1
|
Salas-Leal AC, Salas-Pacheco SM, Hernández-Cosaín EI, Vélez-Vélez LM, Antuna-Salcido EI, Castellanos-Juárez FX, Méndez-Hernández EM, Llave-León OL, Quiñones-Canales G, Arias-Carrión O, Sandoval-Carrillo AA, Salas-Pacheco JM. Differential expression of PSMC4, SKP1, and HSPA8 in Parkinson's disease: insights from a Mexican mestizo population. Front Mol Neurosci 2023; 16:1298560. [PMID: 38115821 PMCID: PMC10728481 DOI: 10.3389/fnmol.2023.1298560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
Parkinson's disease (PD) is a complex neurodegenerative condition characterized by alpha-synuclein aggregation and dysfunctional protein degradation pathways. This study investigates the differential gene expression of pivotal components (UBE2K, PSMC4, SKP1, and HSPA8) within these pathways in a Mexican-Mestizo PD population compared to healthy controls. We enrolled 87 PD patients and 87 controls, assessing their gene expression levels via RT-qPCR. Our results reveal a significant downregulation of PSMC4, SKP1, and HSPA8 in the PD group (p = 0.033, p = 0.003, and p = 0.002, respectively). Logistic regression analyses establish a strong association between PD and reduced expression of PSMC4, SKP1, and HSPA8 (OR = 0.640, 95% CI = 0.415-0.987; OR = 0.000, 95% CI = 0.000-0.075; OR = 0.550, 95% CI = 0.368-0.823, respectively). Conversely, UBE2K exhibited no significant association or expression difference between the groups. Furthermore, we develop a gene expression model based on HSPA8, PSMC4, and SKP1, demonstrating robust discrimination between healthy controls and PD patients. Notably, the model's diagnostic efficacy is particularly pronounced in early-stage PD. In conclusion, our study provides compelling evidence linking decreased gene expression of PSMC4, SKP1, and HSPA8 to PD in the Mexican-Mestizo population. Additionally, our gene expression model exhibits promise as a diagnostic tool, particularly for early-stage PD diagnosis.
Collapse
Affiliation(s)
- Alma C. Salas-Leal
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Sergio M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Erik I. Hernández-Cosaín
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Lilia M. Vélez-Vélez
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | | | - Edna M. Méndez-Hernández
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - Osmel La Llave-León
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Ciudad de México, México
| | - Ada A. Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| | - José M. Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, México
| |
Collapse
|
2
|
Jia X, Sun Y, Wang T, Zhong L, Deng J, Zhu X. Mechanism of circular RNA-mediated regulation of L-DOPA to improve wet age-related macular degeneration. Gene 2023; 861:147247. [PMID: 36736867 DOI: 10.1016/j.gene.2023.147247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/14/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
This study aimed to investigate the effect and mechanism of levodopa (L-DOPA) in the treatment of age-related macular degeneration (AMD). A wet AMD cell model was created via CoCl2 treatment of ARPE-19 cells. The cytoprotective effects of L-DOPA in the model were determined using CCK-8, flow cytometry, TUNEL, qPCR, and ELISA assays. Subsequently, circRNA sequencing and bioinformatics analysis were used to screen differentially expressed circRNAs, which were overexpressed in ARPE-19 cells, to explore their role in wet AMD. The findings revealed that 200 μM CoCl2 treatment inhibited the cell viability and the production of tyrosinase, melanin, and pigment epithelium-derived growth factor but promoted apoptosis and the expression of vascular endothelial growth factor in ARPE-19 cells. Moreover, 20 μM L-DOPA exerted the best therapeutic effect on the model. qPCR showed that Hsa_circ_0018401 (circ-SGMS1) was significantly differentially expressed in each experimental group, which was consistent with the sequencing results. The overexpression of circ-SGMS1 in ARPE-19 cells reversed the effects of CoCl2. Fluorescence in situ hybridization showed that circ-SGMS1 was expressed more in the nucleus than in the cytoplasm. qPCR assays indicated that circ-SGMS1 overexpression did not have a significant effect on the expressions of VEGFA and KDR but significantly reduced the expressions of HIF-1a and THBS1. Circ-SGMS1 is of immense significance in the AMD treatment mechanism of L-DOPA. Overexpression of circ-SGMS1 may alleviate wet AMD by inhibiting HIF-1a and THBS1 expression.
Collapse
Affiliation(s)
- Xiuhua Jia
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Sun
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tao Wang
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lei Zhong
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Juan Deng
- Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Xiang Zhu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Tóth K, S Nagy K, Güler Z, Juhász ÁG, Pállinger É, Varga G, Sarac AS, Zrínyi M, Jedlovszky-Hajdú A, Juriga D. Characterization of Electrospun Polysuccinimide-Dopamine Conjugates and Effect on Cell Viability and Uptake. Macromol Biosci 2023; 23:e2200397. [PMID: 36592964 DOI: 10.1002/mabi.202200397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Biocompatible nanofibrous systems made by electrospinning have been studied widely for pharmaceutical applications since they have a high specific surface and the capability to make the entrapped drug molecule amorphous, which increases bioavailability. By covalently conjugating drugs onto polymers, the degradation of the drug as well as the fast clearance from the circulation can be avoided. Although covalent polymer-drug conjugates have a lot of advantages, there is a lack of research focusing on their nano-formulation by electrospinning. In this study, polysuccinimide (PSI) based electrospun fibrous meshes conjugated with dopamine (DA) are prepared. Fiber diameter, mechanical properties, dissolution kinetics and membrane permeability are thoroughly investigated, as these are crucial for drug delivery and implantation. Dopamine release kinetics prove the prolonged release that influenced the viability and morphology of periodontal ligament stem cells (PDLSCs) and SH-SY5Y cells. The presence of dopamine receptors on both cell types is also demonstrated and the uptake of the conjugates is measured. According to flow cytometry analysis, the conjugates are internalized by both cell types, which is influenced by the chemical structure and physical properties. In conclusion, electrospinning of PSI-DA conjugates alters release kinetics, meanwhile, conjugated dopamine can play a key role in cellular uptake.
Collapse
Affiliation(s)
- Krisztina Tóth
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztina S Nagy
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Zeliha Güler
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey.,Department of Obstetrics and Gynecology, Amsterdam Reproduction and Development, Amsterdam UMC, location AMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands
| | - Ákos György Juhász
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Éva Pállinger
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gábor Varga
- Department of Oral Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.,Centre for Translational Medicine, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - A Sezai Sarac
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Miklós Zrínyi
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Angéla Jedlovszky-Hajdú
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Dávid Juriga
- Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| |
Collapse
|
4
|
Zhou R, He M, Fan J, Li R, Zuo Y, Li B, Gao G, Sun T. The role of hypothalamic endoplasmic reticulum stress in schizophrenia and antipsychotic-induced weight gain: A narrative review. Front Neurosci 2022; 16:947295. [PMID: 36188456 PMCID: PMC9523121 DOI: 10.3389/fnins.2022.947295] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
Schizophrenia (SCZ) is a serious mental illness that affects 1% of people worldwide. SCZ is associated with a higher risk of developing metabolic disorders such as obesity. Antipsychotics are the main treatment for SCZ, but their side effects include significant weight gain/obesity. Despite extensive research, the underlying mechanisms by which SCZ and antipsychotic treatment induce weight gain/obesity remain unclear. Hypothalamic endoplasmic reticulum (ER) stress is one of the most important pathways that modulates inflammation, neuronal function, and energy balance. This review aimed to investigate the role of hypothalamic ER stress in SCZ and antipsychotic-induced weight gain/obesity. Preliminary evidence indicates that SCZ is associated with reduced dopamine D2 receptor (DRD2) signaling, which significantly regulates the ER stress pathway, suggesting the importance of ER stress in SCZ and its related metabolic disorders. Antipsychotics such as olanzapine activate ER stress in hypothalamic neurons. These effects may induce decreased proopiomelanocortin (POMC) processing, increased neuropeptide Y (NPY) and agouti-related protein (AgRP) expression, autophagy, and leptin and insulin resistance, resulting in hyperphagia, decreased energy expenditure, and central inflammation, thereby causing weight gain. By activating ER stress, antipsychotics such as olanzapine activate hypothalamic astrocytes and Toll-like receptor 4 signaling, thereby causing inflammation and weight gain/obesity. Moreover, evidence suggests that antipsychotic-induced ER stress may be related to their antagonistic effects on neurotransmitter receptors such as DRD2 and the histamine H1 receptor. Taken together, ER stress inhibitors could be a potential effective intervention against SCZ and antipsychotic-induced weight gain and inflammation.
Collapse
Affiliation(s)
- Ruqin Zhou
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Meng He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- *Correspondence: Meng He,
| | - Jun Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Ruoxi Li
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Zuo
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Benben Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
| | - Guanbin Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
- Guanbin Gao,
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, China
- Taolei Sun,
| |
Collapse
|
5
|
The potential convergence of NLRP3 inflammasome, potassium, and dopamine mechanisms in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:32. [PMID: 35332154 PMCID: PMC8948240 DOI: 10.1038/s41531-022-00293-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
The pathology of Parkinson's disease (PD) is characterized by α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration in the substantia nigra with collateral striatal dopamine signaling deficiency. Microglial NLRP3 inflammasome activation has been linked independently to each of these facets of PD pathology. The voltage-gated potassium channel Kv1.3, upregulated in microglia by α-synuclein and facilitating potassium efflux, has also been identified as a modulator of neuroinflammation and neurodegeneration in models of PD. Evidence increasingly suggests that microglial Kv1.3 is mechanistically coupled with NLRP3 inflammasome activation, which is contingent on potassium efflux. Potassium conductance also influences dopamine release from midbrain dopaminergic neurons. Dopamine, in turn, has been shown to inhibit NLRP3 inflammasome activation in microglia. In this review, we provide a literature framework for a hypothesis in which Kv1.3 activity-induced NLRP3 inflammasome activation, evoked by stimuli such as α-synuclein, could lead to microglia utilizing dopamine from adjacent dopaminergic neurons to counteract this process and fend off an activated state. If this is the case, a sufficient dopamine supply would ensure that microglia remain under control, but as dopamine is gradually siphoned from the neurons by microglial demand, NLRP3 inflammasome activation and Kv1.3 activity would progressively intensify to promote each of the three major facets of PD pathology: α-synuclein aggregation, microglia-mediated neuroinflammation, and dopaminergic neurodegeneration. Risk factors overlapping to varying degrees to render brain regions susceptible to such a mechanism would include a high density of microglia, an initially sufficient supply of dopamine, and poor insulation of the dopaminergic neurons by myelin.
Collapse
|
6
|
Extracellular alpha-synuclein: Sensors, receptors, and responses. Neurobiol Dis 2022; 168:105696. [DOI: 10.1016/j.nbd.2022.105696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
|
7
|
Steele JR, Strange N, Rodgers KJ, Padula MP. A Novel Method for Creating a Synthetic L-DOPA Proteome and In Vitro Evidence of Incorporation. Proteomes 2021; 9:24. [PMID: 34073856 PMCID: PMC8162537 DOI: 10.3390/proteomes9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/02/2021] [Accepted: 05/18/2021] [Indexed: 11/16/2022] Open
Abstract
Proteinopathies are protein misfolding diseases that have an underlying factor that affects the conformation of proteoforms. A factor hypothesised to play a role in these diseases is the incorporation of non-protein amino acids into proteins, with a key example being the therapeutic drug levodopa. The presence of levodopa as a protein constituent has been explored in several studies, but it has not been examined in a global proteomic manner. This paper provides a proof-of-concept method for enzymatically creating levodopa-containing proteins using the enzyme tyrosinase and provides spectral evidence of in vitro incorporation in addition to the induction of the unfolded protein response due to levodopa.
Collapse
Affiliation(s)
- Joel Ricky Steele
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Natalie Strange
- School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Kenneth J. Rodgers
- Neurotoxin Research Group, School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- Proteomics Core Facility and School of Life Sciences, The University of Technology Sydney, Ultimo, NSW 2007, Australia;
| |
Collapse
|
8
|
Kang JA, Jeon YJ. How Is the Fidelity of Proteins Ensured in Terms of Both Quality and Quantity at the Endoplasmic Reticulum? Mechanistic Insights into E3 Ubiquitin Ligases. Int J Mol Sci 2021; 22:ijms22042078. [PMID: 33669844 PMCID: PMC7923238 DOI: 10.3390/ijms22042078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
The endoplasmic reticulum (ER) is an interconnected organelle that plays fundamental roles in the biosynthesis, folding, stabilization, maturation, and trafficking of secretory and transmembrane proteins. It is the largest organelle and critically modulates nearly all aspects of life. Therefore, in the endoplasmic reticulum, an enormous investment of resources, including chaperones and protein folding facilitators, is dedicated to adequate protein maturation and delivery to final destinations. Unfortunately, the folding and assembly of proteins can be quite error-prone, which leads to the generation of misfolded proteins. Notably, protein homeostasis, referred to as proteostasis, is constantly exposed to danger by flows of misfolded proteins and subsequent protein aggregates. To maintain proteostasis, the ER triages and eliminates terminally misfolded proteins by delivering substrates to the ubiquitin–proteasome system (UPS) or to the lysosome, which is termed ER-associated degradation (ERAD) or ER-phagy, respectively. ERAD not only eliminates misfolded or unassembled proteins via protein quality control but also fine-tunes correctly folded proteins via protein quantity control. Intriguingly, the diversity and distinctive nature of E3 ubiquitin ligases determine efficiency, complexity, and specificity of ubiquitination during ERAD. ER-phagy utilizes the core autophagy machinery and eliminates ERAD-resistant misfolded proteins. Here, we conceptually outline not only ubiquitination machinery but also catalytic mechanisms of E3 ubiquitin ligases. Further, we discuss the mechanistic insights into E3 ubiquitin ligases involved in the two guardian pathways in the ER, ERAD and ER-phagy. Finally, we provide the molecular mechanisms by which ERAD and ER-phagy conduct not only protein quality control but also protein quantity control to ensure proteostasis and subsequent organismal homeostasis.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
| | - Young Joo Jeon
- Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon 35015, Korea;
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Korea
- Correspondence:
| |
Collapse
|
9
|
Ghrelin protects dopaminergic neurons against MPTP neurotoxicity through promoting autophagy and inhibiting endoplasmic reticulum mediated apoptosis. Brain Res 2020; 1746:147023. [PMID: 32710901 DOI: 10.1016/j.brainres.2020.147023] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder, the important pathology of PD due to the prominent loss of the dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) and striatum (STR). Although the etiology of PD is not fully understood, aggregation of α-synuclein, impaired autophagy, and endoplasmic reticulum stress (ERS) are involved in the pathogenesis of PD. Previously it has been demonstrated that Ghrelin is a kind of peptide protected dopaminergic neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyran (MPTP)-induced neurotoxicity, but the detailed mechanism remains to be elucidated. In the present work, we investigated the effects of Ghrelin on autophagy and ERS-mediated apoptosis in the MPTP-lesioned PD mice model. We found that Ghrelin was neuroprotective against MPTP-induced dopaminergic neurodegeneration. Subsequently, we investigated Ghrelin inhibited the accumulation and phosphorylation of α-synuclein induced by MPTP. Moreover, Ghrelin promoted autophagy indicated by the up-regulation of microtubule-associated protein 1 Light Chain 3B-II/I (LC3B-II/I) and Beclin1, as well as decreasing the level of p62 in the SNpc and STR. Besides, the activation of the ERS-related apoptosis signaling pathway including IRE1α and Caspase-12 signaling pathway induced by MPTP was suppressed by Ghrelin treatment. Furthermore, Ghrelin also decreased Caspase-3 expression. Taken together, our results indicated that Ghrelin may exert neuroprotective effects via regulating α-synuclein activities, enhancing autophagy, and ameliorating ERS-mediated apoptosis in MPTP-lesioned mice, which provides a new target for potential pharmacologic interventions of PD treatment in the future.
Collapse
|
10
|
Hamm-Alvarez SF, Janga SR, Edman MC, Feigenbaum D, Freire D, Mack WJ, Okamoto CT, Lew MF. Levels of oligomeric α-Synuclein in reflex tears distinguish Parkinson's disease patients from healthy controls. Biomark Med 2019; 13:1447-1457. [PMID: 31552762 DOI: 10.2217/bmm-2019-0315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Due to active engagement of sensory and afferent nerve fibers in reflex tearing which could be affected in Parkinson's disease (PD), we tested reflex tears as a source of potential PD biomarkers. Patients & methods: Reflex tears collected from 84 PD and 84 age- and sex-equivalent healthy controls (HC) were used to measure levels of oligomeric α-Syn (α-SynOligo), total α-Syn (α-SynTotal), CCL2, DJ-1, lactoferrin and MMP9. Results: α-synOligo (p < 0.0001), CCL2 (p = 0.003) and lactoferrin (p = 0.002) were significantly elevated in PD patient tears relative to HC tears. Tear flow was significantly lower in PD relative to HC (p = 0.001). Conclusion: Reflex tears are a potential source for detection of characteristic changes in PD patients.
Collapse
Affiliation(s)
- Sarah F Hamm-Alvarez
- Department of Ophthalmology & Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.,Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Srikanth R Janga
- Department of Ophthalmology & Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Maria C Edman
- Department of Ophthalmology & Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Danielle Feigenbaum
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel Freire
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wendy J Mack
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Curtis T Okamoto
- Department of Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | - Mark F Lew
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
11
|
Zheng Z, Shang Y, Tao J, Zhang J, Sha B. Endoplasmic Reticulum Stress Signaling Pathways: Activation and Diseases. Curr Protein Pept Sci 2019; 20:935-943. [PMID: 31223084 DOI: 10.2174/1389203720666190621103145] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
Secretory and membrane proteins are folded in the endoplasmic reticulum (ER) prior to their exit. When ER function is disturbed by exogenous and endogenous factors, such as heat shock, ultraviolet radiation, hypoxia, or hypoglycemia, the misfolded proteins may accumulate, promoting ER stress. To rescue this unfavorable situation, the unfolded protein response is activated to reduce misfolded proteins within the ER. Upon ER stress, the ER transmembrane sensor molecules inositol-requiring enzyme 1 (IRE1), RNA-dependent protein kinase (PKR)-like ER kinase (PERK), and activating transcription factor 6, are activated. Here, we discuss the mechanisms of PERK and IRE1 activation and describe two working models for ER stress initiation: the BiP-dependent model and the ligand-driven model. ER stress activation has been linked to multiple diseases, including cancers, Alzheimer's disease, and diabetes. Thus, the regulation of ER stress may provide potential therapeutic targets for these diseases.
Collapse
Affiliation(s)
- Zhi Zheng
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States.,Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Yuxi Shang
- Department of Hematology, Fuxing Hospital, Eighth Clinical Medical College, Capital Medical University, Beijing 100038, China
| | - Jiahui Tao
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jun Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xi-Cheng District, Beijing 100050, China
| | - Bingdong Sha
- Department of Cell, Developmental and Integrative Biology (CDIB), University of Alabama at Birmingham, Birmingham, AL 35294, United States
| |
Collapse
|
12
|
Li N, Qian S, Li B, Zhan X. Quantitative analysis of the human ovarian carcinoma mitochondrial phosphoproteome. Aging (Albany NY) 2019; 11:6449-6468. [PMID: 31442208 PMCID: PMC6738437 DOI: 10.18632/aging.102199] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/10/2019] [Indexed: 05/02/2023]
Abstract
To investigate the existence and their potential biological roles of mitochondrial phosphoproteins (mtPPs) in human ovarian carcinoma (OC), mitochondria purified from OC and control tissues were analyzed with TiO2 enrichment-based iTRAQ quantitative proteomics. Totally 67 mtPPs with 124 phosphorylation sites were identified, which of them included 48 differential mtPPs (mtDPPs). Eighteen mtPPs were reported previously in OCs, and they were consistent in this study compared to previous literature. GO analysis revealed those mtPPs were involved in multiple cellular processes. PPI network indicated that those mtPPs were correlated mutually, and some mtPPs acted as hub molecules, such as EIF2S2, RPLP0, RPLP2, CFL1, MYH10, HSP90, HSPD1, PSMA3, TMX1, VDAC2, VDAC3, TOMM22, and TOMM20. Totally 32 mtPP-pathway systems (p<0.05) were enriched and clustered into 15 groups, including mitophagy, apoptosis, deubiquitination, signaling by VEGF, RHO-GTPase effectors, mitochondrial protein import, translation initiation, RNA transport, cellular responses to stress, and c-MYC transcriptional activation. Totally 29 mtPPs contained a certain protein domains. Upstream regulation analysis showed that TP53, TGFB1, dexamethasone, and thapsigargin might act as inhibitors, and L-dopa and forskolin might act as activators. This study provided novel insights into mitochondrial protein phosphorylations and their potential roles in OC pathogenesis and offered new biomarker resource for OCs.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Shehua Qian
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Biao Li
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xianquan Zhan
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- Hunan Engineering Laboratory for Structural Biology and Drug Design, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| |
Collapse
|
13
|
Ozturk T, Kollhoff A, Anderson AM, Christina Howell J, Loring DW, Waldrop-Valverde D, Franklin D, Letendre S, Tyor WR, Hu WT. Linked CSF reduction of phosphorylated tau and IL-8 in HIV associated neurocognitive disorder. Sci Rep 2019; 9:8733. [PMID: 31217522 PMCID: PMC6584499 DOI: 10.1038/s41598-019-45418-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is a common condition in both developed and developing nations, but its cause is largely unknown. Previous research has inconsistently linked Alzheimer's disease (AD), viral burden, and inflammation to the onset of HAND in HIV-infected individuals. Here we simultaneously measured cerebrospinal fluid (CSF) levels of established amyloid and tau biomarkers for AD, viral copy numbers, and six key cytokines in 41 HIV-infected individuals off combination anti-retroviral therapy (14 with HAND) who underwent detailed clinical and neuropsychological characterization, and compared their CSF patterns with those from young healthy subjects, older healthy subjects with normal cognition, and older people with AD. HAND was associated with the lowest CSF levels of phosphorylated tau (p-Tau181) after accounting for age and race. We also found very high CSF levels of the pro-inflammatory interferon gamma-induced protein 10 (IP-10/CXCL10) in HIV regardless of cognition, but elevated CSF interleukin 8 (IL-8/CXCL8) only in HIV-NC but not HAND. Eleven HIV-infected subjects underwent repeat CSF collection six months later and showed strongly correlated longitudinal changes in p-Tau181 and IL-8 levels (R = 0.841). These data suggest reduced IL-8 relative to IP-10 and reduced p-Tau181 to characterize HAND.
Collapse
Affiliation(s)
- Tugba Ozturk
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexander Kollhoff
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Albert M Anderson
- Department of Medicine - Division of Infectious Disease, Emory University School of Medicine, Atlanta, GA, USA.
| | - J Christina Howell
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - David W Loring
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Drenna Waldrop-Valverde
- Center for Neurocognitive Studies, Emory University Hodgson Woodruff School of Nursing, Atlanta, GA, USA
| | - Donald Franklin
- HIV Neurobehavioral Research Center, University of California, San Diego, CA, USA
| | - Scott Letendre
- HIV Neurobehavioral Research Center, University of California, San Diego, CA, USA
| | - William R Tyor
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
- Atlanta Veterans Affairs Medical Center, Decatur, GA, USA
| | - William T Hu
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA.
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
14
|
Colla E. Linking the Endoplasmic Reticulum to Parkinson's Disease and Alpha-Synucleinopathy. Front Neurosci 2019; 13:560. [PMID: 31191239 PMCID: PMC6550095 DOI: 10.3389/fnins.2019.00560] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Accumulation of misfolded proteins is a central paradigm in neurodegeneration. Because of the key role of the endoplasmic reticulum (ER) in regulating protein homeostasis, in the last decade multiple reports implicated this organelle in the progression of Parkinson's Disease (PD) and other neurodegenerative illnesses. In PD, dopaminergic neuron loss or more broadly neurodegeneration has been improved by overexpression of genes involved in the ER stress response. In addition, toxic alpha-synuclein (αS), the main constituent of proteinaceous aggregates found in tissue samples of PD patients, has been shown to cause ER stress by altering intracellular protein traffic, synaptic vesicles transport, and Ca2+ homeostasis. In this review, we will be summarizing evidence correlating impaired ER functionality to PD pathogenesis, focusing our attention on how toxic, aggregated αS can promote ER stress and cell death.
Collapse
Affiliation(s)
- Emanuela Colla
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
15
|
Zhu J, Dou S, Jiang Y, Chen J, Wang C, Cheng B. Apelin-13 protects dopaminergic neurons in MPTP-induced Parkinson's disease model mice through inhibiting endoplasmic reticulum stress and promoting autophagy. Brain Res 2019; 1715:203-212. [PMID: 30914252 DOI: 10.1016/j.brainres.2019.03.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022]
Abstract
The dopaminergic neurodegeneration in the substantia nigrapars compacta (SNpc) and striatum of the midbrain is the important pathological feature of Parkinson's disease (PD). It has been shown that autophagy and endoplasmic reticulum stress (ERS) are involved in the occurrence and development of PD. The neuropeptide Apelin-13 is neuroprotective in the neurological diseases such as PD, Alzheimer's disease and cerebral ischemic stroke. In the present work, we investigated the neuroprotective effects of Apelin-13 on ERS and autophagy in the dopaminergic neurodegeneration of SNpc of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridin (MPTP)-treated mice. The intranigral injection of Apelin-13 alleviated the behavioral dysfunction and dopaminergic neurodegeneration induced by MPTP. After the exposure to MPTP, the expression of tyrosine hydroxylase (TH) was significantly decreased as well as the increased α-synuclein expression, which was significantly reversed by the intranigral injection of Apelin-13. Also, Apelin-13 significantly reversed the decreasing autophagy induced by MPTP which was indicated by the up-regulation of LC3B-II and Beclin1 and down-regulation of p62. And MPTP-induced ERS such as IRE1α, XBP1s, CHOP and GRP78 was significantly inhibited by Apelin-13. Taken together, Apelin-13 protects dopaminergic neurons in MPTP-induced PD model mice in vivo through inhibiting ERS and promoting autophagy, which contributes to the therapy for PD in the future.
Collapse
Affiliation(s)
- Junge Zhu
- Cheeloo College of Medicine, Shandong University, 250014 Jinan, China
| | - Shanshan Dou
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Yunlu Jiang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, 272067 Jining, China
| | - Chunmei Wang
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University, 272067 Jining, China.
| |
Collapse
|
16
|
Datki Z, Olah Z, Hortobagyi T, Macsai L, Zsuga K, Fulop L, Bozso Z, Galik B, Acs E, Foldi A, Szarvas A, Kalman J. Exceptional in vivo catabolism of neurodegeneration-related aggregates. Acta Neuropathol Commun 2018; 6:6. [PMID: 29378654 PMCID: PMC5789616 DOI: 10.1186/s40478-018-0507-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 01/20/2023] Open
Abstract
Neurodegenerative diseases are linked to a systemic enzyme resistance of toxic aggregated molecules and their pathological consequences. This paper presents a unique phenomenon that Philodina acuticornis, a bdelloid rotifer, is able to catabolize different types of neurotoxic peptide and protein aggregates (such as beta-amyloids /Aβ/, alpha-synuclein, and prion) without suffering any damage. P. acuticornis is capable of using these aggregates as an exclusive energy source (i.e., as 'food', identified in the digestive system and body) in a hermetically isolated microdrop environment, increasing their survival. As regards Aβ1-42, five other bdelloid rotifer species were also found to be able to perform this phenomenon. Based on our experiments, the Aβ1-42-treated bdelloid rotifers demonstrate significantly increased survival (e.g. mean lifespan = 51 ± 2.71 days) compared to their untreated controls (e.g. mean lifespan = 14 ± 2.29 days), with similar improvements in a variety of phenotypic characteristics. To our knowledge, no other animal species have so far been reported to have a similar capability. For all other microscopic species tested, including monogonant rotifers and non-rotifers, the treatment with Aβ1-42 aggregates proved to be either toxic or simply ineffective. This paper describes and proves the existence of an unprecedented in vivo catabolic capability of neurotoxic aggregates by bdelloid rotifers, with special focus on P. acuticornis. Our results may provide the basis for a new preclinical perspective on therapeutic research in human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zsolt Datki
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary.
| | - Zita Olah
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| | - Tibor Hortobagyi
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neuropathology, Institute of Pathology, University of Debrecen, P.O. Box 24, Debrecen, H-4012, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology & Neuroscience, King's College London, Box PO70, De Crespigny Park, Denmark Hill, London, SE5 8AF, UK
| | - Lilla Macsai
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| | | | - Livia Fulop
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Zsolt Bozso
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Bence Galik
- Bioinformatics & Scientific Computing, Vienna Biocentre Core Facilities, Dr. Bohr-Gasse 3, 1030, Vienna, Austria
| | - Eva Acs
- Danube Research Institute, MTA Centre for Ecological Research, Karolina ut 29-31, Budapest, H-1113, Hungary
- Sustainable Ecosystems Group, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3, Tihany, H-8237, Hungary
| | - Angela Foldi
- Sustainable Ecosystems Group, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3, Tihany, H-8237, Hungary
| | - Amanda Szarvas
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| | - Janos Kalman
- Department of Psychiatry, Faculty of Medicine, University of Szeged, Kalvaria sgt. 57, Szeged, H-6725, Hungary
| |
Collapse
|