1
|
Stepanichev MY, Mamedova DI, Gulyaeva NV. Hippocampus under Pressure: Molecular Mechanisms of Development of Cognitive Impairments in SHR Rats. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:711-725. [PMID: 38831507 DOI: 10.1134/s0006297924040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/20/2023] [Accepted: 03/14/2024] [Indexed: 06/05/2024]
Abstract
Data from clinical trials and animal experiments demonstrate relationship between chronic hypertension and development of cognitive impairments. Here, we review structural and biochemical alterations in the hippocampus of SHR rats with genetic hypertension, which are used as a model of essential hypertension and vascular dementia. In addition to hypertension, dysfunction of the hypothalamic-pituitary-adrenal system observed in SHR rats already at an early age may be a key factor of changes in the hippocampus at the structural and molecular levels. Global changes at the body level, such as hypertension and neurohumoral dysfunction, are associated with the development of vascular pathology and impairment of the blood-brain barrier. Changes in multiple biochemical glucocorticoid-dependent processes in the hippocampus, including dysfunction of steroid hormones receptors, impairments of neurotransmitter systems, BDNF deficiency, oxidative stress, and neuroinflammation are accompanied by the structural alterations, such as cellular signs of neuroinflammation micro- and astrogliosis, impairments of neurogenesis in the subgranular neurogenic zone, and neurodegenerative processes at the level of synapses, axons, and dendrites up to the death of neurons. The consequence of this is dysfunction of hippocampus, a key structure of the limbic system necessary for cognitive functions. Taking into account the available results at various levels starting from the body and brain structure (hippocampus) levels to molecular one, we can confirm translational validity of SHR rats for modeling mechanisms of vascular dementia.
Collapse
Affiliation(s)
- Mikhail Yu Stepanichev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
| | - Diana I Mamedova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| |
Collapse
|
2
|
Zhang Y, Tu J, Li Y, Wang Y, Lu L, Wu C, Yu XY, Li Y. Inflammation macrophages contribute to cardiac homeostasis. CARDIOLOGY PLUS 2023. [DOI: 10.1097/cp9.0000000000000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
3
|
Shen J, Zhao M, Zhang C, Sun X. IL-1β in atherosclerotic vascular calcification: From bench to bedside. Int J Biol Sci 2021; 17:4353-4364. [PMID: 34803503 PMCID: PMC8579452 DOI: 10.7150/ijbs.66537] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ming Zhao
- Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
4
|
Youwakim J, Girouard H. Inflammation: A Mediator Between Hypertension and Neurodegenerative Diseases. Am J Hypertens 2021; 34:1014-1030. [PMID: 34136907 DOI: 10.1093/ajh/hpab094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 05/03/2021] [Accepted: 06/15/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is the most prevalent and modifiable risk factor for stroke, vascular cognitive impairment, and Alzheimer's disease. However, the mechanistic link between hypertension and neurodegenerative diseases remains to be understood. Recent evidence indicates that inflammation is a common pathophysiological trait for both hypertension and neurodegenerative diseases. Low-grade chronic inflammation at the systemic and central nervous system levels is now recognized to contribute to the physiopathology of hypertension. This review speculates that inflammation represents a mediator between hypertension and neurodegenerative diseases, either by a decrease in cerebral blood flow or a disruption of the blood-brain barrier which will, in turn, let inflammatory cells and neurotoxic molecules enter the brain parenchyma. This may impact brain functions including cognition and contribute to neurodegenerative diseases. This review will thus discuss the relationship between hypertension, systemic inflammation, cerebrovascular functions, neuroinflammation, and brain dysfunctions. The potential clinical future of immunotherapies against hypertension and associated cerebrovascular risks will also be presented.
Collapse
Affiliation(s)
- Jessica Youwakim
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
| | - Hélène Girouard
- Département de Pharmacologie et Physiologie, Université de Montréal, Montreal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l’apprentissage (CIRCA); Montreal, QC, Canada
- Groupe de Recherche sur le Système Nerveux Central, Montreal, QC, Canada
- Centre de recherche de l’Institut Universitaire de Gériaterie de Montréal, Montreal, QC, Canada
| |
Collapse
|
5
|
Lapi D, Di Maro M, Serao N, Chiurazzi M, Varanini M, Sabatino L, Scuri R, Colantuoni A, Guida B. Geometric Features of the Pial Arteriolar Networks in Spontaneous Hypertensive Rats: A Crucial Aspect Underlying the Blood Flow Regulation. Front Physiol 2021; 12:664683. [PMID: 34295257 PMCID: PMC8289703 DOI: 10.3389/fphys.2021.664683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Background Several studies indicate that hypertension causes major changes in the structure of the vessel wall by affecting the regulation of blood supply to the tissues. Recently, it has been observed that capillary blood flow is also considerably influenced by the structural arrangement of the microvascular networks that undergo rarefaction (reduction of the perfused vessel number). Therefore, this study aimed to assess the geometric arrangements of the pial arteriolar networks and the arteriolar rhythmic diameter changes in spontaneously hypertensive rats (SHRs). Methods Fluorescence microscopy was utilized to observe in vivo the pial microcirculation through a closed cranial window. Pial arterioles were classified according to Strahler’s method. The arteriolar rhythmic diameter changes were evaluated by a generalization short-time Fourier transform. Result Young SHRs showed four orders of vessels while the adult ones only three orders. The diameter, length, and branching number obeyed Horton’s law; therefore, the vessels were distributed in a fractal manner. Larger arterioles showed more asymmetrical branches than did the smaller ones in young SHRs, while in adult SHRs smaller vessels presented asymmetrical branchings. In adult SHRs, there was a significant reduction in the cross-sectional area compared with the young SHRs: this implies an increase in peripheral resistance. Young and adult age-matched normotensive rats did not show significant alterations in the geometric arteriolar arrangement with advancing age, both had four orders of arteriolar vessels, and the peripheral resistance did not change significantly. Conversely, the frequency components evaluated in arteriolar rhythmic diameter changes of young and adult SHRs showed significant differences because of a reduction in the frequency components related to endothelial activity detected in adult SHRs. Conclusion In conclusion, hypertension progressively causes changes in the microarchitecture of the arteriolar networks with a smaller number of vessels and consequent reduced conductivity, characteristic of rarefaction. This was accompanied by a reduction in the formation and release of independent and dependent – endothelial nitric oxide components regulating arterial vasomotion.
Collapse
Affiliation(s)
- Dominga Lapi
- Department of Biology, University of Pisa, Pisa, Italy
| | - Martina Di Maro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Nicola Serao
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Martina Chiurazzi
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Maurizio Varanini
- Institute of Clinical Physiology, National Council of Research (CNR), Pisa, Italy
| | - Lina Sabatino
- Department of Sciences and Technologies, Sannio University, Benevento, Italy
| | - Rossana Scuri
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Antonio Colantuoni
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Bruna Guida
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
6
|
Martín Giménez VM, Mocayar Marón FJ, García S, Mazzei L, Guevara M, Yunes R, Manucha W. Central nervous system, peripheral and hemodynamic effects of nanoformulated anandamide in hypertension. Adv Med Sci 2021; 66:72-80. [PMID: 33388673 DOI: 10.1016/j.advms.2020.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Hypertensive lesions induce alterations at hemodynamic, peripheral, and central levels. Anandamide (N-arachidonoylethanolamine; AEA) protects neurons from inflammatory damage, but its free administration may cause central adverse effects. AEA controlled release by nanoformulations could reduce/eliminate its side effects. The present study aimed to evaluate the effects of nanoformulated AEA (nf-AEA) on systolic blood pressure (SBP), behavior, and central/peripheral inflammatory, oxidative, and apoptotic state in spontaneously hypertensive rats (SHR). MATERIALS/METHODS Male rats were used, both Wistar Kyoto (WKY) and SHR (n = 10 per group), with/without treatment with nf-AEA (obtained by electrospraying) at a weekly dose of 5 mg/kg IP for 4 weeks. SBP was measured and behavioral tests were performed. Inflammatory/oxidative markers were quantified at the central (brain cortex) and peripheral (serum) level. RESULTS SHR showed hyperactivity, low anxiety, and high concentrations of central/peripheral inflammatory/oxidative markers, also higher apoptosis of brain cortical cells compared to WKY. As opposed to this group, treatment with nf-AEA in SHR significantly reduced SBP, peripheral/central inflammatory/oxidative makers, and central apoptosis. Nf-AEA also increased neuroprotective mechanisms mediated by intracellular heat shock protein 70 (Hsp70), which were attenuated in untreated SHR. Additionally, nf-AEA reversed the abnormal behaviors observed in SHR without producing central adverse effects. CONCLUSIONS Our results suggest protective properties of nf-AEA, both peripherally and centrally, through a signaling pathway that would involve the type I angiotensin II receptor, Wilms tumor transcription factor 1, Hsp70, and iNOS. Considering non-nf-AEA limitations, this nanoformulation could contribute to the development of new antihypertensive and behavioral disorder treatments associated with neuroinflammation.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Research Institute in Chemical Sciences, Faculty of Chemical and Technological Sciences, Catholic Cuyo University, San Juan, Argentina
| | - Feres José Mocayar Marón
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina
| | - Sebastián García
- Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina
| | - Luciana Mazzei
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina; Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina
| | - Manuel Guevara
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina
| | - Roberto Yunes
- Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina; Institute of Biomedical Research (INBIOMED)-IMBECU-CONICET, Mendoza University, Mendoza, Argentina
| | - Walter Manucha
- Laboratory of Basic and Translational Experimental Pharmacology, Department of Pathology, Faculty of Medical Sciences, National University of Cuyo (IMBECU-CONICET), Mendoza, Argentina; Cuyo Institute of Experimental Medicine and Biology, National Council for Scientific and Technological Research (IMBECU-CONICET), Argentina.
| |
Collapse
|
7
|
Liu Y, Yin HL, Li C, Jiang F, Zhang SJ, Zhang XR, Li YL. Sinapine Thiocyanate Ameliorates Vascular Endothelial Dysfunction in Hypertension by Inhibiting Activation of the NLRP3 Inflammasome. Front Pharmacol 2021; 11:620159. [PMID: 33633569 PMCID: PMC7901921 DOI: 10.3389/fphar.2020.620159] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/22/2020] [Indexed: 12/23/2022] Open
Abstract
The increase of blood pressure is accompanied by the changes in the morphology and function of vascular endothelial cells. Vascular endothelial injury and hypertension actually interact as both cause and effect. A large number of studies have proved that inflammation plays a significant role in the occurrence and development of hypertension, but the potential mechanism between inflammation and hypertensive endothelial injury is still ambiguous. The purpose of this study was to explore the association between the activation of NLRP3 inflammasome and hypertensive endothelial damage, and to demonstrate the protective effect of sinapine thiocyanate (ST) on endothelia in hypertension. The expression of NLRP3 gene was silenced by tail vein injection of adeno-associated virus (AAVs) in spontaneously hypertensive rats (SHRs), indicating that activation of NLRP3 inflammasome accelerated hypertensive endothelial injury. ST not only protected vascular endothelial function in SHRs by inhibiting the activation of NLRP3 inflammasome and the expression of related inflammatory mediators, but also improved AngII-induced huvec injury. In summary, our results show that alleviative NLRP3 inflammasome activation attenuates hypertensive endothelial damage and ST ameliorates vascular endothelial dysfunction in hypertension via inhibiting activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yang Liu
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,ICU, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Lin Yin
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Feng Jiang
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shi-Jun Zhang
- First Faculty of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin-Rong Zhang
- Faculty of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yun-Lun Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China.,Cardiovascular Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
8
|
Pellegrini C, Martelli A, Antonioli L, Fornai M, Blandizzi C, Calderone V. NLRP3 inflammasome in cardiovascular diseases: Pathophysiological and pharmacological implications. Med Res Rev 2021; 41:1890-1926. [PMID: 33460162 DOI: 10.1002/med.21781] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/30/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence points out the importance of nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome in the pathogenesis of cardiovascular diseases (CVDs), including hypertension, myocardial infarct (MI), ischemia, cardiomyopathies (CMs), heart failure (HF), and atherosclerosis. In this regard, intensive research efforts both in humans and in animal models of CVDs are being focused on the characterization of the pathophysiological role of NLRP3 inflammasome signaling in CVDs. In addition, clinical and preclinical evidence is coming to light that the pharmacological blockade of NLRP3 pathways with drugs, including novel chemical entities as well as drugs currently employed in the clinical practice, biologics and phytochemicals, could represent a suitable therapeutic approach for prevention and management of CVDs. On these bases, the present review article provides a comprehensive overview of clinical and preclinical studies about the role of NLRP3 inflammasome in the pathophysiology of CVDs, including hypertension, MI, ischemic injury, CMs, HF and atherosclerosis. In addition, particular attention has been focused on current evidence on the effects of drugs, biologics, and phytochemicals, targeting different steps of inflammasome signaling, in CVDs.
Collapse
Affiliation(s)
| | - Alma Martelli
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Matteo Fornai
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, Unit of Pharmacology and Pharmacovigilance, University of Pisa, Pisa, Italy
| | | |
Collapse
|
9
|
Palma G, Pasqua T, Silvestri G, Rocca C, Gualtieri P, Barbieri A, De Bartolo A, De Lorenzo A, Angelone T, Avolio E, Botti G. PI3Kδ Inhibition as a Potential Therapeutic Target in COVID-19. Front Immunol 2020; 11:2094. [PMID: 32973818 PMCID: PMC7472874 DOI: 10.3389/fimmu.2020.02094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
The spread of the novel human respiratory coronavirus (SARS-CoV-2) is a global public health emergency. There is no known successful treatment as of this time, and there is a need for medical options to mitigate this current epidemic. SARS-CoV-2 uses the angiotensin-converting enzyme 2 (ACE2) receptor and is primarily trophic for the lower and upper respiratory tract. A number of current studies on COVID-19 have demonstrated the substantial increase in pro-inflammatory factors in the lungs during infection. The virus is also documented in the central nervous system and, particularly in the brainstem, which plays a key role in respiratory and cardiovascular function. Currently, there are few antiviral approaches, and several alternative drugs are under investigation. Two of these are Idelalisib and Ebastine, already proposed as preventive strategies in airways and allergic diseases. The interesting and evolving potential of phosphoinositide 3-kinase δ (PI3Kδ) inhibitors, together with Ebastine, lies in their ability to suppress the release of pro-inflammatory cytokines, such as IL-1β, IL-8, IL-6, and TNF-α, by T cells. This may represent an optional therapeutic choice for COVID-19 to reduce inflammatory reactions and mortality, enabling patients to recover faster. This concise communication aims to provide new potential therapeutic targets capable of mitigating and alleviating SARS-CoV-2 pandemic infection.
Collapse
Affiliation(s)
- Giuseppe Palma
- SSD Sperimentazione Animale, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| | - Teresa Pasqua
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Giovannino Silvestri
- Institute of Human Virology, Division of Infectious Agents and Cancer, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Paola Gualtieri
- School of Specialization in Food Science, University of Rome “Tor Vergata”, Rome, Italy
| | - Antonio Barbieri
- SSD Sperimentazione Animale, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| | - Anna De Bartolo
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
| | - Antonino De Lorenzo
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Patho-Physiology, Department of Biology, Ecology and Earth Science, University of Calabria, Rende, Italy
- National Institute for Cardiovascular Research (INRC), Bologna, Italy
| | - Ennio Avolio
- School of Specialization in Food Science, University of Rome “Tor Vergata”, Rome, Italy
- Section of Clinical Nutrition and Nutrigenomics, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Gerardo Botti
- Scientific Director, Istituto Nazionale Tumori Fondazione G. Pascale – IRCSS, Naples, Italy
| |
Collapse
|
10
|
Cannabinoid type 2 receptor agonist JWH133 decreases blood pressure of spontaneously hypertensive rats through relieving inflammation in the rostral ventrolateral medulla of the brain. J Hypertens 2020; 38:886-895. [DOI: 10.1097/hjh.0000000000002342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Drummond GR, Vinh A, Guzik TJ, Sobey CG. Immune mechanisms of hypertension. Nat Rev Immunol 2020; 19:517-532. [PMID: 30992524 DOI: 10.1038/s41577-019-0160-5] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hypertension affects 30% of adults and is the leading risk factor for heart attack and stroke. Traditionally, hypertension has been regarded as a disorder of two systems that are involved in the regulation of salt-water balance and cardiovascular function: the renin-angiotensin-aldosterone system (RAAS) and the sympathetic nervous system (SNS). However, current treatments that aim to limit the influence of the RAAS or SNS on blood pressure fail in ~40% of cases, which suggests that other mechanisms must be involved. This Review summarizes the clinical and experimental evidence supporting a contribution of immune mechanisms to the development of hypertension. In this context, we highlight the immune cell subsets that are postulated to either promote or protect against hypertension through modulation of cardiac output and/or peripheral vascular resistance. We conclude with an appraisal of knowledge gaps still to be addressed before immunomodulatory therapies might be applied to at least a subset of patients with hypertension.
Collapse
Affiliation(s)
- Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia.
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| | - Tomasz J Guzik
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland.,BHF Centre of Research Excellence, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Abstract
Hypertension is an important risk factor for cardiovascular morbidity and mortality and for events such as myocardial infarction, stroke, heart failure and chronic kidney disease and is a major determinant of disability-adjusted life-years. Despite the importance of hypertension, the pathogenesis of essential hypertension, which involves the complex interaction of several mechanisms, is still poorly understood. Evidence suggests that interplay between bone marrow, microglia and immune mediators underlies the development of arterial hypertension, in particular through mechanisms involving cytokines and peptides, such as neuropeptide Y, substance P, angiotensin II and angiotensin-(1-7). Chronic psychological stress also seems to have a role in increasing the risk of hypertension, probably through the activation of neuroimmune pathways. In this Review, we summarize the available data on the possible role of neuroimmune crosstalk in the origin and maintenance of arterial hypertension and discuss the implications of this crosstalk for recovery and rehabilitation after cardiac and cerebral injuries.
Collapse
|
13
|
Pereira CA, Carlos D, Ferreira NS, Silva JF, Zanotto CZ, Zamboni DS, Garcia VD, Ventura DF, Silva JS, Tostes RC. Mitochondrial DNA Promotes NLRP3 Inflammasome Activation and Contributes to Endothelial Dysfunction and Inflammation in Type 1 Diabetes. Front Physiol 2020; 10:1557. [PMID: 32009974 PMCID: PMC6978691 DOI: 10.3389/fphys.2019.01557] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Background: NLRP3 inflammasome activation in response to several signals, including mitochondrial DNA (mDNA), regulates inflammatory responses by caspase-1 activation and interleukin-1β (IL-1β) release. Circulating mDNA is linked to micro and macrovascular complications in diabetes. However, a role for mDNA in endothelial dysfunction is not clear. We tested the hypothesis that mDNA contributes to diabetes-associated endothelial dysfunction and vascular inflammation via NLRP3 activation. Methods: Vascular reactivity, reactive oxygen species (ROS) generation, calcium (Ca2+) influx and caspase-1 and IL-1β activation were determined in mesenteric resistance arteries from normoglicemic and streptozotocin-induced diabetic C57BL/6 and NLRP3 knockout (Nlrp3-/- ) mice. Endothelial cells and mesenteric arteries were stimulated with mDNA from control (cmDNA) and diabetic (dmDNA) mice. Results: Diabetes reduced endothelium-dependent vasodilation and increased vascular ROS generation and caspase-1 and IL-1β activation in C57BL/6, but not in Nlrp3-/- mice. Diabetes increased pancreatic cytosolic mDNA. dmDNA decreased endothelium-dependent vasodilation. In endothelial cells, dmDNA activated NLRP3 via mitochondrial ROS and Ca2+ influx. Patients with type 1 diabetes exhibited increased circulating mDNA as well as caspase-1 and IL-1β activation. Conclusion: dmDNA activates endothelial NLRP3 inflammasome by mechanisms that involve Ca2+ influx and mitochondrial ROS generation. NLRP3 deficiency prevents diabetes-associated vascular inflammatory damage and endothelial dysfunction. Our study highlights the importance of NLRP3 inflammasome in diabetes-associated vascular dysfunction, which is key to diabetic complications.
Collapse
Affiliation(s)
- Camila A Pereira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Daniela Carlos
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nathanne S Ferreira
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Josiane F Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Camila Z Zanotto
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dario S Zamboni
- Cell and Molecular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valéria D Garcia
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - Dora Fix Ventura
- Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
| | - João S Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
14
|
Activation of the G Protein-Coupled Estrogen Receptor (GPER) Increases Neurogenesis and Ameliorates Neuroinflammation in the Hippocampus of Male Spontaneously Hypertensive Rats. Cell Mol Neurobiol 2019; 40:711-723. [DOI: 10.1007/s10571-019-00766-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/22/2019] [Indexed: 01/20/2023]
|
15
|
Brocca ME, Pietranera L, de Kloet ER, De Nicola AF. Mineralocorticoid Receptors, Neuroinflammation and Hypertensive Encephalopathy. Cell Mol Neurobiol 2019; 39:483-492. [PMID: 30117098 DOI: 10.1007/s10571-018-0610-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Worldwide, raised blood pressure is estimated to affect 35-40% of the adult population and is a main conditioning factor for cardiovascular diseases and stroke. Animal models of hypertension have provided great advances concerning the pathophysiology of human hypertension, as already shown for the deoxycorticosterone-salt treated rat, the Dahl-salt sensitive rat, the Zucker obese rat and the spontaneously hypertensive rat (SHR). SHR has been widely used to study abnormalities of the brain in chronic hypertension. This review summarises present and past evidence that in the SHR, hypertension causes hippocampal tissue damage which triggers a pro-inflammatory feedforward cascade affecting this vulnerable brain region. The cascade is driven by mineralocorticoid receptor (MR) activation responding to endogenous corticosterone rather than aldosterone. Increased MR expression is a generalised feature of the SHR which seems to support first the rise in blood pressure. Then oxidative stress caused by vasculopathy and hypoxia further increases MR activation in hippocampal neurons and glia cells, activates microglia activation and pro-inflammatory mediators, and down-regulates anti-inflammatory factors. In contrast to MR, involvement of the glucocorticoid receptor (GR) in SHR is less certain. GR showed normal expression levels and blockage with an antagonist failed to reduce blood pressure of SHR. The findings support the concept that MR:GR imbalance caused by vasculopathy causes a switch in MR function towards a proverbial "death" receptor.
Collapse
Affiliation(s)
- Maria Elvira Brocca
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Laboratory of Neuroactive Steroids, Cajal Institute, CSIC, Ave. Doctor Arce 37, 28002, Madrid, Spain
| | - Luciana Pietranera
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Edo Ronald de Kloet
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Alejandro Federico De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Buenos Aires, Argentina.
- Department of Human Biochemistry, Faculty of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|