1
|
Pang TY, Yaeger JDW, Summers CH, Mitra R. Cardinal role of the environment in stress induced changes across life stages and generations. Neurosci Biobehav Rev 2021; 124:137-150. [PMID: 33549740 PMCID: PMC9286069 DOI: 10.1016/j.neubiorev.2021.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 12/21/2022]
Abstract
The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.
Collapse
Affiliation(s)
- Terence Y Pang
- Florey Institute of Neuroscience and Mental Health, Parkville, 3052, VIC, Australia; Department of Anatomy and Neuroscience, The University of Melbourne, 3010, VIC, Australia
| | - Jazmine D W Yaeger
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA; Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, 57069, USA; Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD, 57105, USA
| | - Rupshi Mitra
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| |
Collapse
|
2
|
Bonato JM, Meyer E, de Mendonça PSB, Milani H, Prickaerts J, Weffort de Oliveira RM. Roflumilast protects against spatial memory impairments and exerts anti-inflammatory effects after transient global cerebral ischemia. Eur J Neurosci 2021; 53:1171-1188. [PMID: 33340424 DOI: 10.1111/ejn.15089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022]
Abstract
Phosphodiesterase 4 (PDE4) inhibitors have been shown to present beneficial effects in cerebral ischemic injury because of their ability to improve cognition and target different phases and mechanisms of cerebral ischemia, including apoptosis, neurogenesis, angiogenesis, and inflammation. The present study investigated whether repeated treatment with the PDE4 inhibitor roflumilast rescued memory loss and attenuated neuroinflammation in rats following transient global cerebral ischemia (TGCI). TGCI caused memory impairments, neuronal loss (reflected by Neuronal nuclei (NeuN) immunoreactivity), and compensatory neurogenesis (reflected by doublecortin (DCX) immunoreactivity) in the hippocampus. Also, increases in the protein expression of the phosphorylated response element-binding protein (pCREB) and inflammatory markers such as the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule 1 (Iba-1), were detected in the hippocampus in TGCI rats. Repeated treatment with roflumilast (0.003 and 0.01 mg/kg) prevented spatial memory deficits without promoting hippocampal protection in ischemic animals. Roflumilast increased the levels of pCREB, arginase-1, interleukin (IL) 4, and IL-10 in the hippocampus 21 days after TGCI. These data suggest a protective effect of roflumilast against functional sequelae of cerebral ischemia, which might be related to its anti-inflammatory properties.
Collapse
Affiliation(s)
- Jéssica M Bonato
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Erika Meyer
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | | | - Humberto Milani
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Brazil
| | - Jos Prickaerts
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
3
|
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating psychiatric condition with a wide range of behavioral disturbances and serious consequences for both patient and society. One of the main reasons for unsuccessful therapies is insufficient knowledge about its underlying pathomechanism. In the search for centrally signaling molecules that might be relevant to the development of PTSD we focus here on arginine vasopressin (AVP). So far AVP has not been strongly implicated in PTSD, but different lines of evidence suggest a possible impact of its signaling in all clusters of PTSD symptomatology. More specifically, in laboratory rodents, AVP agonists affect behavior in a PTSD-like manner, while significant reduction of AVP signaling in the brain e.g. in AVP-deficient Brattleboro rats, ameliorated defined behavioral parameters that can be linked to PTSD symptoms. Different animal models of PTSD also show alterations in the AVP signaling in distinct brain areas. However, pharmacological treatment targeting central AVP receptors via systemic routes is hampered by possible side effects that are linked to the peripheral action of AVP as a hormone. Indeed, the V1a receptor, the most common receptor subtype in the brain, is implicated in vasoconstriction. Thus, systemic treatment with V1a receptor antagonists would be implicated in hypotonia. This implies that novel treatment concepts are needed to target AVP receptors not only at brain level but also in distinct brain areas, to offer alternative treatments for PTSD.
Collapse
Affiliation(s)
- Eszter Sipos
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Bibiána Török
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Janos Szentagothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - István Barna
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Mario Engelmann
- Institut für Biochemie und Zellbiologie, Otto-von-Guericke-Universität, Magdeburg, Germany
- Center for Behavioural Brain Sciences (CBBS), Magdeburg, Germany
| | - Dóra Zelena
- Behavioral Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Centre for Neuroscience, Szentágothai Research Centre, Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
4
|
Effects of temperature on plasma corticosterone in a native lizard. Sci Rep 2020; 10:16315. [PMID: 33004871 PMCID: PMC7530705 DOI: 10.1038/s41598-020-73354-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022] Open
Abstract
The glucocorticoid stress response is frequently used to indicate vertebrate response to the environment. Body temperature may affect glucocorticoid concentrations, particularly in ectotherms. We conducted lab manipulations and field measurements to test the effects of body temperature on plasma corticosterone (predominant glucocorticoid in reptiles) in eastern fence lizards (Sceloporus undulatus). First, we acclimated lizards to one of 4 treatments: 22 °C, 29 °C, 33 °C, or 36 °C, and measured cloacal temperatures and plasma corticosterone concentrations at baseline and after exposure to a standardized stressor (cloth bag). Both baseline and stress-induced corticosterone concentrations were lower in lizards with lower body temperatures. Second, we acclimated lizards to 22 °C or 29 °C and exposed them to a standardized (cloth bag) stressor for 3 to 41 min. Lizards acclimated to 29 °C showed a robust increase in plasma corticosterone concentrations with restraint stress, but those at 22 °C showed no such increases in corticosterone concentrations. Third, we measured lizards upon capture from the field. There was no correlation between body temperature and baseline plasma corticosterone in field-caught lizards. These results suggest body temperature can significantly affect plasma corticosterone concentrations in reptiles, which may be of particular concern for experiments conducted under laboratory conditions but may not translate to the field.
Collapse
|
5
|
Lycopene ameliorates PTSD-like behaviors in mice and rebalances the neuroinflammatory response and oxidative stress in the brain. Physiol Behav 2020; 224:113026. [DOI: 10.1016/j.physbeh.2020.113026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022]
|
6
|
Binge drinking in male adolescent rats and its relationship to persistent behavioral impairments and elevated proinflammatory/proapoptotic proteins in the cerebellum. Psychopharmacology (Berl) 2020; 237:1305-1315. [PMID: 31984446 DOI: 10.1007/s00213-020-05458-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 01/10/2020] [Indexed: 12/21/2022]
Abstract
RATIONALE To demonstrate that repeated episodes of binge drinking during the adolescent period can lead to long-term deficits in motor function and memory in adulthood, and increase proteins in the brain involved with inflammation and apoptotic cell death. METHODS Groups of early adolescent (PND 26) and periadolescent (PND 34) Sprague-Dawley rats were exposed to either ethanol or plain air through a vapor chamber apparatus for five consecutive days (2 h per day), achieving a blood ethanol concentration equivalent to 6-8 drinks in the treatment group. Subjects then underwent a series of behavioral tests designed to assess memory, anxiety regulation, and motor function. Brains were collected on PND 94 for subsequent western blot analysis. RESULTS Behavioral testing using the rota-rod, cage-hang, novel object recognition, light-dark box, and elevated plus maze apparatuses showed significant differences between groups; several of which persisted for up to 60 days after treatment. Western blot testing indicated elevated levels of caspase-3/cleaved caspase-3, NF-kB, and PKC/pPKC proteins in the cerebella of ethanol-treated animals. CONCLUSIONS Differences on anxiety tests indicate a possible failure of behavioral inhibition in the treatment group leading to riskier behavior. Binge drinking also impairs motor coordination and object memory, which involve the cerebellar and hippocampal brain regions, respectively. These experiments indicate the potential dangers of binge drinking while the brain is still developing and indicate the need for future studies in this area.
Collapse
|
7
|
Nerve growth factor against PTSD symptoms: Preventing the impaired hippocampal cytoarchitectures. Prog Neurobiol 2020; 184:101721. [DOI: 10.1016/j.pneurobio.2019.101721] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/11/2019] [Accepted: 11/02/2019] [Indexed: 01/19/2023]
|
8
|
Zubedat S, Havkin E, Maoz I, Aga-Mizrachi S, Avital A. A probabilistic model of startle response reveals opposite effects of acute versus chronic Methylphenidate treatment. J Neurosci Methods 2019; 327:108389. [PMID: 31415846 DOI: 10.1016/j.jneumeth.2019.108389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/30/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The startle response is considered as the major physio-behavioral indication of anxiety in health and disease conditions. However, due to different protocols of stimulation and measurement, the magnitude as well as the appearance of the startle response is inconsistent. NEW METHOD We postulate that the startle probability and not merely the amplitude may bare information that will form a consistent physiological measure of anxiety. RESULTS To examine the proof-of-concept of our suggested probability model, we evaluated the effects of acute (single) versus chronic (14 days) MPH administration on both startle amplitude and probability. We found that both acute and chronic MPH administration has yielded similar effects on startle amplitude. However, acute MPH increased the startle's probability while chronic MPH decreased it. Next, we evaluated the effects of acute versus chronic stress on the startle's parameters and found a complementary effect. Explicitly, acute stress increased the startle's probability while chronic stress increased the startle amplitude. In contrast, enriched environment had no significant effects. Finally, to further validate the probability measure, we show that Midazolam had significant anxiolytic effects. In the second part, we investigated the acoustic startle response parameters (e.g. background noise and pulse duration), to better understand the interplay between these parameters and the startle amplitude versus probability. CONCLUSIONS We show that the probabilistic element of the startle response does not only point to deeper physiologic relationships but may also serve as "hidden variables" congruent but not entirely identical to the commonly researched amplitude of the startle response.
Collapse
Affiliation(s)
- Salman Zubedat
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Evgeny Havkin
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inon Maoz
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shlomit Aga-Mizrachi
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Avi Avital
- Behavioral Neuroscience Lab, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|
10
|
Bhattacharya S, Fontaine A, MacCallum PE, Drover J, Blundell J. Stress Across Generations: DNA Methylation as a Potential Mechanism Underlying Intergenerational Effects of Stress in Both Post-traumatic Stress Disorder and Pre-clinical Predator Stress Rodent Models. Front Behav Neurosci 2019; 13:113. [PMID: 31191267 PMCID: PMC6547031 DOI: 10.3389/fnbeh.2019.00113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Although most humans will experience some type of traumatic event in their lifetime only a small set of individuals will go on to develop post-traumatic stress disorder (PTSD). Differences in sex, age, trauma type, and comorbidity, along with many other elements, contribute to the heterogenous manifestation of this disorder. Nonetheless, aberrant hypothalamus-pituitary-adrenal (HPA) axis activity, especially in terms of cortisol and glucocorticoid receptor (GR) alterations, has been postulated as a tenable factor in the etiology and pathophysiology of PTSD. Moreover, emerging data suggests that the harmful effects of traumatic stress to the HPA axis in PTSD can also propagate into future generations, making offspring more prone to psychopathologies. Predator stress models provide an ethical and ethologically relevant way to investigate tentative mechanisms that are thought to underlie this phenomenon. In this review article, we discuss findings from human and laboratory predator stress studies that suggest changes to DNA methylation germane to GRs may underlie the generational effects of trauma transmission. Understanding mechanisms that promote stress-induced psychopathology will represent a major advance in the field and may lead to novel treatments for such devastating, and often treatment-resistant trauma and stress-disorders.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Audrey Fontaine
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada.,Institut des Systèmes Intelligents et de Robotique (ISIR), Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - James Drover
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jacqueline Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
11
|
Olescowicz G, Neis VB, Fraga DB, Rosa PB, Azevedo DP, Melleu FF, Brocardo PS, Gil-Mohapel J, Rodrigues ALS. Antidepressant and pro-neurogenic effects of agmatine in a mouse model of stress induced by chronic exposure to corticosterone. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:395-407. [PMID: 28842257 DOI: 10.1016/j.pnpbp.2017.08.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 07/27/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022]
Abstract
Agmatine is an endogenous neuromodulator that has been shown to have beneficial effects in the central nervous system, including antidepressant-like effects in animals. In this study, we investigated the ability of agmatine (0.1mg/kg, p.o.) and the conventional antidepressant fluoxetine (10mg/kg, p.o.) to reverse the behavioral effects and morphological alterations in the hippocampus of mice exposed to chronic corticosterone (20mg/kg, p.o.) treatment for a period of 21days as a model of stress and depressive-like behaviors. Chronic corticosterone treatment increased the immobility time in the tail suspension test (TST), but did not cause anhedonic-like and anxiety-related behaviors, as assessed with the splash test and the open field test (OFT), respectively. Of note, the depressive-like behaviors induced by corticosterone were accompanied by a decrease in hippocampal cell proliferation, although no changes in hippocampal neuronal differentiation were observed. Our findings provide evidence that, similarly to fluoxetine, agmatine was able to reverse the corticosterone-induced depressive-like behaviors in the TST as well as the deficits in hippocampal cell proliferation. Additionally, fluoxetine but not agmatine, increased hippocampal differentiation. Agmatine, similar to fluoxetine, was capable of increasing both dendritic arborization and length in the entire dentate hippocampus, an effect more evident in the ventral portion of the hippocampus, as assessed with the modified Sholl analysis. Altogether, our results suggest that the increase in hippocampal proliferation induced by agmatine may contribute, at least in part, to the antidepressant-like response of this compound in this mouse model of stress induced by chronic exposure to corticosterone.
Collapse
Affiliation(s)
- Gislaine Olescowicz
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Vivian B Neis
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Daiane B Fraga
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Priscila B Rosa
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Dayane P Azevedo
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Fernando Falkenburger Melleu
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Patricia S Brocardo
- Department of Morphological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences, UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Ana Lúcia S Rodrigues
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil.
| |
Collapse
|
12
|
Bonato JM, Bassani TB, Milani H, Vital MABF, de Oliveira RMW. Pioglitazone reduces mortality, prevents depressive-like behavior, and impacts hippocampal neurogenesis in the 6-OHDA model of Parkinson's disease in rats. Exp Neurol 2018; 300:188-200. [DOI: 10.1016/j.expneurol.2017.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
|
13
|
Short- and Long-term Exposure to Low and High Dose Running Produce Differential Effects on Hippocampal Neurogenesis. Neuroscience 2017; 369:202-211. [PMID: 29175485 DOI: 10.1016/j.neuroscience.2017.11.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 12/20/2022]
Abstract
Continuous running wheel (RW) exercise increases adult hippocampal neurogenesis in the dentate gyrus (DG) of rodents. Evidence suggests that greater amounts of RW exercise does not always equate to more adult-generated neurons in hippocampus. It can also be argued that continuous access to a RW results in exercise levels not representative of human exercise patterns. This study tested if RW paradigms that more closely represent human exercise patterns (e.g. shorter bouts, alternating daily exercise) alter neurogenesis. Neurogenesis was measured by examining the survival and fate of bromodeoxyuridine (BrdU)-labeled proliferating cells in the DG of male Sprague-Dawley rats after acute (14 days) or chronic (30 days) RW access. Rats were assigned to experimental groups based on the number of hours that they had access to a RW over two days: 0 h, 4 h, 8 h, 24 h, and 48 h. After acute RW access, rats that had unlimited access to the RW on alternating days (24 h) had a stronger neurogenic response compared to those rats that ran modest distances (4 h, 8 h) or not at all (0 h). In contrast, following chronic RW access, rats that ran a moderate amount (4 h, 8 h) had significantly more surviving cells compared to 0 h, 24 h, and 48 h. Linear regression analysis established a negative relationship between running distance and surviving BrdU+ cells in the chronic RW access cohort (R2 = 0.40). These data demonstrate that in rats moderate amounts of RW exercise are superior to continuous daily RW exercise paradigms at promoting hippocampal neurogenesis in the long-term.
Collapse
|