1
|
Cao Y, Chen H, Tan Y, Yu XD, Xiao C, Li Y, Reilly J, He Z, Shu X. Protection of p-Coumaric acid against chronic stress-induced neurobehavioral deficits in mice via activating the PKA-CREB-BDNF pathway. Physiol Behav 2024; 273:114415. [PMID: 38000530 DOI: 10.1016/j.physbeh.2023.114415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/03/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
There is a body of evidence to suggest that chronic stress modulates neurochemical homeostasis, alters neuronal structure, inhibits neurogenesis and contributes to development of mental disorders. Chronic stress-associated mental disorders present common symptoms of cognitive impairment and depression with complex disease mechanisms. P-coumaric acid (p-CA), a natural phenolic compound, is widely distributed in vegetables, cereals and fruits. p-CA exhibits a wide range of health-related effects, including anti-oxidative-stress, anti-mutagenesis, anti-inflammation and anti-cancer activities. The current study aims to evaluate the therapeutic potential of p-CA against stress-associated mental disorders. We assessed the effect of p-CA on cognitive deficits and depression-like behavior in mice exposed to chronic restraint stress (CRS); we used network pharmacology, biochemical and molecular biological approaches to elucidate the underlying molecular mechanisms. CRS exposure caused memory impairments and depression-like behavior in mice; p-CA administration attenuated these CRS-induced memory deficits and depression-like behavior. Network pharmacology analysis demonstrated that p-CA was possibly involved in multiple targets and a variety of signaling pathways. Among them, the protein kinase A (PKA) - cAMP-response element binding protein (CREB) - brain derived neurotrophic factor (BDNF) signaling pathway was predominant and further characterized. The levels of PKA, phosphorylated CREB (pCREB) and BDNF were significantly lowered in the hippocampus of CRS mice, suggesting disruption of the PKA-CREB-BDNF signaling pathway; p-CA treatment restored the signaling pathway. Furthermore, CRS upregulated expression of proinflammatory cytokines in hippocampus, while p-CA reversed the CRS-induced effects. Our findings suggest that p-CA will offer therapeutic benefit to patients with stress-associated mental disorders.
Collapse
Affiliation(s)
- Yanqun Cao
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Hao Chen
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Yinna Tan
- Anesthesiology department, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, China
| | - Xu-Dong Yu
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Chuli Xiao
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - Yin Li
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Zhiming He
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China.
| | - Xinhua Shu
- The Brain Cognition and Brain Disease Branch, Pu Ai Medical School, Shaoyang University, Shaoyang 422000, China; Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; Department of Vision Science, Glasgow Caledonian University, Glasgow G4 0BA, UK.
| |
Collapse
|
2
|
Mango D, Ledonne A. Updates on the Physiopathology of Group I Metabotropic Glutamate Receptors (mGluRI)-Dependent Long-Term Depression. Cells 2023; 12:1588. [PMID: 37371058 DOI: 10.3390/cells12121588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRI), including mGluR1 and mGluR5 subtypes, modulate essential brain functions by affecting neuronal excitability, intracellular calcium dynamics, protein synthesis, dendritic spine formation, and synaptic transmission and plasticity. Nowadays, it is well appreciated that the mGluRI-dependent long-term depression (LTD) of glutamatergic synaptic transmission (mGluRI-LTD) is a key mechanism by which mGluRI shapes connectivity in various cerebral circuitries, directing complex brain functions and behaviors, and that it is deranged in several neurological and psychiatric illnesses, including neurodevelopmental disorders, neurodegenerative diseases, and psychopathologies. Here, we will provide an updated overview of the physiopathology of mGluRI-LTD, by describing mechanisms of induction and regulation by endogenous mGluRI interactors, as well as functional physiological implications and pathological deviations.
Collapse
Affiliation(s)
- Dalila Mango
- School of Pharmacy, University of Rome "Tor Vergata", 00133 Rome, Italy
- Laboratory of Pharmacology of Synaptic Plasticity, European Brain Research Institute, 00161 Rome, Italy
| | - Ada Ledonne
- Department of Systems Medicine, University of Rome "Tor Vergata", 00133 Rome, Italy
- Department of Experimental Neuroscience, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| |
Collapse
|
3
|
Cheng S, Xu J, Wang W, Wang R, Li H, Jiang Z, Liu D, Pan F. Inhibition of mGluR5 alters BDNF/TrkB and GLT-1 expression in the prefrontal cortex and hippocampus and ameliorates PTSD-like behavior in rats. Psychopharmacology (Berl) 2023; 240:837-851. [PMID: 36725696 DOI: 10.1007/s00213-023-06325-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/23/2023] [Indexed: 02/03/2023]
Abstract
RATIONALE AND OBJECTIVE Post-traumatic stress disorder (PTSD) is a prevalent and debilitating psychiatric disorder. However, its specific etiological mechanism remains unclear. Previous studies have shown that traumatic stress changes metabotropic glutamate receptor 5 (mGluR5) expression in the hippocampus (HIP) and prefrontal cortex (PFC). More importantly, mGluR5 expression is often accompanied by alterations in brain-derived neurotrophic factor (BDNF). Furthermore, BDNF/tropomyosin-associated kinase B (TrkB) signaling plays multiple roles, including roles in neuroplasticity and antidepressant activity, by regulating glutamate transporter-1 (GLT-1) expression. This study aims to explore the effects of inhibiting mGluR5 on PTSD-like behaviors and BDNF, TrkB, and GLT-1 expression in the HIP and PFC of inevitable foot shock (IFS)-treated rats. METHODS Seven-day IFS was used to establish a PTSD rat model, and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) (10 mg/kg, intraperitoneal injection) was used to inhibit the activity of mGluR5 during IFS in rats. After modeling, behavioral changes and mGluR5, BDNF, TrkB, and GLT-1 expression in the PFC and HIP were examined. RESULTS First, the IFS procedure induced PTSD-like behavior. Second, IFS increased the expression of mGluR5 and decreased BDNF, TrkB, and GLT-1 expression in the PFC and HIP. Third, the mGluR5 antagonist blocked the above behavioral and molecular alterations. CONCLUSIONS mGluR5 was involved in IFS-induced PTSD-like behavior by changing BDNF, TrkB, and GLT-1 expression.
Collapse
Affiliation(s)
- Shuyue Cheng
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Jingjing Xu
- Department of Clinical Psychology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, 266035, Shandong, China
| | - Wei Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Rui Wang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Haonan Li
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Zhijun Jiang
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China
| | - Fang Pan
- Department of Medical Psychology and Ethics, School of Basic Medical Medicine Sciences, Cheeloo College of Medicine, Shandong University, 44#, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
4
|
Asch RH, Pothula S, Toyonaga T, Fowles K, Groman SM, Garcia-Milian R, DiLeone RJ, Taylor JR, Esterlis I. Examining sex differences in responses to footshock stress and the role of the metabotropic glutamate receptor 5: an [ 18F]FPEB and positron emission tomography study in rats. Neuropsychopharmacology 2023; 48:489-497. [PMID: 36100654 PMCID: PMC9852230 DOI: 10.1038/s41386-022-01441-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 02/02/2023]
Abstract
Clinical investigations suggest involvement of the metabotropic glutamate receptor 5 (mGluR5) in the pathophysiology of fear learning that underlies trauma-related disorders. Here, we utilized a 4-day fear learning paradigm combined with positron emission tomography (PET) to examine the relationship between mGluR5 availability and differences in the response of rats to repeated footshock exposure (FE). Specifically, on day 1, male (n = 16) and female (n = 12) rats received 15 footshocks and were compared with control rats who did not receive footshocks (n = 7 male; n = 4 female). FE rats were classified as low responders (LR) or high responders (HR) based on freezing to the context the following day (day 2). PET with [18F]FPEB was used to calculate regional mGluR5 binding potential (BPND) at two timepoints: prior to FE (i.e., baseline), and post-behavioral testing. Additionally, we used an unbiased proteomics approach to assess group and sex differences in prefrontal cortex (PFC) protein expression. Post-behavioral testing we observed decreased BPND in LR females, but increased BPND in HR males relative to baseline. Further, individuals displaying the greatest freezing during the FE context memory test had the largest increases in PFC BPND. Males and females displayed unique post-test molecular profiles: in males, the greatest differences were between FE and CON, including upregulation of mGluR5 and related molecular networks in FE, whereas the greatest differences among females were between the LR and HR groups. These findings suggest greater mGluR5 availability increases following footshock exposure may be related to greater contextual fear memory. Results additionally reveal sex differences in the molecular response to footshock, including differential involvement of mGluR5-related molecular networks.
Collapse
Affiliation(s)
- Ruth H Asch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Santosh Pothula
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Krista Fowles
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Stephanie M Groman
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Rolando Garcia-Milian
- Bioinformatics Support Program, Cushing/Whitney Medical Library, Yale University School of Medicine, New Haven, CT, USA
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jane R Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale University, Department of Psychology, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Yale University, Department of Psychology, New Haven, CT, USA
- US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
5
|
Asch RH, Fowles K, Pietrzak RH, Taylor JR, Esterlis I. Examining mGlu5 Receptor Availability as a Predictor of Vulnerability to PTSD: An [ 18F]FPEB and PET Study in Male and Female Rats. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2023; 7:24705470231215001. [PMID: 38024327 PMCID: PMC10666551 DOI: 10.1177/24705470231215001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
Background Females are twice as likely to experience post-traumatic stress disorder (PTSD) than males, yet specific factors contributing to this greater risk are not fully understood. Our clinical and recent preclinical findings suggest a role for the metabotropic glutamate receptor 5 (mGlu5) in PTSD and differential involvement between males and females. Methods Here, we further investigate whether mGlu5 receptor availability may contribute to individual and sex differences in PTSD susceptibility by quantifying receptor availability using the mGlu5 receptor-specific radiotracer, [18F]FPEB, and positron emission tomography in male (n = 16) and female (n = 16) rats before and after traumatic footshock exposure (FE) and assessment of stress-enhanced fear learning (SEFL) susceptibility, as compared with no-shock controls (CON; n = 7 male; n = 8 female). Results Overall, FE rats displayed greater fear generalization as compared with CON (p < .001). Further, greater mGlu5 receptor availability at baseline (p = .003) and post-test (p = .005) was significantly associated with expression of the SEFL phenotype. Notably, FE female rats displayed a shift to more passive coping (ie, freezing), and displayed greater SEFL susceptibility (p = .01), and had lower baseline mGlu5 availability (p = .03) relative to their FE male rat counterparts. Conclusion Results are consistent with clinical findings of higher mGlu5 receptor availability in PTSD, and add to growing evidence implicating these receptors in the pathophysiology of PTSD and sex-differences in susceptibility for this disorder.
Collapse
Affiliation(s)
- Ruth H. Asch
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Krista Fowles
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Jane R. Taylor
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Irina Esterlis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale University School of Medicine, New Haven, CT, USA
- US Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
G Modrak C, S Wilkinson C, L Blount H, Schwendt M, A Knackstedt L. The role of mGlu receptors in susceptibility to stress-induced anhedonia, fear, and anxiety-like behavior. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 168:221-264. [PMID: 36868630 DOI: 10.1016/bs.irn.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Stress and trauma exposure contribute to the development of psychiatric disorders such as post-traumatic stress disorder (PTSD) and major depressive disorder (MDD) in a subset of people. A large body of preclinical work has found that the metabotropic glutamate (mGlu) family of G protein-coupled receptors regulate several behaviors that are part of the symptom clusters for both PTSD and MDD, including anhedonia, anxiety, and fear. Here, we review this literature, beginning with a summary of the wide variety of preclinical models used to assess these behaviors. We then summarize the involvement of Group I and II mGlu receptors in these behaviors. Bringing together this extensive literature reveals that mGlu5 signaling plays distinct roles in anhedonia, fear, and anxiety-like behavior. mGlu5 promotes susceptibility to stress-induced anhedonia and resilience to stress-induced anxiety-like behavior, while serving a fundamental role in the learning underlying fear conditioning. The medial prefrontal cortex, basolateral amygdala, nucleus accumbens, and ventral hippocampus are key regions where mGlu5, mGlu2, and mGlu3 regulate these behaviors. There is strong support that stress-induced anhedonia arises from decreased glutamate release and post-synaptic mGlu5 signaling. Conversely, decreasing mGlu5 signaling increases resilience to stress-induced anxiety-like behavior. Consistent with opposing roles for mGlu5 and mGlu2/3 in anhedonia, evidence suggests that increased glutamate transmission may be therapeutic for the extinction of fear learning. Thus, a large body of literature supports the targeting of pre- and post-synaptic glutamate signaling to ameliorate post-stress anhedonia, fear, and anxiety-like behavior.
Collapse
Affiliation(s)
- Cassandra G Modrak
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Courtney S Wilkinson
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Harrison L Blount
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Marek Schwendt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States
| | - Lori A Knackstedt
- Department of Psychology, University of Florida, Gainesville, FL, United States; Center for Addiction Research and Education, University of Florida, Gainesville, FL, United States; Center for OCD, Anxiety, and Related Disorders, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
7
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
8
|
Stress resilience-associated behaviors following predator scent stress are accompanied by upregulated nucleus accumbens mGlu5 transcription in female Sprague Dawley rats. Behav Brain Res 2022; 436:114090. [DOI: 10.1016/j.bbr.2022.114090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 12/27/2022]
|
9
|
The antidepressant and anxiolytic effects of cannabinoids in chronic unpredictable stress: a preclinical systematic review and meta-analysis. Transl Psychiatry 2022; 12:217. [PMID: 35641487 PMCID: PMC9156762 DOI: 10.1038/s41398-022-01967-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/22/2022] [Accepted: 05/04/2022] [Indexed: 12/09/2022] Open
Abstract
Neuroscience research presents contradictory evidence in support of both the protective and destructive effects of cannabinoids in depression. Therefore, this systematic review and meta-analysis summarizes the existing preclinical literature on the effects of cannabinoid administration in the chronic unpredictable stress model of depression in order to evaluate the effects of cannabinoids and identify gaps in the literature. After protocol registration (PROSPERO #CRD42020219986), we systematically searched Scopus, Embase, Psychology & Behavioral Sciences Collection, APA PsychINFO, PubMed, CINAHL Complete, and ProQuest Dissertations & Theses Global from the earliest record of the databases, February 1964, to November 2020 for articles that met inclusion criteria (e.g., rodent subjects and administration of a cannabinoid. A total of 26 articles were included representing a sample size estimate of 1132 rodents with the majority of articles administering daily intraperitoneal injections during chronic unpredictable stress. These articles were evaluated using a modified SYRCLE's risk-of-bias tool. For each continuous behavioral measure, the standardized mean difference was calculated between cannabinoid and vehicle groups in rodents subjected to chronic unpredictable stress. The effects of cannabinoids on depressive-like behavior was evaluated using a multilevel mixed-effects model with effect size weights nested within control groups. Cannabinoid administration moderately improved the pooled negative effects of chronic unpredictable stress on anhedonia, learned helplessness, novelty suppressed feeding, time in the anxiogenic context, and entries into the anxiogenic context. Although the interpretations are limited, these findings suggest that with further investigation, cannabinoids may be a viable long-term treatment for stress-related psychopathologies such as depression.
Collapse
|
10
|
Yeni Y, Cakir Z, Hacimuftuoglu A, Taghizadehghalehjoughi A, Okkay U, Genc S, Yildirim S, Saglam YS, Calina D, Tsatsakis A, Docea AO. A Selective Histamine H4 Receptor Antagonist, JNJ7777120, Role on Glutamate Transporter Activity in Chronic Depression. J Pers Med 2022; 12:jpm12020246. [PMID: 35207733 PMCID: PMC8880293 DOI: 10.3390/jpm12020246] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/29/2022] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Glutamate release and reuptake play a key role in the pathophysiology of depression. glutamatergic nerves in the hippocampus region are modulated by histaminergic afferents. Excessive accumulation of glutamate in the synaptic area causes degeneration of neuron cells. The H4 receptor is defined as the main immune system histamine receptor with a pro-inflammatory role. To understand the role of this receptor, the drug JNJ7777120 was used to reveal the chronic depression-glutamate relationship. We have important findings showing that the H4 antagonist increases the glutamate transporters’ instantaneous activity. In our experiment, it has been shown that blocking the H4 receptor leads to increased neuron cell viability and improvement in behavioral ability due to glutamate. Therefore, JNJ can be used to prevent neurotoxicity, inhibit membrane phospholipase activation and free radical formation, and minimize membrane disruption. In line with our findings, results have been obtained that indicate that JNJ will contribute to the effective prevention and treatment of depression.
Collapse
Affiliation(s)
- Yesim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey; (Y.Y.); (U.O.); (S.G.)
| | - Zeynep Cakir
- Department of Emergency Medicine, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey
- Correspondence: (Z.C.); (A.H.); (A.T.); (D.C.); (A.T.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey; (Y.Y.); (U.O.); (S.G.)
- Correspondence: (Z.C.); (A.H.); (A.T.); (D.C.); (A.T.)
| | - Ali Taghizadehghalehjoughi
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey
- Correspondence: (Z.C.); (A.H.); (A.T.); (D.C.); (A.T.)
| | - Ufuk Okkay
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey; (Y.Y.); (U.O.); (S.G.)
| | - Sidika Genc
- Department of Medical Pharmacology, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey; (Y.Y.); (U.O.); (S.G.)
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (S.Y.); (Y.S.S.)
| | - Yavuz Selim Saglam
- Department of Pathology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey; (S.Y.); (Y.S.S.)
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
- Correspondence: (Z.C.); (A.H.); (A.T.); (D.C.); (A.T.)
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
- Department of Analytical and Forensic Medical Toxicology, Sechenov University, 119991 Moscow, Russia
- Correspondence: (Z.C.); (A.H.); (A.T.); (D.C.); (A.T.)
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
11
|
Chronic mild stress paradigm as a rat model of depression: facts, artifacts, and future perspectives. Psychopharmacology (Berl) 2022; 239:663-693. [PMID: 35072761 PMCID: PMC8785013 DOI: 10.1007/s00213-021-05982-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/15/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE The chronic mild stress (CMS) paradigm was first described almost 40 years ago and has become a widely used model in the search for antidepressant drugs for major depression disorder (MDD). It has resulted in the publication of almost 1700 studies in rats alone. Under the original CMS procedure, the expression of an anhedonic response, a key symptom of depression, was seen as an essential feature of both the model and a depressive state. The prolonged exposure of rodents to unpredictable/uncontrollable mild stressors leads to a reduction in the intake of palatable liquids, behavioral despair, locomotor inhibition, anxiety-like changes, and vegetative (somatic) abnormalities. Many of the CMS studies do not report these patterns of behaviors, and they often fail to include consistent molecular, neuroanatomical, and physiological phenotypes of CMS-exposed animals. OBJECTIVES To critically review the CMS studies in rats so that conceptual and methodological flaws can be avoided in future studies. RESULTS Analysis of the literature supports the validity of the CMS model and its impact on the field. However, further improvements could be achieved by (i) the stratification of animals into 'resilient' and 'susceptible' cohorts within the CMS animals, (ii) the use of more refined protocols in the sucrose test to mitigate physiological and physical artifacts, and (iii) the systematic evaluation of the non-specific effects of CMS and implementation of appropriate adjustments within the behavioral tests. CONCLUSIONS We propose methodological revisions and the use of more advanced behavioral tests to refine the rat CMS paradigm, which offers a valuable tool for developing new antidepressant medications.
Collapse
|
12
|
Targeting the dysfunction of glutamate receptors for the development of novel antidepressants. Pharmacol Ther 2021; 226:107875. [PMID: 33901503 DOI: 10.1016/j.pharmthera.2021.107875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 12/19/2022]
Abstract
Increasing evidence indicates that dysfunction of glutamate receptors is involved in the pathophysiology of major depressive disorder (MDD). Although accumulating efforts have been made to elucidate the applications and mechanisms underlying antidepressant-like effects of ketamine, a non-selective antagonist of N-methyl-d-aspartate receptor (NMDAR), the role of specific glutamate receptor subunit in regulating depression is not completely clear. The current review aims to discuss the relationships between glutamate receptor subunits and depressive-like behaviors. Research literatures were searched from inception to July 2020. We summarized the alterations of glutamate receptor subunits in patients with MDD and animal models of depression. Animal behaviors in response to dysfunction of glutamate receptor subunits were also surveyed. To fully understand mechanisms underlying antidepressant-like effects of modulators targeting glutamate receptors, we discussed effects of each glutamate receptor subunit on serotonin system, synaptic plasticity, neurogenesis and neuroinflammation. Finally, we collected most recent clinical applications of glutamate receptor modulators and pointed out the limitations of these candidates in the treatment of MDD.
Collapse
|
13
|
Li S, Zhang H, Gao X, Huang H, He W, Zhang H, Sun H. Prenatal stress induced depressive-like behavior and region dependently high CRP level in offspring rats. Brain Behav 2021; 11:e02046. [PMID: 33599398 PMCID: PMC8035444 DOI: 10.1002/brb3.2046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION To explore the changes in C-reactive protein (CRP) level in different regions of one old offspring rats exposed to prenatal stress (PS). METHODS The rat model was constructed with prenatal restraint stress on pregnant dams on days 14-20 of gestation. Offspring rats were randomly divided into PS susceptibility (PS-S) group and control (CON) group. Behavioral experiments including sucrose preference test (SPT), open-field test (OFT), and forced swimming test (FST) were used to measure depressive-like behaviors. Immunohistochemistry, qRT-PCR, and Western blotting were applied to detect the changes in CRP level. RESULTS The results showed that PS could cause depressive-like behaviors in all SPT, OFT, and FST. Concomitantly, CRP mRNA and protein expression significantly increased in hippocampus, prefrontal cortex, and hypothalamus in the PS-S group when compared that in the CON group, while no significantly changes in liver, heart, olfactory bulb, striatum, and cerebellum in the PS-S group when compared that in the CON group. CONCLUSION Increasing of CRP expression in hippocampus, prefrontal cortex, and hypothalamus may play a critical role in the mechanism under depressive-like behavior in offspring rats exposed to PS.
Collapse
Affiliation(s)
- Shaoning Li
- Department of Emergency, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Huifang Zhang
- Department of Emergency, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Xueyun Gao
- School of Public Health, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Huimei Huang
- Department of Nephrology, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Wei He
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Huiping Zhang
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| | - Hongli Sun
- Shaanxi Institute for Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital, The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, P.R. China
| |
Collapse
|
14
|
Clinton SM, Shupe EA, Glover ME, Unroe KA, McCoy CR, Cohen JL, Kerman IA. Modeling heritability of temperamental differences, stress reactivity, and risk for anxiety and depression: Relevance to research domain criteria (RDoC). Eur J Neurosci 2021; 55:2076-2107. [PMID: 33629390 PMCID: PMC8382785 DOI: 10.1111/ejn.15158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 01/04/2023]
Abstract
Animal models provide important tools to study biological and environmental factors that shape brain function and behavior. These models can be effectively leveraged by drawing on concepts from the National Institute of Mental Health Research Domain Criteria (RDoC) Initiative, which aims to delineate molecular pathways and neural circuits that underpin behavioral anomalies that transcend psychiatric conditions. To study factors that contribute to individual differences in emotionality and stress reactivity, our laboratory utilized Sprague-Dawley rats that were selectively bred for differences in novelty exploration. Selective breeding for low versus high locomotor response to novelty produced rat lines that differ in behavioral domains relevant to anxiety and depression, particularly the RDoC Negative Valence domains, including acute threat, potential threat, and loss. Bred Low Novelty Responder (LR) rats, relative to their High Responder (HR) counterparts, display high levels of behavioral inhibition, conditioned and unconditioned fear, avoidance, passive stress coping, anhedonia, and psychomotor retardation. The HR/LR traits are heritable, emerge in the first weeks of life, and appear to be driven by alterations in the developing amygdala and hippocampus. Epigenomic and transcriptomic profiling in the developing and adult HR/LR brain suggest that DNA methylation and microRNAs, as well as differences in monoaminergic transmission (dopamine and serotonin in particular), contribute to their distinct behavioral phenotypes. This work exemplifies ways that animal models such as the HR/LR rats can be effectively used to study neural and molecular factors driving emotional behavior, which may pave the way toward improved understanding the neurobiological mechanisms involved in emotional disorders.
Collapse
Affiliation(s)
- Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Elizabeth A Shupe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Joshua L Cohen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Ilan A Kerman
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Behavioral Health Service Line, Veterans Affairs Pittsburgh Health System, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Tubbs JD, Ding J, Baum L, Sham PC. Systemic neuro-dysregulation in depression: Evidence from genome-wide association. Eur Neuropsychopharmacol 2020; 39:1-18. [PMID: 32896454 DOI: 10.1016/j.euroneuro.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
Depression is the world's leading cause of disability. Greater understanding of the neurobiological basis of depression is necessary for developing novel treatments with improved efficacy and acceptance. Recently, major advances have been made in the search for genetic variants associated with depression which may help to elucidate etiological mechanisms. The present review has two major objectives. First, we offer a brief review of two major biological systems with strong evidence for involvement in depression pathology: neurotransmitter systems and the stress response. Secondly, we provide a synthesis of the functions of the 269 genes implicated by the most recent genome-wide meta-analysis, supporting the importance of these systems in depression and providing insights into other possible mechanisms involving neurodevelopment, neurogenesis, and neurodegeneration. Our goal is to undertake a broad, preliminary stock-taking of the most recent hypothesis-free findings and examine the weight of the evidence supporting these existing theories and highlighting novel directions. This qualitative review and accompanying gene function table provides a valuable resource and guide for basic and translational researchers, with suggestions for future mechanistic research, leveraging genetics to prioritize studies on the neurobiological processes involved in depression etiology and treatment.
Collapse
Affiliation(s)
- Justin D Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong; Centre of PanorOmic Sciences, The University of Hong Kong, Hong Kong.
| |
Collapse
|
16
|
Tubbs JD, Ding J, Baum L, Sham PC. Immune dysregulation in depression: Evidence from genome-wide association. Brain Behav Immun Health 2020; 7:100108. [PMID: 34589869 PMCID: PMC8474691 DOI: 10.1016/j.bbih.2020.100108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/15/2022] Open
Abstract
A strong body of evidence supports a role for immune dysregulation across many psychiatric disorders including depression, the leading cause of global disability. Recent progress in the search for genetic variants associated with depression provides the opportunity to strengthen our current understanding of etiological factors contributing to depression and generate novel hypotheses. Here, we provide an overview of the literature demonstrating a role for immune dysregulation in depression, followed by a detailed discussion of the immune-related genes identified by the most recent genome-wide meta-analysis of depression. These genes represent strong evidence-based targets for future basic and translational research which aims to understand the role of the immune system in depression pathology and identify novel points for therapeutic intervention.
Collapse
Affiliation(s)
- Justin D. Tubbs
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Jiahong Ding
- Department of Psychiatry, The University of Hong Kong, Hong Kong
| | - Larry Baum
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
| | - Pak C. Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong
- Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
17
|
Wang Y, He W, Zhang H, Yao Z, Che F, Cao Y, Sun H. mGluR5 mediates ketamine antidepressant response in susceptible rats exposed to prenatal stress. J Affect Disord 2020; 272:398-408. [PMID: 32553383 DOI: 10.1016/j.jad.2020.03.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/31/2020] [Accepted: 03/28/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND New insights have recently been gained into ketamine's potential anti-depressive effects. However, the mechanisms that underlie ketamine's rapid antidepressant activity still remain a mystery. METHODS We used a rat prenatal stress (PS) model of depression to explore the functional role of mGluR5 in ketamine's rapidly induced antidepressant activity. Effects of the antidepressants imipramine, escitalopram, ketamine, and fluoxetine were compared. AAV-mGluR5 and AAV-shRNA-mGluR5 were constructed to overexpress and knockdown hippocampal mGluR5 respectively. RESULTS This study shows that mGluR5, which is associated with depression-like behaviors, is increased in susceptible rats exposed to prenatal stress, and that ketamine could significantly alleviate these stress-induced effects. RU-38486 down-regulated expression of mGluR5 and up-regulated NR1. MPEP and CHPG also altered expression of both mGluR5 and NR1. Notably, hippocampal overexpression of mGluR5 in wild type rats changed NR1 and PSD-95 expression and induced depression-like behavior that could be blocked by ketamine activity. Further, knockdown of hippocampal mGluR5 in PS-S rats restored normal levels of mGluR5, NR1, and PSD-95, and alleviated depression-like behavior. LIMITATIONS The entire rat hippocampus was used for this study, but the role of mGluR5 may vary by sub-region. CONCLUSION These results suggest that hippocampal mGluR5 may play a key role in mediating the rapid antidepressant effects of ketamine in a prenatal stress model of depression. This provides a novel therapeutic target in clinical treatment of depression.
Collapse
Affiliation(s)
- Yi Wang
- Department of Neonatal Intensive Care Unit, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Wei He
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Huiping Zhang
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Zhenyu Yao
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Fengyu Che
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China
| | - Yanjun Cao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an, Shaanxi, 86-710069, P.R. China
| | - Hongli Sun
- Shaanxi Institute of Pediatric Diseases, Xi'an Key Laboratory of Children's Health and Diseases, Xi'an Children's Hospital (The Affiliated Children's Hospital of Xi'an Jiaotong University), Xi'an, Shaanxi, 86-710003, P.R. China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 86-710061, P.R. China.
| |
Collapse
|
18
|
Glutamatergic postsynaptic density in early life stress programming: Topographic gene expression of mGlu5 receptors and Homer proteins. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109725. [PMID: 31404590 DOI: 10.1016/j.pnpbp.2019.109725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/24/2019] [Accepted: 07/28/2019] [Indexed: 11/24/2022]
Abstract
Type-5 metabotropic glutamate receptors (mGlu5) have been implicated in the mechanism of resilience to stress. They form part of the postsynaptic density (PSD), a thickening of the glutamatergic synapse that acts as a multimodal hub for multiple cellular signaling. Perinatal stress in rats triggers alterations that make adult offspring less resilient to stress. In the present study, we examined the expression of gene encoding the mGlu5 (Grm5), as well as those encoding the short and long isoforms of Homer proteins in different brain regions of the offspring of dams exposed to repeated episodes of restraint stress during pregnancy ("perinatally stressed" or PRS offspring). To this end, we investigated unconditioned behavioral response using the light/dark box test, as well as the expression of PSD genes (Homer1a, Homer1b, and Grm5), in the medial prefrontal cortex, cortex, caudate-putamen, amygdala, and dorsal hippocampus. PRS rats spent significantly less time in the light area than the control group. In the amygdala, Homer1a mRNA levels were significantly increased in PRS rats, whereas Homer1b and Grm5 mRNA levels were reduced. In contrast, the transcript encoding for Homer1a was significantly reduced in the medial prefrontal cortex, caudate-putamen, and dorsal hippocampus of PRS rats. We also evaluated the relative ratio between Homer1a and Homer1b/Grm5 expression, finding a significant shift toward the expression of Homer1a in the amygdala and toward Homer1b/Grm5 in the other brain regions. These topographic patterns of Homer1a, Homer1b, and mGlu5 gene expression were significantly correlated with risk-taking behavior measured in the light/dark box test. Remarkably, in the amygdala and in other brain regions, Homer1b and Grm5 expression showed positive correlation with time spent in the light box, whereas Homer1a in the amygdala showed a negative correlation with risk-taking behavior, in contrast with all other brain regions analyzed, wherein these correlations were positive. These results suggest that perinatal stress programs the developmental expression of PSD molecules involved in mGlu5 signaling in discrete brain regions, with a predominant role for the amygdala.
Collapse
|
19
|
Li MX, Li Q, Sun XJ, Luo C, Li Y, Wang YN, Chen J, Gong CZ, Li YJ, Shi LP, Zheng YF, Li RC, Huang XL, Xiong QJ, Chen H. Increased Homer1-mGluR5 mediates chronic stress-induced depressive-like behaviors and glutamatergic dysregulation via activation of PERK-eIF2α. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109682. [PMID: 31265863 DOI: 10.1016/j.pnpbp.2019.109682] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 10/26/2022]
Abstract
Glutamatergic dysregulation has served as one common pathophysiology of major depressive disorder (MDD) and a promising target for treatment intervention. Previous studies implicate neurotransmission via metabotropic glutamate receptors (mGluRs) and Homer1 in stress-induced anhedonia, but the mechanisms have not been well elucidated. In the present study, we used two different animal models of depression, chronic social defeat stress (CSDS) and chronic restraint stress (CRS), to investigate the expression of Homer1 isoforms and functional interaction with mGluRs. We found that chronic stress selectively upregulated the expression of Homer1b/c in the hippocampus, whereas the level of Homer1a was unchanged. Additionally, there was a significant negative correlation between the levels of Homer1-mGluR5 signaling and depressive-like behaviors. Both application of paired-pulse low-frequency stimulation (PP-LFS) and the selective group 1 mGluRs agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) significantly enhanced mGluR-dependent long-term depression (LTD) at CA3-CA1 pyramidal cell synapses in slices from susceptible mice, whereas there was no change in NMDAR-dependent LTD induced by LFS. Furthermore, these effects were associated with the internalization of surface AMPARs in hippocampal pyramidal neurons, including reduced the expression of AMPARs and amplitude of AMPARs-mediated mEPSC. Finally, we found that chronic stress activated the KR-like ER kinase-eukaryotic initiation factor 2α (PERK-eIF2α) signaling pathway, subsequently phosphorylated cAMP response element binding protein (CREB) at the S129 and reduced the BDNF level, eventually leading to the impairment of synaptic transmission and depressive-like behaviors. Therefore, our study suggests that PERK-eIF2α acts as a critical target downstream of Homer1-mGluR5 complex to mediate chronic stress-induced depressive-like behaviors, and highlights them as a potential target for the treatment of mood disorder.
Collapse
Affiliation(s)
- Ming-Xing Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji-Wisconsin Stem Cell Application Technology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qian Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xue-Jiao Sun
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Can Luo
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong Li
- Department of Oncology, Renmin Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Ya-Nan Wang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chen-Zi Gong
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ya-Jie Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li-Ping Shi
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yi-Feng Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rong-Chun Li
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao-Lin Huang
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiu-Ju Xiong
- Department of Pain Management, Wuhan Pu-Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Tongji-Wisconsin Stem Cell Application Technology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
20
|
Ney LJ, Matthews A, Bruno R, Felmingham KL. Cannabinoid interventions for PTSD: Where to next? Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:124-140. [PMID: 30946942 DOI: 10.1016/j.pnpbp.2019.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/29/2019] [Indexed: 01/18/2023]
Abstract
Cannabinoids are a promising method for pharmacological treatment of post-traumatic stress disorder (PTSD). Despite considerable research devoted to the effect of cannabinoid modulation on PTSD symptomology, there is not a currently agreed way by which the cannabinoid system should be targeted in humans. In this review, we present an overview of recent research identifying neurological pathways by which different cannabinoid-based treatments may exert their effects on PTSD symptomology. We evaluate the strengths and weaknesses of each of these different approaches, including recent challenges presented to favourable options such as fatty acid amide hydrolase (FAAH) inhibitors. This article makes the strengths and challenges of different potential cannabinoid treatments accessible to psychological researchers interested in cannabinoid therapeutics and aims to aid selection of appropriate tools for future clinical trials.
Collapse
Affiliation(s)
- Luke J Ney
- School of Psychology, University of Tasmania, Australia.
| | | | | | - Kim L Felmingham
- School of Psychological Sciences, University of Melbourne, Australia
| |
Collapse
|
21
|
Widman AJ, Cohen JL, McCoy CR, Unroe KA, Glover ME, Khan AU, Bredemann T, McMahon LL, Clinton SM. Rats bred for high anxiety exhibit distinct fear-related coping behavior, hippocampal physiology, and synaptic plasticity-related gene expression. Hippocampus 2019; 29:939-956. [PMID: 30994250 DOI: 10.1002/hipo.23092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/24/2019] [Accepted: 04/01/2019] [Indexed: 12/29/2022]
Abstract
The hippocampus is essential for learning and memory but also regulates emotional behavior. We previously identified the hippocampus as a major brain region that differs in rats bred for emotionality differences. Rats bred for low novelty response (LRs) exhibit high levels of anxiety- and depression-like behavior compared to high novelty responder (HR) rats. Manipulating the hippocampus of high-anxiety LR rats improves their behavior, although no work to date has examined possible HR/LR differences in hippocampal synaptic physiology. Thus, the current study examined hippocampal slice electrophysiology, dendritic spine density, and transcriptome profiling in HR/LR hippocampus, and compared performance on three hippocampus-dependent tasks: The Morris water maze, contextual fear conditioning, and active avoidance. Our physiology experiments revealed increased long-term potentiation (LTP) at CA3-CA1 synapses in HR versus LR hippocampus, and Golgi analysis found an increased number of dendritic spines in basal layer of CA1 pyramidal cells in HR versus LR rats. Transcriptome data revealed glutamate neurotransmission as the top functional pathway differing in the HR/LR hippocampus. Our behavioral experiments showed that HR/LR rats exhibit similar learning and memory capability in the Morris water maze, although the groups differed in fear-related tasks. LR rats displayed greater freezing behavior in the fear-conditioning task, and HR/LR rats adopted distinct behavioral strategies in the active avoidance task. In the active avoidance task, HRs avoided footshock stress by pressing a lever when presented with a warning cue; LR rats, on the other hand, waited until footshocks began before pressing the lever to stop them. Taken together, these findings concur with prior observations of HR rats generally exhibiting active stress coping behavior while LRs exhibit reactive coping. Overall, our current findings coupled with previous work suggest that HR/LR differences in stress reactivity and stress coping may derive, at least in part, from differences in the developing and adult hippocampus.
Collapse
Affiliation(s)
- Allie J Widman
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Joshua L Cohen
- Medical Scientist Training Program (MSTP), University of Alabama, Birmingham, Alabama
| | - Chelsea R McCoy
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Keaton A Unroe
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia
| | - Matthew E Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Anas U Khan
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Teruko Bredemann
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Lori L McMahon
- Department of Cellular, Developmental and Integrative Biology, University of Alabama, Birmingham, Alabama
| | - Sarah M Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
22
|
The Impact of Stress and Major Depressive Disorder on Hippocampal and Medial Prefrontal Cortex Morphology. Biol Psychiatry 2019; 85:443-453. [PMID: 30470559 PMCID: PMC6380948 DOI: 10.1016/j.biopsych.2018.09.031] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/25/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Volumetric reductions in the hippocampus and medial prefrontal cortex (mPFC) are among the most well-documented neural abnormalities in major depressive disorder (MDD). Hippocampal and mPFC structural reductions have been specifically tied to MDD illness progression markers, including greater number of major depressive episodes (MDEs), longer illness duration, and nonremission/treatment resistance. Chronic stress plays a critical role in the development of hippocampal and mPFC deficits, with some studies suggesting that these deficits occur irrespective of MDE occurrence. However, preclinical and human research also points to other stress-mediated neurotoxic processes, including enhanced inflammation and neurotransmitter disturbances, which may require the presence of an MDE and contribute to further brain structural decline as the illness advances. Specifically, hypothalamic-pituitary-adrenal axis dysfunction, enhanced inflammation and oxidative stress, and neurotransmitter abnormalities (e.g., serotonin, glutamate, gamma-aminobutyric acid) likely interact to facilitate illness progression in MDD. Congruent with stress sensitization models of MDD, with each consecutive MDE it may take lower levels of stress to trigger these neurotoxic pathways, leading to more pronounced brain volumetric reductions. Given that stress and MDD have overlapping and distinct influences on neurobiological pathways implicated in hippocampal and mPFC structural decline, further work is needed to clarify which precise mechanisms ultimately contribute to MDD development and maintenance.
Collapse
|
23
|
Yim YS, Han W, Seo J, Kim CH, Kim DG. Differential mGluR5 expression in response to the same stress causes individually adapted hippocampal network activity. Biochem Biophys Res Commun 2018; 495:1305-1311. [DOI: 10.1016/j.bbrc.2017.11.172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
|