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain. Front Neurosci 2017; 10:621. [PMID: 28149271 PMCID: PMC5241314 DOI: 10.3389/fnins.2016.00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/30/2016] [Indexed: 11/13/2022] Open
Abstract
There are three times as many outer hair cells (OHC) as inner hair cells (IHC), yet IHC transmit virtually all acoustic information to the brain as they synapse with 90–95% of type I auditory nerve fibers. Here we review a comprehensive series of experiments aimed at determining how loss of the IHC/type I system affects hearing by selectively destroying these cells in chinchillas using the ototoxic anti-cancer agent carboplatin. Eliminating IHC/type I neurons has no effect on distortion product otoacoustic emission or the cochlear microphonic potential generated by OHC; however, it greatly reduces the summating potential produced by IHC and the compound action potential (CAP) generated by type I neurons. Remarkably, responses from remaining auditory nerve fibers maintain sharp tuning and low thresholds despite innervating regions of the cochlea with ~80% IHC loss. Moreover, chinchillas with large IHC lesions have surprisingly normal thresholds in quiet until IHC losses exceeded 80%, suggesting that only a few IHC are needed to detect sounds in quiet. However, behavioral thresholds in broadband noise are elevated significantly and tone-in-narrow band noise masking patterns exhibit greater remote masking. These results suggest the auditory system is able to compensate for considerable loss of IHC/type I neurons in quiet but not in difficult listening conditions. How does the auditory brain deal with the drastic loss of cochlear input? Recordings from the inferior colliculus found a relatively small decline in sound-evoked activity despite a large decrease in CAP amplitude after IHC lesion. Paradoxically, sound-evoked responses are generally larger than normal in the auditory cortex, indicative of increased central gain. This gain enhancement in the auditory cortex is associated with decreased GABA-mediated inhibition. These results suggest that when the neural output of the cochlea is reduced, the central auditory system compensates by turning up its gain so that weak signals once again become comfortably loud. While this gain enhancement is able to restore normal hearing under quiet conditions, it may not adequately compensate for peripheral dysfunction in more complex sound environments. In addition, excessive gain increases may convert recruitment into the debilitating condition known as hyperacusis.
Collapse
Affiliation(s)
- Richard Salvi
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Wei Sun
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Dalian Ding
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | | | - Jian Wang
- School of Human Communication Disorders, Dalhousie University Halifax, NS, Canada
| | - Kelly Radziwon
- Center for Hearing and Deafness, University at Buffalo Buffalo, NY, USA
| | | |
Collapse
|
31
|
Song Y, Liu J, Ma F, Mao L. Diazepam reduces excitability of amygdala and further influences auditory cortex following sodium salicylate treatment in rats. Acta Otolaryngol 2016; 136:1220-1224. [PMID: 27388640 DOI: 10.1080/00016489.2016.1204664] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Diazepam can reduce the excitability of lateral amygdala and eventually suppress the excitability of the auditory cortex in rats following salicylate treatment, indicating the regulating effect of lateral amygdala to the auditory cortex in the tinnitus procedure. OBJECTIVE To study the spontaneous firing rates (SFR) of the auditory cortex and lateral amygdala regulated by diazepam in the tinnitus rat model induced by sodium salicylate. MATERIALS AND METHODS This study first created a tinnitus rat modal induced by sodium salicylate, and recorded SFR of both auditory cortex and lateral amygdala. Then diazepam was intraperitoneally injected and the SFR changes of lateral amygdala recorded. Finally, diazepam was microinjected on lateral amygdala and the SFR changes of the auditory cortex recorded. RESULTS Both SFRs of the auditory cortex and lateral amygdala increased after salicylate treatment. SFR of lateral amygdala decreased after intraperitoneal injection of diazepam. Microinjecting diazepam to lateral amygdala decreased SFR of the auditory cortex ipsilaterally and contralaterally.
Collapse
|