1
|
Chen SK, Hawley ZC, Zavodszky MI, Hana S, Ferretti D, Grubor B, Hawes M, Xu S, Hamann S, Marsh G, Cullen P, Challa R, Carlile TM, Zhang H, Lee WH, Peralta A, Clarner P, Wei C, Koszka K, Gao F, Lo SC. Efficacy and safety of a SOD1-targeting artificial miRNA delivered by AAV9 in mice are impacted by miRNA scaffold selection. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102057. [PMID: 37928442 PMCID: PMC10622307 DOI: 10.1016/j.omtn.2023.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Toxic gain-of-function mutations in superoxide dismutase 1 (SOD1) contribute to approximately 2%-3% of all amyotrophic lateral sclerosis (ALS) cases. Artificial microRNAs (amiRs) delivered by adeno-associated virus (AAV) have been proposed as a potential treatment option to silence SOD1 expression and mitigate disease progression. Primary microRNA (pri-miRNA) scaffolds are used in amiRs to shuttle a hairpin RNA into the endogenous miRNA pathway, but it is unclear whether different primary miRNA (pri-miRNA) scaffolds impact the potency and safety profile of the expressed amiR in vivo. In our process to develop an AAV amiR targeting SOD1, we performed a preclinical characterization of two pri-miRNA scaffolds, miR155 and miR30a, sharing the same guide strand sequence. We report that, while the miR155-based vector, compared with the miR30a-based vector, leads to a higher level of the amiR and more robust suppression of SOD1 in vitro and in vivo, it also presents significantly greater risks for CNS-related toxicities in vivo. Despite miR30a-based vector showing relatively lower potency, it can significantly delay the development of ALS-like phenotypes in SOD1-G93A mice and increase survival in a dose-dependent manner. These data highlight the importance of scaffold selection in the pursuit of highly efficacious and safe amiRs for RNA interference gene therapy.
Collapse
|
2
|
Ashraf SS, Hosseinpour Sarmadi V, Larijani G, Naderi Garahgheshlagh S, Ramezani S, Moghadamifar S, Mohebi SL, Brouki Milan P, Haramshahi SMA, Ahmadirad N, Amini N. Regenerative medicine improve neurodegenerative diseases. Cell Tissue Bank 2023; 24:639-650. [PMID: 36527565 DOI: 10.1007/s10561-022-10062-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Regenerative medicine is a subdivision of medicine that improves methods to regrow, repair or replace unhealthy cells and tissues to return to normal function. Cell therapy, gene therapy, nanomedicine as choices used to cure neurodegenerative disease. Recently, studies related to the treatment of neurodegenerative disorders have been focused on stem cell therapy and Nano-drugs beyond other than regenerative medicine. Hence, by data from experimental models and clinical trials, we review the impact of stem cell therapy, gene therapy, and nanomedicine on the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and Amyotrophic lateral sclerosis (ALS). Indeed, improved knowledge and continued research on gene therapy and nanomedicine in treating Alzheimer's disease, Parkinson's disease, and Amyotrophic lateral sclerosis lead to advancements in effective and practical treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Naderi Garahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ramezani
- Neuroscience Research Center, Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Guilan, Iran
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Soraya Moghadamifar
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Seyedeh Lena Mohebi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amin Haramshahi
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nooshin Ahmadirad
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Genç B, Nho B, Seung H, Helmold B, Park H, Gözütok Ö, Kim S, Park J, Ye S, Lee H, Lee N, Yu SS, Kim S, Lee J, Özdinler H. Novel rAAV vector mediated intrathecal HGF delivery has an impact on neuroimmune modulation in the ALS motor cortex with TDP-43 pathology. Gene Ther 2023; 30:560-574. [PMID: 36823441 DOI: 10.1038/s41434-023-00383-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023]
Abstract
Recombinant adeno-associated virus (rAAV)-based gene therapies offer an immense opportunity for rare diseases, such as amyotrophic lateral sclerosis (ALS), which is defined by the loss of the upper and the lower motor neurons. Here, we describe generation, characterization, and utilization of a novel vector system, which enables expression of the active form of hepatocyte growth factor (HGF) under EF-1α promoter with bovine growth hormone (bGH) poly(A) sequence and is effective with intrathecal injections. HGF's role in promoting motor neuron survival had been vastly reported. Therefore, we investigated whether intrathecal delivery of HGF would have an impact on one of the most common pathologies of ALS: the TDP-43 pathology. Increased astrogliosis, microgliosis and progressive upper motor neuron loss are important consequences of ALS in the motor cortex with TDP-43 pathology. We find that cortex can be modulated via intrathecal injection, and that expression of HGF reduces astrogliosis, microgliosis in the motor cortex, and help restore ongoing UMN degeneration. Our findings not only introduce a novel viral vector for the treatment of ALS, but also demonstrate modulation of motor cortex by intrathecal viral delivery, and that HGF treatment is effective in reducing astrogliosis and microgliosis in the motor cortex of ALS with TDP-43 pathology.
Collapse
Affiliation(s)
- Barış Genç
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Boram Nho
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Hana Seung
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Benjamin Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Huiwon Park
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Öge Gözütok
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA
| | - Seunghyun Kim
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Jinil Park
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Sanghyun Ye
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Haneul Lee
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Nayeon Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seung-Shin Yu
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Sunyoung Kim
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Junghun Lee
- School of Biological Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
- Helixmith Co., Ltd., R&D Center, 21, Magokjungang 8-ro 7-gil, Gangseo-gu, Seoul, 07794, Republic of Korea.
| | - Hande Özdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Zhang Y, Chen L, Li Z, Li D, Wu Y, Guo Y. Endothelin-1, over-expressed in SOD1G93A mice, aggravates injury of NSC34-hSOD1G93A cells through complicated molecular mechanism revealed by quantitative proteomics analysis. Front Cell Neurosci 2022; 16:1069617. [DOI: 10.3389/fncel.2022.1069617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Endothelin-1 (ET-1), a secreted signaling peptide, is suggested to be involved in multiple actions in various tissues including the brain, but its role in amyotrophic lateral sclerosis (ALS) remains unknown. In this study, we detected the expression changes as well as the cellular localization of ET-1, endothelin A (ET-A) and endothelin B (ET-B) receptors in spinal cord of transgenic SOD1-G93A (TgSOD1-G93A) mice, which showed that the two ET receptors (ET-Rs) expressed mainly on neurons and decreased as the disease progressed especially ET-B, while ET-1 expression was up-regulated and primarily localized on astrocytes. We then explored the possible mechanisms underlying the effect of ET-1 on cultured NSC34-hSOD1G93A cell model. ET-1 showed toxic effect on motor neurons (MNs), which can be rescued by the selective ET-A receptor antagonist BQ-123 or ET-B receptor antagonist BQ-788, suggesting that clinically used ET-Rs pan-antagonist could be a potential strategy for ALS. Using proteomic analysis, we revealed that 110 proteins were differentially expressed in NSC34-hSOD1G93A cells after ET-1 treatment, of which 54 were up-regulated and 56 were down-regulated. Bioinformatic analysis showed that the differentially expressed proteins (DEPs) were primarily enriched in hippo signaling pathway-multiple species, ABC transporters, ErbB signaling pathway and so on. These results provide further insights on the potential roles of ET-1 in ALS and present a new promising therapeutic target to protect MNs of ALS.
Collapse
|
5
|
Barbosa M, Santos M, de Sousa N, Duarte-Silva S, Vaz AR, Salgado AJ, Brites D. Intrathecal Injection of the Secretome from ALS Motor Neurons Regulated for miR-124 Expression Prevents Disease Outcomes in SOD1-G93A Mice. Biomedicines 2022; 10:biomedicines10092120. [PMID: 36140218 PMCID: PMC9496075 DOI: 10.3390/biomedicines10092120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with short life expectancy and no effective therapy. We previously identified upregulated miR-124 in NSC-34-motor neurons (MNs) expressing human SOD1-G93A (mSOD1) and established its implication in mSOD1 MN degeneration and glial cell activation. When anti-miR-124-treated mSOD1 MN (preconditioned) secretome was incubated in spinal cord organotypic cultures from symptomatic mSOD1 mice, the dysregulated homeostatic balance was circumvented. To decipher the therapeutic potential of such preconditioned secretome, we intrathecally injected it in mSOD1 mice at the early stage of the disease (12-week-old). Preconditioned secretome prevented motor impairment and was effective in counteracting muscle atrophy, glial reactivity/dysfunction, and the neurodegeneration of the symptomatic mSOD1 mice. Deficits in corticospinal function and gait abnormalities were precluded, and the loss of gastrocnemius muscle fiber area was avoided. At the molecular level, the preconditioned secretome enhanced NeuN mRNA/protein expression levels and the PSD-95/TREM2/IL-10/arginase 1/MBP/PLP genes, thus avoiding the neuronal/glial cell dysregulation that characterizes ALS mice. It also prevented upregulated GFAP/Cx43/S100B/vimentin and inflammatory-associated miRNAs, specifically miR-146a/miR-155/miR-21, which are displayed by symptomatic animals. Collectively, our study highlights the intrathecal administration of the secretome from anti-miR-124-treated mSOD1 MNs as a therapeutic strategy for halting/delaying disease progression in an ALS mouse model.
Collapse
Affiliation(s)
- Marta Barbosa
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Marta Santos
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Nídia de Sousa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Sara Duarte-Silva
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Ana Rita Vaz
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - António J. Salgado
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057 Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, 4806-909 Guimarães, Portugal
| | - Dora Brites
- Faculty of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
6
|
The Biogenesis of miRNAs and Their Role in the Development of Amyotrophic Lateral Sclerosis. Cells 2022; 11:cells11030572. [PMID: 35159383 PMCID: PMC8833997 DOI: 10.3390/cells11030572] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects upper and lower motor neurons. As there is no effective treatment for ALS, it is particularly important to screen key gene therapy targets. The identifications of microRNAs (miRNAs) have completely changed the traditional view of gene regulation. miRNAs are small noncoding single-stranded RNA molecules involved in the regulation of post-transcriptional gene expression. Recent advances also indicate that miRNAs are biomarkers in many diseases, including neurodegenerative diseases. In this review, we summarize recent advances regarding the mechanisms underlying the role of miRNAs in ALS pathogenesis and its application to gene therapy for ALS. The potential of miRNAs to target diverse pathways opens a new avenue for ALS therapy.
Collapse
|
7
|
Abstract
Glioblastoma is one of the deadliest forms of primary adult tumors, with median survival of 14.6 months post-diagnosis despite aggressive standard of care treatment. This grim prognosis for glioblastoma patients has changed little in the past two decades, necessitating novel treatment modalities. One potential treatment modality is cancer immunotherapy, which has shown remarkable progress in slowing disease progression or even potentially curing certain solid tumors. However, the transport barriers posed by the blood-brain barrier and the immune privileged status of the central nervous system pose drug delivery obstacles that are unique to brain tumors. In this review, we provide an overview of the various physiological, immunological, and drug delivery barriers that must be overcome for effective glioblastoma treatment. We discuss chemical modification strategies to enable nanomedicines to bypass the blood-brain barrier and reach intracranial tumors. Finally, we highlight recent advances in biomaterial-based strategies for cancer immunotherapy that can be adapted to glioblastoma treatment.
Collapse
Affiliation(s)
- Yuan Rui
- Department of Biomedical Engineering, the Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jordan J Green
- Department of Biomedical Engineering, the Institute for Nanobiotechnology and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Neurosurgery, Ophthalmology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Departments of Materials Science & Engineering and Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins University School of Medicine, Bloomberg~Kimmel Institute for Cancer Immunotherapy, Baltimore, MD, USA.
| |
Collapse
|
8
|
Colón-Thillet R, Jerome KR, Stone D. Optimization of AAV vectors to target persistent viral reservoirs. Virol J 2021; 18:85. [PMID: 33892762 PMCID: PMC8067653 DOI: 10.1186/s12985-021-01555-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Gene delivery of antiviral therapeutics to anatomical sites where viruses accumulate and persist is a promising approach for the next generation of antiviral therapies. Recombinant adeno-associated viruses (AAV) are one of the leading vectors for gene therapy applications that deliver gene-editing enzymes, antibodies, and RNA interference molecules to eliminate viral reservoirs that fuel persistent infections. As long-lived viral DNA within specific cellular reservoirs is responsible for persistent hepatitis B virus, Herpes simplex virus, and human immunodeficiency virus infections, the discovery of AAV vectors with strong tropism for hepatocytes, sensory neurons and T cells, respectively, is of particular interest. Identification of natural isolates from various tissues in humans and non-human primates has generated an extensive catalog of AAV vectors with diverse tropisms and transduction efficiencies, which has been further expanded through molecular genetic approaches. The AAV capsid protein, which forms the virions' outer shell, is the primary determinant of tissue tropism, transduction efficiency, and immunogenicity. Thus, over the past few decades, extensive efforts to optimize AAV vectors for gene therapy applications have focused on capsid engineering with approaches such as directed evolution and rational design. These approaches are being used to identify variants with improved transduction efficiencies, alternate tropisms, reduced sequestration in non-target organs, and reduced immunogenicity, and have produced AAV capsids that are currently under evaluation in pre-clinical and clinical trials. This review will summarize the most recent strategies to identify AAV vectors with enhanced tropism and transduction in cell types that harbor viral reservoirs.
Collapse
Affiliation(s)
- Rossana Colón-Thillet
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
| | - Keith R Jerome
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA
- Department of Laboratory Medicine, University of Washington, Seattle, WA, USA
| | - Daniel Stone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA, USA.
| |
Collapse
|
9
|
Cappella M, Pradat PF, Querin G, Biferi MG. Beyond the Traditional Clinical Trials for Amyotrophic Lateral Sclerosis and The Future Impact of Gene Therapy. J Neuromuscul Dis 2021; 8:25-38. [PMID: 33074186 PMCID: PMC7902976 DOI: 10.3233/jnd-200531] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable motor neuron (MN) disorder affecting both upper and lower MNs. Despite impressive advances in the understanding of the disease’s pathological mechanism, classical pharmacological clinical trials failed to provide an efficient cure for ALS over the past twenty years. Two different gene therapy approaches were recently approved for the monogenic disease Spinal muscular atrophy, characterized by degeneration of lower MNs. This milestone suggests that gene therapy-based therapeutic solutions could be effective for the treatment of ALS. This review summarizes the possible reasons for the failure of traditional clinical trials for ALS. It provides then a focus on the advent of gene therapy approaches for hereditary forms of ALS. Specifically, it describes clinical use of antisense oligonucleotides in three familial forms of ALS, caused by mutations in SOD1, C9orf72 and FUS genes, respectively.. Clinical and pre-clinical studies based on AAV-mediated gene therapy approaches for both familial and sporadic ALS cases are presented as well. Overall, this overview highlights the potential of gene therapy as a transforming technology that will have a huge impact on treatment perspective for ALS patients and on the design of future clinical trials.
Collapse
Affiliation(s)
- Marisa Cappella
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| | - Pierre-François Pradat
- INSERM, CNRS, Laboratoire d'Imagerie Biomédicale, Sorbonne Université, Paris, France.,APHP, Département de Neurologie, Hôpital Pitié-Salpêtrière, Centre référent SLA, Paris, France.,Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute Ulster University, C-TRIC, Altnagelvin Hospital, Derry/Londonderry, United Kingdom
| | - Giorgia Querin
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France.,Association Institut de Myologie, Plateforme Essais Cliniques Adultes, Paris, France.,APHP, Service de Neuromyologie, Hôpital Pitié-Salpêtrière, Paris, France
| | - Maria Grazia Biferi
- INSERM, Institute of Myology, Centre of Research in Myology, Sorbonne Université, Paris, France
| |
Collapse
|
10
|
Paul S, Bravo Vázquez LA, Pérez Uribe S, Roxana Reyes-Pérez P, Sharma A. Current Status of microRNA-Based Therapeutic Approaches in Neurodegenerative Disorders. Cells 2020; 9:cells9071698. [PMID: 32679881 PMCID: PMC7407981 DOI: 10.3390/cells9071698] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a key gene regulator and play essential roles in several biological and pathological mechanisms in the human system. In recent years, plenty of miRNAs have been identified to be involved in the development of neurodegenerative disorders (NDDs), thus making them an attractive option for therapeutic approaches. Hence, in this review, we provide an overview of the current research of miRNA-based therapeutics for a selected set of NDDs, either for their high prevalence or lethality, such as Alzheimer's, Parkinson's, Huntington's, Amyotrophic Lateral Sclerosis, Friedreich's Ataxia, Spinal Muscular Atrophy, and Frontotemporal Dementia. We also discuss the relevant delivery techniques, pertinent outcomes, their limitations, and their potential to become a new generation of human therapeutic drugs in the near future.
Collapse
|
11
|
Qu Y, Liu Y, Noor AF, Tran J, Li R. Characteristics and advantages of adeno-associated virus vector-mediated gene therapy for neurodegenerative diseases. Neural Regen Res 2019; 14:931-938. [PMID: 30761996 PMCID: PMC6404499 DOI: 10.4103/1673-5374.250570] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/13/2018] [Indexed: 02/06/2023] Open
Abstract
Common neurodegenerative diseases of the central nervous system are characterized by progressive damage to the function of neurons, even leading to the permanent loss of function. Gene therapy via gene replacement or gene correction provides the potential for transformative therapies to delay or possibly stop further progression of the neurodegenerative disease in affected patients. Adeno-associated virus has been the vector of choice in recent clinical trials of therapies for neurodegenerative diseases due to its safety and efficiency in mediating gene transfer to the central nervous system. This review aims to discuss and summarize the progress and clinical applications of adeno-associated virus in neurodegenerative disease in central nervous system. Results from some clinical trials and successful cases of central neurodegenerative diseases deserve further study and exploration.
Collapse
Affiliation(s)
- Yuan Qu
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Yi Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong Province, China
| | - Ahmed Fayyaz Noor
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, USA
| | - Johnathan Tran
- Department of Premedical and Health Studies, Massachusetts College of Pharmacy and Health Sciences, Boston, MA, USA
| | - Rui Li
- Department of Hand Surgery, the Second Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
12
|
Hudry E, Vandenberghe LH. Therapeutic AAV Gene Transfer to the Nervous System: A Clinical Reality. Neuron 2019; 101:839-862. [DOI: 10.1016/j.neuron.2019.02.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
|
13
|
Costerus JM, Brouwer MC, van de Beek D. Technological advances and changing indications for lumbar puncture in neurological disorders. Lancet Neurol 2019; 17:268-278. [PMID: 29452686 DOI: 10.1016/s1474-4422(18)30033-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 01/12/2023]
Abstract
Technological advances have changed the indications for and the way in which lumbar puncture is done. Suspected CNS infection remains the most common indication for lumbar puncture, but new molecular techniques have broadened CSF analysis indications, such as the determination of neuronal autoantibodies in autoimmune encephalitis. New screening techniques have increased sensitvity for pathogen detection and can be used to identify pathogens that were previously unknown to cause CNS infections. Evidence suggests that potential treatments for neurodegenerative diseases, such as Alzheimer's disease, will rely on early detection of the disease with the use of CSF biomarkers. In addition to being used as a diagnostic tool, lumbar puncture can also be used to administer intrathecal treatments as shown by studies of antisense oligonucleotides in patients with spinal muscular atrophy. Lumbar puncture is generally a safe procedure but complications can occur, ranging from minor (eg, back pain) to potentially devastating (eg, cerebral herniation). Evidence that an atraumatic needle tip design reduces complications of lumbar puncture is compelling, and reinforces the need to change clinical practice.
Collapse
Affiliation(s)
- Joost M Costerus
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Matthijs C Brouwer
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Diederik van de Beek
- Department of Neurology, Academic Medical Center, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.
| |
Collapse
|
14
|
Gong Y, Berenson A, Laheji F, Gao G, Wang D, Ng C, Volak A, Kok R, Kreouzis V, Dijkstra IM, Kemp S, Maguire CA, Eichler F. Intrathecal Adeno-Associated Viral Vector-Mediated Gene Delivery for Adrenomyeloneuropathy. Hum Gene Ther 2018; 30:544-555. [PMID: 30358470 DOI: 10.1089/hum.2018.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mutations in the gene encoding the peroxisomal ATP-binding cassette transporter (ABCD1) cause elevations in very long-chain fatty acids (VLCFAs) and the neurodegenerative disease adrenoleukodystrophy (ALD). In most adults, this manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN). A challenge in virus-based gene therapy in AMN is how to achieve functional gene correction to the entire spinal cord while minimizing leakage into the systemic circulation, which could contribute to toxicity. In the present study, we used an osmotic pump to deliver adeno-associated viral (AAV) vector into the lumbar cerebrospinal fluid space in mice. We report that slow intrathecal delivery of recombinant AAV serotype 9 (rAAV9) achieves efficient gene transfer across the spinal cord and dorsal root ganglia as demonstrated with two different transgenes, GFP and ABCD1. In the Abcd1-/- mouse, gene correction after continuous rAAV9-CBA-hABCD1 delivery led to a 20% decrease in VLCFA levels in spinal cord compared with controls. The major cell types transduced were astrocytes, vascular endothelial cells, and neurons. Importantly, rAAV9 delivered intrathecally by osmotic pump, in contrast to bolus injection, reduced systemic leakage into peripheral organs, particularly liver and heart tissue.
Collapse
Affiliation(s)
- Yi Gong
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Anna Berenson
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fiza Laheji
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Guangping Gao
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Dan Wang
- 2 Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Carrie Ng
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Adrienn Volak
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rene Kok
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,3 Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vasileios Kreouzis
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Inge M Dijkstra
- 3 Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Stephan Kemp
- 3 Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Casey A Maguire
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Florian Eichler
- 1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Yamashita T, Kwak S. Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS. Neurosci Res 2018; 144:4-13. [PMID: 29944911 DOI: 10.1016/j.neures.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/19/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca2+, which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca2+-dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS.
Collapse
Affiliation(s)
- Takenari Yamashita
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shin Kwak
- Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan; Department of Neurology, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| |
Collapse
|
16
|
Wang D, Li J, Tran K, Burt DR, Zhong L, Gao G. Slow Infusion of Recombinant Adeno-Associated Viruses into the Mouse Cerebrospinal Fluid Space. Hum Gene Ther Methods 2018; 29:75-85. [PMID: 29596011 DOI: 10.1089/hgtb.2017.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are the leading in vivo gene delivery platform, and have been extensively studied in gene therapy targeting various tissues, including the central nervous system (CNS). A single-bolus rAAV injection to the cerebrospinal fluid (CSF) space has been widely used to target the CNS, but it suffers from several drawbacks, such as leakage to peripheral tissues. Here, a protocol is described using an osmotic pump to infuse rAAV slowly into the mouse CSF space. Compared to the single-bolus injection technique, pump infusion can lead to higher CNS transduction and lower transduction in the peripheral tissues.
Collapse
Affiliation(s)
- Dan Wang
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Jia Li
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Karen Tran
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Daniel R Burt
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Li Zhong
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts
| | - Guangping Gao
- 1 Horae Gene Therapy Center, University of Massachusetts Medical School , Worcester, Massachusetts.,2 Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School , Worcester, Massachusetts.,3 Department of Microbiology and Physiological Systems, University of Massachusetts Medical School , Worcester, Massachusetts.,4 Viral Vector Core, University of Massachusetts Medical School , Worcester, Massachusetts.,5 West China Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
17
|
Tosolini AP, Sleigh JN. Motor Neuron Gene Therapy: Lessons from Spinal Muscular Atrophy for Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2017; 10:405. [PMID: 29270111 PMCID: PMC5725447 DOI: 10.3389/fnmol.2017.00405] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS) are severe nervous system diseases characterized by the degeneration of lower motor neurons. They share a number of additional pathological, cellular, and genetic parallels suggesting that mechanistic and clinical insights into one disorder may have value for the other. While there are currently no clinical ALS gene therapies, the splice-switching antisense oligonucleotide, nusinersen, was recently approved for SMA. This milestone was achieved through extensive pre-clinical research and patient trials, which together have spawned fundamental insights into motor neuron gene therapy. We have thus tried to distil key information garnered from SMA research, in the hope that it may stimulate a more directed approach to ALS gene therapy. Not only must the type of therapeutic (e.g., antisense oligonucleotide vs. viral vector) be sensibly selected, but considerable thought must be applied to the where, which, what, and when in order to enhance treatment benefit: to where (cell types and tissues) must the drug be delivered and how can this be best achieved? Which perturbed pathways must be corrected and can they be concurrently targeted? What dosing regime and concentration should be used? When should medication be administered? These questions are intuitive, but central to identifying and optimizing a successful gene therapy. Providing definitive solutions to these quandaries will be difficult, but clear thinking about therapeutic testing is necessary if we are to have the best chance of developing viable ALS gene therapies and improving upon early generation SMA treatments.
Collapse
Affiliation(s)
- Andrew P Tosolini
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - James N Sleigh
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|