1
|
Liang Y, Feng Q, Wang Z. Mass Spectrometry Imaging as a New Method: To Reveal the Pathogenesis and the Mechanism of Traditional Medicine in Cerebral Ischemia. Front Pharmacol 2022; 13:887050. [PMID: 35721195 PMCID: PMC9204101 DOI: 10.3389/fphar.2022.887050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Mass spectrometry imaging (MSI) can describe the spatial distribution of molecules in various complex biological samples, such as metabolites, lipids, peptides and proteins in a comprehensive way, and can provide highly relevant supplementary information when combined with other molecular imaging techniques and chromatography techniques, so it has been used more and more widely in biomedical research. The application of mass spectrometry imaging in neuroscience is developing. It is very advantageous and necessary to use MSI to study various pathophysiological processes involved in brain injury and functional recovery during cerebral ischemia. Therefore, this paper introduces the techniques of mass spectrometry, including the principle of mass spectrometry, the acquisition and preparation of imaging samples, the commonly used ionization techniques, and the optimization of the current applied methodology. Furthermore, the research on the mechanism of cerebral ischemia by mass spectrometry was reviewed, such as phosphatidylcholine involved, dopamine, spatial distribution and level changes of physiological substances such as ATP in the Krebs cycle; The characteristics of mass spectrometry imaging as one of the methods of metabolomics in screening biomarkers related to cerebral ischemia were analyzed the advantages of MSI in revealing drug distribution and the mechanism of traditional drugs were summarized, and the existing problems of MSI were also analyzed and relevant suggestions were put forward.
Collapse
Affiliation(s)
- Yan Liang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoqiao Feng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhang Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- College of Ethnomedicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Zhang Wang,
| |
Collapse
|
2
|
Guliaev SM. [Vascular, molecular and cellular mechanisms of development of cognitive impairments after occlusion of carotid arteries]. ANGIOLOGIIA I SOSUDISTAIA KHIRURGIIA = ANGIOLOGY AND VASCULAR SURGERY 2021; 27:11-16. [PMID: 34166339 DOI: 10.33529/angio2021201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AIM The study was aimed at determining the role of vascular endothelial dysfunction in induction of molecular and cellular mechanisms of the development of cognitive impairments after occlusion of common carotid arteries. MATERIAL AND METHODS The experiments were carried out on Wistar rats. The animals were divided into 2 groups: group 1 - control, sham-operated animals; group 2 - rats with cerebral ischaemia-reperfusion. The model of cerebral ischaemia-reperfusion was reproduced by means of simultaneous occlusion of common carotid arteries (for 5 minutes). The degree of endothelial dysfunction was assessed by determining the amount of circulating endotheliocytes and concentration of nitrogen oxide products in blood plasma. In the brain, we measured the content of malonic dialdehyde, the activity of superoxide dismutase and catalase. Pathomorphological studies of cerebral structures and morphometric analysis of the number of damaged neurons in ischaemic exposure were carried out by means of light microscopy. Cognitive functions in rats were assessed by means of conditioned reaction of passive avoidance and the test of pattern identification. RESULTS Common carotid arteries occlusion in rats induced an increase in the level of circulating endotheliocytes and a decrease in end products of nitrogen oxide - nitrites in blood plasma as compared with the control (p≤0.05); the content of malonic dialdehyde in the brain increased 2.6-fold, the activity of superoxide dismutase and catalase decreased 5.9-fold and 2.8-fold, respectively (p≤0.05). The findings of pathomorphological examination registered signs of vasoconstrictive reactions, endothelial oedema, an increase in the proportion of damaged neurons in the cortex of greater hemispheres and hippocampus (p≤0.05). It was determined that occlusion of common carotid arteries in rats resulted in memory disorders revealed in tests of conditioned passive avoidance response and pattern identification (p≤0.05). CONCLUSION Occlusion of common carotid arteries in rats becomes a cause of endothelial dysfunction, neurometabolic alterations, damage of neurons in vulnerable regions of the cerebral cortex, hippocampus and cognitive impairments. Damaging factors of the neurovascular system are intensification of oxidative processes and a decrease in the level of antioxidant defence, presenting important targets of neuroprotection.
Collapse
Affiliation(s)
- S M Guliaev
- Laboratory of Experimental Pharmacology, Institute of General and Experimental Biology of the Siberian Branch of the Russian Academy of Sciences, Ulan-Ude, Russia
| |
Collapse
|
3
|
Wang X, Xu Y, Jia Q, Song X, Zhang L, Zhang W, Qian Y, Qiu J. Perturbations in glycerophospholipid levels of PC12 cells after exposure to PCB95 based on targeted lipidomics analysis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 235:108788. [PMID: 32376495 DOI: 10.1016/j.cbpc.2020.108788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023]
Abstract
Polychlorinated biphenyls (PCBs) are a group of organic chlorine chemicals that can induce various adverse health effects in animals and humans. The toxicology of PCBs is a significant public health concern because of their long-term presence in the environment. Among the 209 PCB congeners, PCB95 has been reported to be neurotoxic, however, there has been limited researches on evaluating whether and how PCB95 affects cellular lipids, the most abundant components of the brain. In this study, PCB95 was found to inhibit cell proliferation at concentrations of 0.1 μM, 2 μM and 10 μM for 120 h. Additionally, there may be a shift in apoptosis to necrosis at 2 μM PCB95 exposure for 24 h. However, lipid peroxidation was found not dominant for PCB95 exposure, especially at the concentrations of 0.1 μM and 2 μM. Because of playing vital roles in cell metabolism, 20 glycerophospholipids in PC12 cells were investigated after exposure to PCB95 for 120 h. The distinctions in the orthogonal projection to latent structures-discriminant analysis (OPLS-DA) models indicated that different concentrations of PCB95 leaded to aberrant glycerophospholipid metabolism. Based on the principles of t-test P-value < 0.05, variable importance at projection (VIP) value >1 and fold change >1, PC (14:0/14:0) and PC (16:0/14:0) were screened as potential biomarkers from all the target glycerophospholipids. This study is the first time that identifies the effects of PCB95 on specific glycerophospholipids in PC12 cells, and the observed changes in glycerophospholipids provides the basis for further evaluation of PCB95-induced neurotoxicity mechanisms.
Collapse
Affiliation(s)
- Xinlu Wang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yanyang Xu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Qi Jia
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Xiao Song
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Lin Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Wei Zhang
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Yongzhong Qian
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| | - Jing Qiu
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agri-food Quality and Safety, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
4
|
Zhu T, Wang L, Tian F, Zhao X, Pu XP, Sun GB, Sun XB. Anti-ischemia/reperfusion injury effects of notoginsenoside R1 on small molecule metabolism in rat brain after ischemic stroke as visualized by MALDI-MS imaging. Biomed Pharmacother 2020; 129:110470. [PMID: 32768957 DOI: 10.1016/j.biopha.2020.110470] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 02/09/2023] Open
Abstract
Ischemic stroke is a syndrome of severe neurological responses that cause neuronal death, damage to the neurovascular unit and inflammation. Notoginsenoside R1 (NG-R1) is a neuroprotective drug that is commonly used to treat neurodegenerative and cerebrovascular diseases. However, its potential mechanisms on the regulation of small molecule metabolism in ischemic stroke are largely unknown. The aim of this study was to explore the potential mechanisms of NG-R1 on the regulation of small molecule metabolism after ischemic stroke. Here, we found that NG-R1 reduced infarct size and improved neurological deficits by ameliorating neuronal damage and inhibiting glial activation in MCAO/R rats. Furthermore, using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), we clarified that NG-R1 regulated ATP metabolism, the tricarboxylic acid (TCA) cycle, the malate-aspartate shuttle, antioxidant activity, and the homeostasis of iron and phospholipids in the striatum and hippocampus of middle cerebral artery occlusion/reperfusion (MCAO/R) rats. In general, NG-R1 is a promising compound for brain protection from ischemic/reperfusion injury, possibly through the regulation of brain small molecule metabolism.
Collapse
Affiliation(s)
- Ting Zhu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Lei Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China; Harbin University of Commerce, Harbin, Heilongjiang, 150000, China.
| | - Fang Tian
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Xin Zhao
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Xiao-Ping Pu
- National Key Research Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100191, China.
| | - Gui-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| |
Collapse
|
5
|
Rashad S, Saigusa D, Yamazaki T, Matsumoto Y, Tomioka Y, Saito R, Uruno A, Niizuma K, Yamamoto M, Tominaga T. Metabolic basis of neuronal vulnerability to ischemia; an in vivo untargeted metabolomics approach. Sci Rep 2020; 10:6507. [PMID: 32300196 PMCID: PMC7162929 DOI: 10.1038/s41598-020-63483-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Understanding the root causes of neuronal vulnerability to ischemia is paramount to the development of new therapies for stroke. Transient global cerebral ischemia (tGCI) leads to selective neuronal cell death in the CA1 sub-region of the hippocampus, while the neighboring CA3 sub-region is left largely intact. By studying factors pertaining to such selective vulnerability, we can develop therapies to enhance outcome after stroke. Using untargeted liquid chromatography-mass spectrometry, we analyzed temporal metabolomic changes in CA1 and CA3 hippocampal areas following tGCI in rats till the setting of neuronal apoptosis. 64 compounds in CA1 and 74 in CA3 were found to be enriched and statistically significant following tGCI. Pathway analysis showed that pyrimidine and purine metabolism pathways amongst several others to be enriched after tGCI in CA1 and CA3. Metabolomics analysis was able to capture very early changes following ischemia. We detected 6 metabolites to be upregulated and 6 to be downregulated 1 hour after tGCI in CA1 versus CA3. Several metabolites related to apoptosis and inflammation were differentially expressed in both regions after tGCI. We offer a new insight into the process of neuronal apoptosis, guided by metabolomic profiling that was not performed to such an extent previously.
Collapse
Affiliation(s)
- Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Daisuke Saigusa
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Takahiro Yamazaki
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yotaro Matsumoto
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Ritsumi Saito
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Akira Uruno
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan. .,Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Sendai, Japan.,Medical Biochemistry, Tohoku University School of Medicine, Sendai, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
6
|
Neumann EK, Ellis JF, Triplett AE, Rubakhin SS, Sweedler JV. Lipid Analysis of 30 000 Individual Rodent Cerebellar Cells Using High-Resolution Mass Spectrometry. Anal Chem 2019; 91:7871-7878. [PMID: 31122012 DOI: 10.1021/acs.analchem.9b01689] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Single-cell measurements aid our understanding of chemically heterogeneous systems such as the brain. Lipids are one of the least studied chemical classes, and their cell-to-cell heterogeneity remains largely unexplored. We adapted microscopy-guided single-cell profiling using matrix-assisted laser desorption/ionization ion cyclotron resonance mass spectrometry to profile the lipid composition of over 30 000 individual rat cerebellar cells. We detected 520 lipid features, many of which were found in subsets of cells; Louvain clustering identified 101 distinct groups that can be correlated to neuronal and astrocytic classifications and lipid classes. Overall, the two most common lipids found were [PC(32:0)+H]+ and [PC(34:1)+H]+, which were present within 98.9 and 89.5% of cells, respectively; lipid signals present in <1% of cells were also detected, including [PC(34:1)+K]+ and [PG(40:2(OH))+Na]+. These results illustrate the vast lipid heterogeneity found within rodent cerebellar cells and hint at the distinct functional consequences of this heterogeneity.
Collapse
|
7
|
Nakazaki E, Yabuki Y, Izumi H, Shinoda Y, Watanabe F, Hishida Y, Kamimura A, Fukunaga K. Combined citicoline and docosahexaenoic acid treatment improves cognitive dysfunction following transient brain ischemia. J Pharmacol Sci 2019; 139:319-324. [PMID: 30871872 DOI: 10.1016/j.jphs.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 01/01/2023] Open
Abstract
Phospholipids are structural components of cellular membranes that play important roles as precursors for various signaling pathways in modulating neuronal membrane function and maintenance of the intracellular environment. Phosphatidylcholine (PtdCho) is the most abundant cellular phospholipid. Citicoline and docosahexaenoic acid (DHA) are essential intermediates in the synthesis of PtdCho. Both PtdCho intermediates have independently shown neuroprotective effects in cerebral ischemia, but their combined effect is unknown. This study aimed to investigate the combined effect of oral citicoline and DHA treatment on improvement of cognitive deficits following cerebral ischemia using a 20-min bilateral common carotid artery occlusion (BCCAO) mouse model. BCCAO ischemic mice were treated for a total of 11 days with a combination of citicoline (40 mg/kg body weight/day) and DHA (300 mg/kg body weight/day) or each alone. Combined citicoline and DHA synergistically and significantly improved learning and memory ability of ischemic mice compared with either alone. Further, citicoline and DHA treatment significantly prevented neuronal cell death, and slightly increased DHA-containing PtdCho in the hippocampus, albeit not significantly. Taken together, these findings suggest that combined citicoline and DHA treatment may have synergistic benefits for partially improving memory deficits following transient brain ischemia.
Collapse
Affiliation(s)
- Eri Nakazaki
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, 305-0841, Japan
| | - Yasushi Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8678, Japan
| | - Hisanao Izumi
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8678, Japan
| | - Yasuharu Shinoda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8678, Japan
| | - Fumiko Watanabe
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, 305-0841, Japan
| | - Yukihiro Hishida
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, 305-0841, Japan
| | - Ayako Kamimura
- Research & Innovation Center, Kyowa Hakko Bio Co., Ltd., Tsukuba, Ibaraki, 305-0841, Japan
| | - Kohji Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8678, Japan.
| |
Collapse
|
8
|
Fate of Astrocytes in The Gerbil Hippocampus After Transient Global Cerebral Ischemia. Int J Mol Sci 2019; 20:ijms20040845. [PMID: 30781368 PMCID: PMC6412566 DOI: 10.3390/ijms20040845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/03/2019] [Accepted: 02/13/2019] [Indexed: 01/13/2023] Open
Abstract
Neuronal death and reactive gliosis are major features of brain tissue damage following transient global cerebral ischemia (tgCI). This study investigated long-term changes in neuronal death and astrogliosis in the gerbil hippocampus for 180 days after 5 min of tgCI. A massive loss of pyramidal neurons was found in the hippocampal CA1 area (CA1) area between 5 and 30 days after tgCI by Fluoro-Jade B (FJB, a marker for neuronal degeneration) histofluorescence staining, but pyramidal neurons in the CA2/3 area did not die. The reaction of astrocytes (astrogliosis) was examined by glial fibrillary acidic protein (GFAP) immunohistochemistry. Morphological change or degeneration (death) of the astrocytes was found in the CA1 area after tgCI, but, in the CA2/3 area, astrogliosis was hardly shown. GFAP immunoreactive astrocytes in the CA1 area was significantly increased in number with time and peaked at 30 days after tgCI, and they began to be degenerated or dead from 40 days after tgCI. The effect was examined by double immunofluorescence staining for FJB and GFAP. The number of FJB/GFAP⁺ cells (degenerating astrocytes) was gradually increased with time after tgCI. At 180 days after tgCI, FJB/GFAP⁺ cells were significantly decreased, but FJB⁺ cells (dead astrocytes) were significantly increased. In brief, 5 min of tgCI induced a progressive degeneration of CA1 pyramidal neurons from 5 until 30 days with an increase of reactive astrocytes, and, thereafter, astrocytes were degenerated with time and dead at later times. This phenomenon might be shown due to the death of neurons.
Collapse
|
9
|
Sabogal-Guáqueta AM, Villamil-Ortiz JG, Arias-Londoño JD, Cardona-Gómez GP. Inverse Phosphatidylcholine/Phosphatidylinositol Levels as Peripheral Biomarkers and Phosphatidylcholine/Lysophosphatidylethanolamine-Phosphatidylserine as Hippocampal Indicator of Postischemic Cognitive Impairment in Rats. Front Neurosci 2018; 12:989. [PMID: 30627084 PMCID: PMC6309919 DOI: 10.3389/fnins.2018.00989] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia is a transversal phenomenon in different kinds of neurodegenerative diseases involving acute and chronic brain alterations. Specifically, the role of phospholipids in the pathogenesis of dementia remains unknown. In the present study, we explored phospholipid profiles a month postischemia in cognitively impaired rats. The two-vessel occlusion (2-VO) model was used to generate brain parenchyma ischemia in adult male rats confirmed by alterations in myelin, endothelium, astrocytes and inflammation mediator. A lipidomic analysis was performed via mass spectrometry in the hippocampus and serum a month postischemia. We found decreases in phospholipids (PLs) associated with neurotransmission, such as phosphatidylcholine (PC 32:0, PC 34:2, PC 36:3, PC 36:4, and PC 42:1), and increases in PLs implied in membrane structure and signaling, such as lysophosphatidylethanolamine (LPE 18:1, 20:3, and 22:6) and phosphatidylserine (PS 38:4, 36:2, and 40:4), in the hippocampus. Complementarily, PC (PC 34:2, PC 34:3, PC 38:5, and PC 36:5) and ether-PC (ePC 34:1, 34:2, 36:2, 38:2, and 38:3) decreased, while Lyso-PC (LPC 18:0, 18:1, 20:4, 20:5, and LPC 22:6) and phosphatidylinositol (PI 36:2, 38:4, 38:5, and 40:5), as neurovascular state sensors, increased in the serum. Taken together, these data suggest inverse PC/LPC-PI levels as peripheral biomarkers and inverse PC/LPE-PS as a central indicator of postischemic cognitive impairment in rats.
Collapse
Affiliation(s)
- Angelica Maria Sabogal-Guáqueta
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia, Medellin, Colombia
| | - Javier Gustavo Villamil-Ortiz
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia, Medellin, Colombia
| | | | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, Sede de Investigación Universitaria (SIU), University of Antioquia, Medellin, Colombia
| |
Collapse
|
10
|
Xu G, Li J. Recent advances in mass spectrometry imaging for multiomics application in neurology. J Comp Neurol 2018; 527:2158-2169. [DOI: 10.1002/cne.24571] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/14/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Guang Xu
- Hubei Education Cloud Service Engineering Technology Research CenterHubei University of Education Wuhan China
| | - Jianjun Li
- Human Health TherapeuticsNational Research Council Canada Ottawa Ontario
| |
Collapse
|
11
|
Intracellular S1P Levels Dictate Fate of Different Regions of the Hippocampus following Transient Global Cerebral Ischemia. Neuroscience 2018; 384:188-202. [PMID: 29782904 DOI: 10.1016/j.neuroscience.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 11/21/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a sphingolipid molecule produced by the action of sphingosine kinases (SphK) on sphingosine. It possesses various intracellular functions through its interactions with intracellular proteins or via its action on five G-protein-coupled cell membrane receptors. Following transient global cerebral ischemia (tGCI), only the CA1 subregion of the hippocampus undergoes apoptosis. In this study, we evaluated S1P levels and S1P-processing enzyme expression in different hippocampal areas following tGCI in rats. We found that S1P was upregulated earlier in CA3 than in CA1. This was associated with upregulation of SphK1 in both regions; however, SphK2 was downregulated quickly in CA3. S1P lyase was also downregulated in CA3, but not in CA1. Spinster 2, the S1P exporter, was upregulated early in both regions, but was quickly downregulated in CA3. Together, these effects explain the variable levels of S1P in the CA1 and CA3 areas and indicate that S1P levels play a role in the preferential resistance of the CA3 subregion to tGCI-induced ischemia. FTY720 did not improve neuronal survival in the CA1 subregion, indicating that these effects were due to intracellular S1P accumulation. In conclusion, the findings suggest that intracellular S1P levels affect neuronal cell fate following tGCI.
Collapse
|
12
|
Sabogal-Guáqueta AM, Posada-Duque R, Cortes NC, Arias-Londoño JD, Cardona-Gómez GP. Changes in the hippocampal and peripheral phospholipid profiles are associated with neurodegeneration hallmarks in a long-term global cerebral ischemia model: Attenuation by Linalool. Neuropharmacology 2018; 135:555-571. [PMID: 29680773 DOI: 10.1016/j.neuropharm.2018.04.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/22/2022]
Abstract
Phospholipid alterations in the brain are associated with progressive neurodegeneration and cognitive impairment after acute and chronic injuries. Various types of treatments have been evaluated for their abilities to block the progression of the impairment, but effective treatments targeting long-term post-stroke alterations are not available. In this study, we analyzed changes in the central and peripheral phospholipid profiles in ischemic rats and determined whether a protective monoterpene, Linalool, could modify them. We used an in vitro model of glutamate (125 μM) excitotoxicity and an in vivo global ischemia model in Wistar rats. Linalool (0.1 μM) protected neurons and astrocytes by reducing LDH release and restoring ATP levels. Linalool was administered orally at a dose of 25 mg/kg every 24 h for a month, behavioral tests were performed, and a lipidomic analysis was conducted using mass spectrometry. Animals treated with Linalool displayed faster neurological recovery than untreated ischemic animals, accompanied by better motor and cognitive performances. These results were confirmed by the significant reduction in astrogliosis, microgliosis and COX-2 marker, involving a decrease of 24:0 free fatty acid in the hippocampus. The altered profiles of phospholipids composed of mono and polyunsaturated fatty acids (PC 36:1; 42:1 (24:0/18:1)/LPC 22:6)/LPE 22:6) in the ischemic hippocampus and the upregulation of PI 36:2 and other LCFA (long chain fatty acids) in the serum of ischemic rats were prevented by the monoterpene. Based on these data, alterations in the central and peripheral phospholipid profiles after long-term was attenuated by oral Linalool, promoting a phospholipid homeostasis, related to the recovery of brain function.
Collapse
Affiliation(s)
- Angélica Maria Sabogal-Guáqueta
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia
| | - Rafael Posada-Duque
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia; Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Natalie Charlotte Cortes
- Grupo de Investigación en Sustancias Bioactivas, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquía, Medellín, Colombia
| | | | - Gloria Patricia Cardona-Gómez
- Neuroscience Group of Antioquia, Cellular and Molecular Neurobiology Area - School of Medicine, SIU, University of Antioquia, Calle 70 # 52-21, Medellín, Colombia.
| |
Collapse
|
13
|
Liu H, Zhou Y, Wang J, Xiong C, Xue J, Zhan L, Nie Z. N-Phenyl-2-naphthylamine as a Novel MALDI Matrix for Analysis and in Situ Imaging of Small Molecules. Anal Chem 2017; 90:729-736. [PMID: 29172460 DOI: 10.1021/acs.analchem.7b02710] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Due to its strong ultraviolet absorption, low background interference in the small molecular range, and salt tolerance capacity, N-phenyl-2-naphthylamine (PNA) was developed as a novel matrix in the present study for analysis and imaging of small molecules by matrix-assisted laser desorption/ionization mass spectrometry time-of-fight (MALDI-TOF MS). The newly developed matrix displayed good performance in analysis of a wide range of small-molecule metabolites including free fatty acids, amino acids, peptides, antioxidants, and phospholipids. In addition, PNA-assisted LDI MS imaging of small molecules in brain tissue of rats subjected to middle cerebral artery occlusion (MCAO) revealed unique distributions and changes of 89 small-molecule metabolites including amino acids, antioxidants, free fatty acids, phospholipids, and sphingolipids in brain tissue 24 h postsurgery. Fifty-nine of the altered metabolites were identified, and all the changed metabolites were subject to relative quantitation and statistical analysis. The newly developed matrix has great potential application in the field of biomedical research.
Collapse
Affiliation(s)
- Huihui Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Yueming Zhou
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China.,College of Chemistry, Biology and Material Sciences, East China University of Technology , Nanchang 330013, China
| | - Jiyun Wang
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Caiqiao Xiong
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Jinjuan Xue
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Lingpeng Zhan
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China
| | - Zongxiu Nie
- Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, and Beijing National Laboratory for Molecular Sciences , Beijing 100190, China.,National Center for Mass Spectrometry in Beijing , Beijing 100190, China
| |
Collapse
|
14
|
Hwang IK, Park JH, Lee TK, Kim DW, Yoo KY, Ahn JH, Kim YH, Cho JH, Kim YM, Won MH, Moon SM. CD74-immunoreactive activated M1 microglia are shown late in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 2017; 15:4148-4154. [PMID: 28487994 PMCID: PMC5436280 DOI: 10.3892/mmr.2017.6525] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 03/08/2017] [Indexed: 01/25/2023] Open
Abstract
Activated M1 microglia secrete proinflammatory cytokines into damaged brain areas. The present study examined activated M1 microglial morphology and expression in the hippocampal Cornu Ammonis (CA) 1 region, which is vulnerable to transient ischemia. Transient cerebral ischemia was performed for 5 min in gerbils, and neuronal death in the CA1 region following transient cerebral ischemia was confirmed using cresyl violet staining, neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescent staining. In addition, CA1 regions were stained for cluster of differentiation (CD) 74, a marker for activated M1 microglia and a ligand for macrophage migration inhibitory factor In sham-operated animals, no CD74 immunoreactivity was observed in the hippocampal CA1 region. CD74 immunoreactivity was not observed in the hippocampal CA1 region until 3 days post-ischemic insult; however, elevated CD74 immunoreactivity was detected in the CA1 region from 5 days post-ischemia. Double immunofluorescence staining for CD74 and ionized calcium-binding adapter molecule 1, a marker for M1 microglial cells, confirmed the expression of CD74 on this microglial subtype. These results indicated that M1 microglia are activated late in the hippocampal CA1 region following ischemic stroke. Therefore, optimizing the timing of therapeutic intervention may reduce activated M1 microglial-induced neuronal damage.
Collapse
Affiliation(s)
- In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Ki-Yeon Yoo
- Department of Oral Anatomy, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Yang Hee Kim
- Department of Surgery, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|