1
|
Kodirov SA. Adam, amigo, brain, and K channel. Biophys Rev 2023; 15:1393-1424. [PMID: 37975011 PMCID: PMC10643815 DOI: 10.1007/s12551-023-01163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023] Open
Abstract
Voltage-dependent K+ (Kv) channels are diverse, comprising the classical Shab - Kv2, Shaker - Kv1, Shal - Kv4, and Shaw - Kv3 families. The Shaker family alone consists of Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5, Kv1.6, and Kv1.7. Moreover, the Shab family comprises two functional (Kv2.1 and Kv2.2) and several "silent" alpha subunits (Kv2.3, Kv5, Kv6, Kv8, and Kv9), which do not generate K current. However, e.g., Kv8.1, via heteromerization, inhibits outward currents of the same family or even that of Shaw. This property of Kv8.1 is similar to those of designated beta subunits or non-selective auxiliary elements, including ADAM or AMIGO proteins. Kv channels and, in turn, ADAM may modulate the synaptic long-term potentiation (LTP). Prevailingly, Kv1.1 and Kv1.5 are attributed to respective brain and heart pathologies, some of which may occur simultaneously. The aforementioned channel proteins are apparently involved in several brain pathologies, including schizophrenia and seizures.
Collapse
Affiliation(s)
- Sodikdjon A. Kodirov
- Department of Biological Sciences, University of Texas at Brownsville, Brownsville, TX 78520 USA
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
- Instituto de Medicina Molecular, Universidade de Lisboa, 1649-028 Lisbon, Portugal
- Almazov Federal Heart, Blood and Endocrinology Centre, Saint Petersburg, 197341 Russia
- Institute for Physiology and Pathophysiology, Johannes Kepler University, Linz, Austria
| |
Collapse
|
2
|
Hasırcı Bayır BR, Tutkavul K, Eser M, Baykan B. Epilepsy in patients with familial hemiplegic migraine. Seizure 2021; 88:87-94. [PMID: 33839563 DOI: 10.1016/j.seizure.2021.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE The coexistence of epilepsy in familial hemiplegic migraine (FHM) has not been reviewed systematically. We investigated the associations of epilepsy in patients with FHM with CACNA1A, ATP1A2, SCN1A or PRRT2 mutations along with clinical and genetic data. MATERIALS AND METHODS We performed a search in the PubMed bibliographic database and the Cochrane Library was screened for eligible studies, from April 1997 to December 2020. Additionally, Online Mendelian Inheritance in Man (OMIM) was searched for mutations in the CACNA1A, ATP1A2, SCN1A and PRRT2 genes. Brief reports, letters, and original articles about FHM and epilepsy were included in the review if their mutations and clinical course of diseases were identified. RESULTS Of the included patients with FHM whose information could be accessed, there were 28 families and 195 individuals, 78 of whom had epilepsy; 30 patients had focal epilepsy and 30 patients had generalized epilepsy. All mutations except ATP1A2, which could not be evaluated due to insufficient data, revealed first epilepsy then HM. In 60 patients for whom the epilepsy prognosis was evaluated, only 3.5% of patients were drug-resistant, and the remainder had a self-limited course or responded to anti-epileptic drug treatment. CONCLUSION Mutations in all three and possibly four FHM genes can cause epilepsy. Contrary to our expectations, the well-known epilepsy gene SCN1A mutations are not the leading cause; the highest number of cases associated with epilepsy belongs to the ATP1A2 mutation. Drug-resistant forms of epilepsy are rare in all FHM mutations, and this information is important for counseling patients.
Collapse
Affiliation(s)
- Buse Rahime Hasırcı Bayır
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey.
| | - Kemal Tutkavul
- Department of Neurology, Haydarpaşa Numune Research and Training Hospital, Istanbul, Turkey.
| | - Metin Eser
- Department of Medical Genetics, Ümraniye Research and Training Hospital, Istanbul, Turkey.
| | - Betül Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Neuroscience Department, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
3
|
Dehghani A, Karatas H. Mouse Models of Familial Hemiplegic Migraine for Studying Migraine Pathophysiology. Curr Neuropharmacol 2020; 17:961-973. [PMID: 31092180 PMCID: PMC7052833 DOI: 10.2174/1570159x17666190513085013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/08/2019] [Accepted: 04/23/2019] [Indexed: 12/14/2022] Open
Abstract
Migraine, an extremely disabling neurological disorder, has a strong genetic component. Since monogenic mi-graines (resulting from mutations or changes in a single gene) may help researchers discover migraine pathophysiology, transgenic mice models harboring gene mutations identified in Familial Hemiplegic Migraine (FHM) patients have been gen-erated. Studies in these FHM mutant mice models have shed light on the mechanisms of migraine and may aid in the identifi-cation of novel targets for treatment. More specifically, the studies shed light on how gene mutations, hormones, and other factors impact the pathophysiology of migraine. The models may also be of relevance to researchers outside the field of mi-graine as some of their aspects are relevant to pain in general. Additionally, because of the comorbidities associated with mi-graine, they share similarities with the mutant mouse models of epilepsy, stroke, and perhaps depression. Here, we review the experimental data obtained from these mutant mice and focus on how they can be used to investigate the pathophysiology of migraine, including synaptic plasticity, neuroinflammation, metabolite alterations, and molecular and behavioral mecha-nisms of pain.
Collapse
Affiliation(s)
- Anisa Dehghani
- Institute of Neurological Sciences and Psychiatry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Hulya Karatas
- Institute of Neurological Sciences and Psychiatry, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| |
Collapse
|
4
|
Sutherland HG, Albury CL, Griffiths LR. Advances in genetics of migraine. J Headache Pain 2019; 20:72. [PMID: 31226929 PMCID: PMC6734342 DOI: 10.1186/s10194-019-1017-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Migraine is a complex neurovascular disorder with a strong genetic component. There are rare monogenic forms of migraine, as well as more common polygenic forms; research into the genes involved in both types has provided insights into the many contributing genetic factors. This review summarises advances that have been made in the knowledge and understanding of the genes and genetic variations implicated in migraine etiology. Findings Migraine is characterised into two main types, migraine without aura (MO) and migraine with aura (MA). Hemiplegic migraine is a rare monogenic MA subtype caused by mutations in three main genes - CACNA1A, ATP1A2 and SCN1A - which encode ion channel and transport proteins. Functional studies in cellular and animal models show that, in general, mutations result in impaired glutamatergic neurotransmission and cortical hyperexcitability, which make the brain more susceptible to cortical spreading depression, a phenomenon thought to coincide with aura symptoms. Variants in other genes encoding ion channels and solute carriers, or with roles in regulating neurotransmitters at neuronal synapses, or in vascular function, can also cause monogenic migraine, hemiplegic migraine and related disorders with overlapping symptoms. Next-generation sequencing will accelerate the finding of new potentially causal variants and genes, with high-throughput bioinformatics analysis methods and functional analysis pipelines important in prioritising, confirming and understanding the mechanisms of disease-causing variants. With respect to common migraine forms, large genome-wide association studies (GWAS) have greatly expanded our knowledge of the genes involved, emphasizing the role of both neuronal and vascular pathways. Dissecting the genetic architecture of migraine leads to greater understanding of what underpins relationships between subtypes and comorbid disorders, and may have utility in diagnosis or tailoring treatments. Further work is required to identify causal polymorphisms and the mechanism of their effect, and studies of gene expression and epigenetic factors will help bridge the genetics with migraine pathophysiology. Conclusions The complexity of migraine disorders is mirrored by their genetic complexity. A comprehensive knowledge of the genetic factors underpinning migraine will lead to improved understanding of molecular mechanisms and pathogenesis, to enable better diagnosis and treatments for migraine sufferers.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Cassie L Albury
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation. School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Haanes KA, Labastida-Ramírez A, Blixt FW, Rubio-Beltrán E, Dirven CM, Danser AH, Edvinsson L, MaassenVanDenBrink A. Exploration of purinergic receptors as potential anti-migraine targets using established pre-clinical migraine models. Cephalalgia 2019; 39:1421-1434. [PMID: 31104506 DOI: 10.1177/0333102419851810] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND The current understanding of mechanisms behind migraine pain has been greatly enhanced with the recent therapies targeting calcitonin gene-related peptide and its receptor. The clinical efficacy of calcitonin gene-related peptide-blocking drugs indicates that, at least in a considerable proportion of patients, calcitonin gene-related peptide is a key molecule in migraine pain. There are several receptors and molecular pathways that can affect the release of and response to calcitonin gene-related peptide. One of these could be purinergic receptors that are involved in nociception, but these are greatly understudied with respect to migraine. OBJECTIVE We aimed to explore purinergic receptors as potential anti-migraine targets. METHODS We used the human middle meningeal artery as a proxy for the trigeminal system to screen for possible anti-migraine candidates. The human findings were followed by intravital microscopy and calcitonin gene-related peptide release measurements in rodents. RESULTS We show that the purinergic P2Y13 receptor fulfills all the features of a potential anti-migraine target. The P2Y13 receptor is expressed in both the human trigeminal ganglion and middle meningeal artery and activation of this receptor causes: a) middle meningeal artery contraction in vitro; b) reduced dural artery dilation following periarterial electrical stimulation in vivo and c) a reduction of CGRP release from both the dura and the trigeminal ganglion in situ. Furthermore, we show that P2X3 receptor activation of the trigeminal ganglion causes calcitonin gene-related peptide release and middle meningeal artery dilation. CONCLUSION Both an agonist directed at the P2Y13 receptor and an antagonist of the P2X3 receptor seem to be viable potential anti-migraine therapies.
Collapse
Affiliation(s)
- Kristian A Haanes
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.,Clinical Experimental Research Department, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark
| | - Alejandro Labastida-Ramírez
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Frank W Blixt
- Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Eloisa Rubio-Beltrán
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Clemens M Dirven
- Department of Neurosurgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alexander Hj Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Lars Edvinsson
- Clinical Experimental Research Department, Copenhagen University Hospital, Rigshospitalet-Glostrup, Glostrup, Denmark.,Department of Clinical Sciences, Division of Experimental Vascular Research, Lund University, Lund, Sweden
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
6
|
Abstract
Nitric oxide (NO) is a small gaseous signaling molecule that has important biological effects. It has been heavily implicated in migraine; and the NO donor, nitroglycerin, has been used extensively as a human migraine trigger. Correspondingly, a number of components of the NO signaling cascade have been shown to be upregulated in migraine patients. NO is endogenously produced in the body by NO synthase (NOS), of which there are three isoforms: neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS). Based on the accumulating evidence that endogenous NO regulation is altered in migraine pathogenesis, global and isoform-selective inhibitors of NOS have been targeted for migraine drug development. This review highlights the evidence for the role of NO in migraine and focuses on the use of NOS inhibitors for the treatment of this disorder. In addition, we discuss other molecules within the NO signaling pathway that may be promising therapeutic targets for migraine.
Collapse
Affiliation(s)
- Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street (MC 912), Chicago, IL, 60612, USA.
| | - Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, 1601 W Taylor Street (MC 912), Chicago, IL, 60612, USA
| | - Simon Akerman
- Department of Neural and Pain Sciences, University of Maryland Baltimore, 650 W. Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|