1
|
Briand-Mésange F, Gennero I, Salles J, Trudel S, Dahan L, Ausseil J, Payrastre B, Salles JP, Chap H. From Classical to Alternative Pathways of 2-Arachidonoylglycerol Synthesis: AlterAGs at the Crossroad of Endocannabinoid and Lysophospholipid Signaling. Molecules 2024; 29:3694. [PMID: 39125098 PMCID: PMC11314389 DOI: 10.3390/molecules29153694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
2-arachidonoylglycerol (2-AG) is the most abundant endocannabinoid (EC), acting as a full agonist at both CB1 and CB2 cannabinoid receptors. It is synthesized on demand in postsynaptic membranes through the sequential action of phosphoinositide-specific phospholipase Cβ1 (PLCβ1) and diacylglycerol lipase α (DAGLα), contributing to retrograde signaling upon interaction with presynaptic CB1. However, 2-AG production might also involve various combinations of PLC and DAGL isoforms, as well as additional intracellular pathways implying other enzymes and substrates. Three other alternative pathways of 2-AG synthesis rest on the extracellular cleavage of 2-arachidonoyl-lysophospholipids by three different hydrolases: glycerophosphodiesterase 3 (GDE3), lipid phosphate phosphatases (LPPs), and two members of ecto-nucleotide pyrophosphatase/phosphodiesterases (ENPP6-7). We propose the names of AlterAG-1, -2, and -3 for three pathways sharing an ectocellular localization, allowing them to convert extracellular lysophospholipid mediators into 2-AG, thus inducing typical signaling switches between various G-protein-coupled receptors (GPCRs). This implies the critical importance of the regioisomerism of both lysophospholipid (LPLs) and 2-AG, which is the object of deep analysis within this review. The precise functional roles of AlterAGs are still poorly understood and will require gene invalidation approaches, knowing that both 2-AG and its related lysophospholipids are involved in numerous aspects of physiology and pathology, including cancer, inflammation, immune defenses, obesity, bone development, neurodegeneration, or psychiatric disorders.
Collapse
Affiliation(s)
- Fabienne Briand-Mésange
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
| | - Isabelle Gennero
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Juliette Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Psychiatrie D’urgences, de Crise et de Liaison, Institut des Handicaps Neurologiques, Psychiatriques et Sensoriels, 31059 Toulouse, France
| | - Stéphanie Trudel
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Lionel Dahan
- Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France;
| | - Jérôme Ausseil
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Service de Biochimie, Institut Fédératif de Biologie, 31059 Toulouse, France
| | - Bernard Payrastre
- I2MC-Institute of Metabolic and Cardiovascular Diseases, INSERM UMR1297 and University of Toulouse III, 31400 Toulouse, France;
- Centre Hospitalier Universitaire de Toulouse, Laboratoire d’Hématologie, 31400 Toulouse, France
| | - Jean-Pierre Salles
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Centre Hospitalier Universitaire de Toulouse, Unité d’Endocrinologie et Maladies Osseuses, Hôpital des Enfants, 31059 Toulouse, France
| | - Hugues Chap
- Infinity-Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, INSERM, CNRS, Paul Sabatier University, 31059 Toulouse, France; (F.B.-M.); (I.G.); (J.S.); (S.T.); (J.A.); (J.-P.S.)
- Académie des Sciences, Inscriptions et Belles Lettres de Toulouse, Hôtel d’Assézat, 31000 Toulouse, France
| |
Collapse
|
2
|
Gao C, Gohel CA, Leng Y, Ma J, Goldman D, Levine AJ, Penzo MA. Molecular and spatial profiling of the paraventricular nucleus of the thalamus. eLife 2023; 12:81818. [PMID: 36867023 PMCID: PMC10014079 DOI: 10.7554/elife.81818] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) is known to regulate various cognitive and behavioral processes. However, while functional diversity among PVT circuits has often been linked to cellular differences, the molecular identity and spatial distribution of PVT cell types remain unclear. To address this gap, here we used single nucleus RNA sequencing (snRNA-seq) and identified five molecularly distinct PVT neuronal subtypes in the mouse brain. Additionally, multiplex fluorescent in situ hybridization of top marker genes revealed that PVT subtypes are organized by a combination of previously unidentified molecular gradients. Lastly, comparing our dataset with a recently published single-cell sequencing atlas of the thalamus yielded novel insight into the PVT's connectivity with the cortex, including unexpected innervation of auditory and visual areas. This comparison also revealed that our data contains a largely non-overlapping transcriptomic map of multiple midline thalamic nuclei. Collectively, our findings uncover previously unknown features of the molecular diversity and anatomical organization of the PVT and provide a valuable resource for future investigations.
Collapse
Affiliation(s)
- Claire Gao
- National Institute of Mental HealthBethesdaUnited States
- Department of Neuroscience, Brown UniversityProvidenceUnited States
| | - Chiraag A Gohel
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Yan Leng
- National Institute of Mental HealthBethesdaUnited States
| | - Jun Ma
- National Institute of Mental HealthBethesdaUnited States
| | - David Goldman
- National Institute on Alcohol Abuse and AlcoholismRockvilleUnited States
| | - Ariel J Levine
- National Institute of Child Health and Human DevelopmentBethesdaUnited States
| | - Mario A Penzo
- National Institute of Mental HealthBethesdaUnited States
| |
Collapse
|
3
|
Bainbridge MN, Mazumder A, Ogasawara D, Abou Jamra R, Bernard G, Bertini E, Burglen L, Cope H, Crawford A, Derksen A, Dure L, Gantz E, Koch-Hogrebe M, Hurst ACE, Mahida S, Marshall P, Micalizzi A, Novelli A, Peng H, Rodriguez D, Robbins SL, Rutledge SL, Scalise R, Schließke S, Shashi V, Srivastava S, Thiffault I, Topol S, Qebibo L, Wieczorek D, Cravatt B, Haricharan S, Torkamani A, Friedman J. Endocannabinoid dysfunction in neurological disease: neuro-ocular DAGLA-related syndrome. Brain 2022; 145:3383-3390. [PMID: 35737950 PMCID: PMC9586540 DOI: 10.1093/brain/awac223] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/30/2022] [Indexed: 11/12/2022] Open
Abstract
The endocannabinoid system is a highly conserved and ubiquitous signalling pathway with broad-ranging effects. Despite critical pathway functions, gene variants have not previously been conclusively linked to human disease. We identified nine children from eight families with heterozygous, de novo truncating variants in the last exon of DAGLA with a neuro-ocular phenotype characterized by developmental delay, ataxia and complex oculomotor abnormality. All children displayed paroxysms of nystagmus or eye deviation accompanied by compensatory head posture and worsened incoordination most frequently after waking. RNA sequencing showed clear expression of the truncated transcript and no differences were found between mutant and wild-type DAGLA activity. Immunofluorescence staining of patient-derived fibroblasts and HEK cells expressing the mutant protein showed distinct perinuclear aggregation not detected in control samples. This report establishes truncating variants in the last DAGLA exon as the cause of a unique paediatric syndrome. Because enzymatic activity was preserved, the observed mislocalization of the truncated protein may account for the observed phenotype. Potential mechanisms include DAGLA haploinsufficiency at the plasma membrane or dominant negative effect. To our knowledge, this is the first report directly linking an endocannabinoid system component with human genetic disease and sets the stage for potential future therapeutic avenues.
Collapse
Affiliation(s)
- Matthew N Bainbridge
- Rady Children's Institute for Genomic Medicine (RCIGM), San Diego, CA 92123, USA
| | - Aloran Mazumder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Daisuke Ogasawara
- The Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Geneviève Bernard
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Department of Pediatrics and Human Genetics, McGill University, Montreal, Canada.,Department of Human Genetics, McGill University, Montreal, Canada.,Department Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Department of Neurosciences 'Bambino Gesu' Children's Research Hospital, IRCCS, Rome, Italy
| | - Lydie Burglen
- Centre de Référence Malformations et Maladies Congénitales du Cervelet, Département de génétique, AP-HP Sorbonne Université, Hôpital Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Heidi Cope
- Department of Pediatrics, Division Medical Genetics Durham, Duke University Medical Center, North Carolina, USA
| | | | - Alexa Derksen
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.,Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, Canada
| | - Leon Dure
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Emily Gantz
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sonal Mahida
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Paige Marshall
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alessia Micalizzi
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Roma, Italy
| | - Hongfan Peng
- The Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Diana Rodriguez
- Sorbonne Université, INSERM UMR 1141, AP-HP.SU, Centre de Référence Maladies Rares Malformations et Maladies Congénitales du Cervelet & Service de Neuropédiatrie, Hôpital Trousseau, Paris, France
| | - Shira L Robbins
- Ratner Children's Eye Center at the Shiley Eye Institute; Viterbi Family Department of Ophthalmology, University of California San Diego, La Jolla, CA 92093, USA
| | - S Lane Rutledge
- Division of Pediatric Neurology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL 35233, USA.,Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Roberta Scalise
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy.,Tuscan PhD Program of Neuroscience, University of Florence, Pisa and Siena, Florence, Italy
| | - Sophia Schließke
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig 04103, Germany
| | - Vandana Shashi
- Department of Pediatrics, Division Medical Genetics Durham, Duke University Medical Center, North Carolina, USA
| | | | - Isabella Thiffault
- Genomic Medicine Center, Children's Mercy Hospital, Kansas City, Missouri, USA.,Faculty of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA.,Department of Pathology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Sarah Topol
- The Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Leila Qebibo
- Centre de Référence Malformations et Maladies Congénitales du Cervelet, Département de génétique, AP-HP Sorbonne Université, Hôpital Trousseau, Paris, France
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, 40225, Düsseldorf, Germany
| | - Benjamin Cravatt
- The Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Svasti Haricharan
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Ali Torkamani
- The Scripps Research Translational Institute, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jennifer Friedman
- Rady Children's Institute for Genomic Medicine (RCIGM), San Diego, CA 92123, USA.,Division of Neurology, Rady Children's Hospital San Diego, CA 92123, USA.,Department of Neurosciences, University of California La Jolla, CA 92037, USA.,Department of Pediatrics, University of California La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Wang X, Xing K, He M, He T, Xiang X, Chen T, Zhang L, Li H. Time-restricted feeding is an intervention against excessive dark-phase sleepiness induced by obesogenic diet. Natl Sci Rev 2022; 10:nwac222. [PMID: 36825118 PMCID: PMC9942665 DOI: 10.1093/nsr/nwac222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/14/2022] Open
Abstract
High-fat diet (HFD)-induced obesity is a growing epidemic and major health concern. While excessive daytime sleepiness (EDS) is a common symptom of HFD-induced obesity, preliminary findings suggest that reduced wakefulness could be improved with time-restricted feeding (TRF). At present, however, the underlying neural mechanisms remain largely unknown. The paraventricular thalamic nucleus (PVT) plays a role in maintaining wakefulness. We found that chronic HFD impaired the activity of PVT neurons. Notably, inactivation of the PVT was sufficient to reduce and fragment wakefulness during the active phase in lean mice, similar to the sleep-wake alterations observed in obese mice with HFD-induced obesity. On the other hand, enhancing PVT neuronal activity consolidated wakefulness in mice with HFD-induced obesity. We observed that the fragmented wakefulness could be eliminated and reversed by TRF. Furthermore, TRF prevented the HFD-induced disruptions on synaptic transmission in the PVT, in a feeding duration-dependent manner. Collectively, our findings demonstrate that ad libitum access to a HFD results in inactivation of the PVT, which is critical to impaired nocturnal wakefulness and increased sleep, while TRF can prevent and reverse diet-induced PVT dysfunction and excessive sleepiness. We establish a link between TRF and neural activity, through which TRF can potentially serve as a lifestyle intervention against diet/obesity-related EDS.
Collapse
Affiliation(s)
- Xu Wang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Keke Xing
- Department of Anatomy, Histology & Embryology, Fourth Military Medical University, Xi’an 710032, China
| | - Mengge He
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ting He
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinkuan Xiang
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China,MOE Key Laboratory for Biomedical Photonics, Collaborative Innovation Center for Biomedical Engineering, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tao Chen
- Department of Anatomy, Histology & Embryology, Fourth Military Medical University, Xi’an 710032, China
| | | | | |
Collapse
|
5
|
Plasticity of neuronal excitability and synaptic balance in the anterior nucleus of paraventricular thalamus after nerve injury. Brain Res Bull 2022; 188:1-10. [PMID: 35850188 DOI: 10.1016/j.brainresbull.2022.07.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
The anterior nucleus of the paraventricular thalamus (aPVT) integrates various synaptic inputs and conveys information to the downstream brain regions for arousal and pain regulation. Recent studies have indicated that the PVT plays a crucial role in the regulation of chronic pain, but the plasticity mechanism of neuronal excitability and synaptic inputs for aPVT neurons in neuropathic pain remains unclear. Here, we report that spinal nerve ligation (SNL) significantly increased the neuronal excitability and reset the excitatory/inhibitory (E/I) synaptic inputs ratio of aPVT neurons in mice. SNL significantly increased the membrane input resistance, firing frequency, and the half-width of action potential. Additionally, SNL enlarged the area of afterdepolarization and prolonged the rebound low-threshold spike following a hyperpolarized current injection. Further results indicate that an inwardly rectifying current density was decreased in SNL animals. SNL also decreased the amplitude, but not the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), nor the amplitude or frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) of aPVT neurons. Moreover, SNL disrupted the E/I synaptic ratio, caused a decrease in weighted tau and half-width of averaged sIPSCs, but did not change these physiological properties of averaged sEPSCs. Finally, pharmacological activation of the GABAA receptor at aPVT could effective relieve SNL-induced mechanical allodynia in mice. These results reveal the plasticity of intrinsic neuronal excitability and E/I synaptic balance in the aPVT neurons after nerve injury and it may play an important role in the development of pain sensitization.
Collapse
|
6
|
Vastagh C, Csillag V, Solymosi N, Farkas I, Liposits Z. Gonadal Cycle-Dependent Expression of Genes Encoding Peptide-, Growth Factor-, and Orphan G-Protein-Coupled Receptors in Gonadotropin- Releasing Hormone Neurons of Mice. Front Mol Neurosci 2021; 13:594119. [PMID: 33551743 PMCID: PMC7863983 DOI: 10.3389/fnmol.2020.594119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 12/30/2022] Open
Abstract
Rising serum estradiol triggers the surge release of gonadotropin-releasing hormone (GnRH) at late proestrus leading to ovulation. We hypothesized that proestrus evokes alterations in peptidergic signaling onto GnRH neurons inducing a differential expression of neuropeptide-, growth factor-, and orphan G-protein-coupled receptor (GPCR) genes. Thus, we analyzed the transcriptome of GnRH neurons collected from intact, proestrous and metestrous GnRH-green fluorescent protein (GnRH-GFP) transgenic mice using Affymetrix microarray technique. Proestrus resulted in a differential expression of genes coding for peptide/neuropeptide receptors including Adipor1, Prokr1, Ednrb, Rtn4r, Nmbr, Acvr2b, Sctr, Npr3, Nmur1, Mc3r, Cckbr, and Amhr2. In this gene cluster, Adipor1 mRNA expression was upregulated and the others were downregulated. Expression of growth factor receptors and their related proteins was also altered showing upregulation of Fgfr1, Igf1r, Grb2, Grb10, and Ngfrap1 and downregulation of Egfr and Tgfbr2 genes. Gpr107, an orphan GPCR, was upregulated during proestrus, while others were significantly downregulated (Gpr1, Gpr87, Gpr18, Gpr62, Gpr125, Gpr183, Gpr4, and Gpr88). Further affected receptors included vomeronasal receptors (Vmn1r172, Vmn2r-ps54, and Vmn1r148) and platelet-activating factor receptor (Ptafr), all with marked downregulation. Patch-clamp recordings from mouse GnRH-GFP neurons carried out at metestrus confirmed that the differentially expressed IGF-1, secretin, and GPR107 receptors were operational, as their activation by specific ligands evoked an increase in the frequency of miniature postsynaptic currents (mPSCs). These findings show the contribution of certain novel peptides, growth factors, and ligands of orphan GPCRs to regulation of GnRH neurons and their preparation for the surge release.
Collapse
Affiliation(s)
- Csaba Vastagh
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Veronika Csillag
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Faculty of Information Technology and Bionics, Roska Tamás Doctoral School of Sciences and Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Norbert Solymosi
- Centre for Bioinformatics, University of Veterinary Medicine, Budapest, Hungary
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Budapest, Hungary.,Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
7
|
Bálint F, Csillag V, Vastagh C, Liposits Z, Farkas I. Insulin-Like Growth Factor 1 Increases GABAergic Neurotransmission to GnRH Neurons via Suppressing the Retrograde Tonic Endocannabinoid Signaling Pathway in Mice. Neuroendocrinology 2021; 111:1219-1230. [PMID: 33361699 DOI: 10.1159/000514043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/23/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hypophysiotropic gonadotropin-releasing hormone (GnRH) neurons orchestrate various physiological events that control the onset of puberty. Previous studies showed that insulin-like growth factor 1 (IGF-1) induces the secretion of GnRH and accelerates the onset of puberty, suggesting a regulatory role of this hormone upon GnRH neurons. METHODS To reveal responsiveness of GnRH neurons to IGF-1 and elucidate molecular pathways acting downstream to the IGF-1 receptor (IGF-1R), in vitro electrophysiological experiments were carried out on GnRH-GFP neurons in acute brain slices from prepubertal (23-29 days) and pubertal (50 days) male mice. RESULTS Administration of IGF-1 (13 nM) significantly increased the firing rate and frequency of spontaneous postsynaptic currents and that of excitatory GABAergic miniature postsynaptic currents (mPSCs). No GABAergic mPSCs were induced by IGF-1 in the presence of the GABAA-R blocker picrotoxin. The increase in the mPSC frequency was prevented by the use of the IGF-1R antagonist, JB1 (1 µM), or the intracellularly applied PI3K blocker (LY294002, 50 µM), showing involvement of IGF-1R and PI3K in the mechanism. Blockade of the transient receptor potential vanilloid 1, an element of the tonic retrograde endocannabinoid machinery, by AMG9810 (10 µM) or antagonizing the cannabinoid receptor type-1 by AM251 (1 µM) abolished the effect. DISCUSSION/CONCLUSION These findings indicate that IGF-1 arrests the tonic retrograde endocannabinoid pathway in GnRH neurons, and this disinhibition increases the release of GABA from presynaptic terminals that, in turn, activates GnRH neurons leading to the fine-tuning of the hypothalamo-pituitary-gonadal axis.
Collapse
Affiliation(s)
- Flóra Bálint
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Veronika Csillag
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Roska Tamás Doctoral School of Sciences and Technology, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Csaba Vastagh
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
| | - Zsolt Liposits
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Imre Farkas
- Institute of Experimental Medicine, Laboratory of Endocrine Neurobiology, Budapest, Hungary,
| |
Collapse
|
8
|
Wei F, Zhao L, Jing Y. Signaling molecules targeting cannabinoid receptors: Hemopressin and related peptides. Neuropeptides 2020; 79:101998. [PMID: 31831183 DOI: 10.1016/j.npep.2019.101998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/23/2022]
Abstract
Cannabinoid receptors (CBRs) are part of the endocannabinoid system, which is involved in various physiological processes such as nociception, inflammation, appetite, stress, and emotion regulation. Many studies have linked the endocannabinoid system to neuroinflammatory and neurodegenerative disorders such as Parkinson's disease, Huntington's chorea, Alzheimer's disease, and multiple sclerosis. Hemopressin [Hp; a fragment of the hemoglobin α1 chain (95-103 amino acids)] and related peptides [VD-Hpα and RVD-Hpα] are peptides that bind to CBRs. Hp acts as an inverse agonist to CB1 receptor (CB1R), VD-Hpα acts as an agonist to CB1R, and RVD-Hpα acts as a negative allosteric modulator of CB1R and a positive allosteric modulator of CB2R. Because of the critical roles of CBRs in numerous physiological processes, it is appealing to use Hp and related peptides for therapeutic purposes. This review discusses their discovery, structure, metabolism, brain exposure, self-assembly characteristics, pharmacological characterization, and pharmacological activities.
Collapse
Affiliation(s)
- Fengmei Wei
- Department of Physiology and Psychology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu Province 730000, PR China
| | - Long Zhao
- Department of Orthopaedics, Lanzhou University First Affiliated Hospital, Lanzhou, Gansu Province 730000, PR China
| | - Yuhong Jing
- Institute of Anatomy and Histology & Embryology, Neuroscience, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, PR China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, Gansu 730000, PR China.
| |
Collapse
|
9
|
Estradiol Increases Glutamate and GABA Neurotransmission into GnRH Neurons via Retrograde NO-Signaling in Proestrous Mice during the Positive Estradiol Feedback Period. eNeuro 2018; 5:eN-NWR-0057-18. [PMID: 30079374 PMCID: PMC6073979 DOI: 10.1523/eneuro.0057-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/26/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
Surge release of gonadotropin-releasing hormone (GnRH) is essential in the activation of pituitary gonadal unit at proestrus afternoon preceded by the rise of serum 17β-estradiol (E2) level during positive feedback period. Here, we describe a mechanism of positive estradiol feedback regulation acting directly on GnRH-green fluorescent protein (GFP) neurons of mice. Whole-cell clamp and loose patch recordings revealed that a high physiological dose of estradiol (200 pM), significantly increased firing rate at proestrus afternoon. The mPSC frequency at proestrus afternoon also increased, whereas it decreased at metestrus afternoon and had no effect at proestrus morning. Inhibition of the estrogen receptor β (ERβ), intracellular blockade of the Src kinase and phosphatidylinositol 3 kinase (PI3K) and scavenge of nitric oxide (NO) inside GnRH neurons prevented the facilitatory estradiol effect indicating involvement of the ERβ/Src/PI3K/Akt/nNOS pathway in this fast, direct stimulatory effect. Immunohistochemistry localized soluble guanylate cyclase, the main NO receptor, in both glutamatergic and GABAergic terminals innervating GnRH neurons. Accordingly, estradiol facilitated neurotransmissions to GnRH neurons via both GABAA-R and glutamate/AMPA/kainate-R. These results indicate that estradiol acts directly on GnRH neurons via the ERβ/Akt/nNOS pathway at proestrus afternoon generating NO that retrogradely accelerates GABA and glutamate release from the presynaptic terminals contacting GnRH neurons. The newly explored mechanism might contribute to the regulation of the GnRH surge, a fundamental prerequisite of the ovulation.
Collapse
|
10
|
Nogueras-Ortiz C, Roman-Vendrell C, Mateo-Semidey GE, Liao YH, Kendall DA, Yudowski GA. Retromer stops beta-arrestin 1-mediated signaling from internalized cannabinoid 2 receptors. Mol Biol Cell 2017; 28:3554-3561. [PMID: 28954865 PMCID: PMC5683765 DOI: 10.1091/mbc.e17-03-0198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/18/2017] [Accepted: 09/20/2017] [Indexed: 12/18/2022] Open
Abstract
The retromer acts as the gatekeeper blocking signaling mediated by beta-arrestin 1 from internalized cannabinoid 2 receptors. This work provides further confirmation of the relevance and prevalence of signaling from internalized receptors at endosomal compartments after ligand-induced endocytosis. G protein–coupled receptors mediate their complex functions through activation of signaling cascades from receptors localized at the cell surface and endosomal compartments. These signaling pathways are modulated by heterotrimeric G proteins and the scaffold proteins beta-arrestin 1 and 2. However, in contrast to the events occurring at the cell surface, our knowledge of the mechanisms controlling signaling from receptors localized at intracellular compartments is still very limited. Here we sought to investigate the intracellular signaling from cannabinoid 2 receptor (CB2R). First, we show that receptor internalization is required for agonist-induced phosphorylation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2). Then we demonstrate that ERK1/2 activation is mediated by beta-arrestin 1 from receptors localized exclusively at Rab4/5 compartments. Finally, we identify the retromer complex as a gatekeeper, terminating beta-arrestin 1–mediated ERK phosphorylation. These findings extend our understanding of the events controlling signaling from endocytosed receptors and identify the retromer as a modulator of beta-arrestin–mediated signaling from CB2R.
Collapse
Affiliation(s)
| | - Cristina Roman-Vendrell
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901.,Department of Physiology and Biophysics, University of Puerto Rico, Medical San Juan, PR 00936
| | - Gabriel E Mateo-Semidey
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901.,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936.,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936
| | - Yu-Hsien Liao
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092
| | - Debra A Kendall
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269-3092
| | - Guillermo A Yudowski
- Institute of Neurobiology, University of Puerto Rico, San Juan, PR 00901 .,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936.,Department of Anatomy and Neurobiology, University of Puerto Rico, Medical San Juan, PR 00936
| |
Collapse
|