1
|
Moradi Khankani A, Hossein Meftahi G. Pretreatment with 4-methylumbilliferon improves anxiety-like behaviors and memory impairment in stressed rats via modulation of neuronal cell death and oxidative stress. Brain Res 2024; 1844:149196. [PMID: 39181223 DOI: 10.1016/j.brainres.2024.149196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
This work was done to investigate the ameliorating impact of 4-methylumbilliferon (4-MU) on spatial learning and memory dysfunction and restraint stress (STR)-induced anxiety-like behaviors in male Wistar rats and the underlying mechanisms. Thirty-two animals were assigned into 4 cohorts: control, 4-MU, STR, and STR+4-MU. Animals were exposed to STR for 4 h per day for 14 consecutive days or kept in normal conditions (healthy animals without exposure to stress). 4-MU (25 mg/kg) was intraperitoneally administered once daily to STR rats before restraint stress for 14 consecutive days. The behavioral tests were performed through Morris water maze tests and elevated-plus maze to examine learning/memory function, and anxiety levels, respectively. The levels of the antioxidant defense biomarkers (GPX, SOD) and MDA as an oxidant molecule in the brain tissues were measured using commercial ELISA kits. Neuronal loss or density of neurons was evaluated using Nissl staining. STR exposure could cause significant alterations in the levels of the antioxidant defense biomarkers (MDA, GPX, and SOD) in the prefrontal cortex and hippocampus, induce anxiety, and impair spatial learning and memory function. Treatment with 4-MU markedly reduced anxiety levels and improved spatial learning and memory dysfunction via restoring the antioxidant defense biomarkers to normal values and reducing MDA levels. Moreover, more intact cells with normal morphologies were detected in STR-induced animals treated with 4-MU. 4-MU could attenuate the STR-induced anxiety-like behaviors and spatial learning and memory dysfunction by reducing oxidative damage and neuronal loss in the prefrontal cortex and hippocampus region. Taken together, our findings provide new insights regarding the potential therapeutic effects of 4-MU against neurobehavioral disorders induced by STR.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. eLife 2024; 12:RP89889. [PMID: 38904658 PMCID: PMC11192536 DOI: 10.7554/elife.89889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Karim S Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
| | - John J LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Justin J Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
| | - Stephen D Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| | - Helen E Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric ResearchOrangeburgUnited States
- Department of Neuroscience and Physiology, New York University Grossman School of MedicineNew YorkUnited States
- Departments of Child and Adolescent Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- Department of Psychiatry, New York University Grossman School of MedicineNew YorkUnited States
- NYU Neuroscience Institute, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
3
|
Chartampila E, Elayouby KS, Leary P, LaFrancois JJ, Alcantara-Gonzalez D, Jain S, Gerencer K, Botterill JJ, Ginsberg SD, Scharfman HE. Choline supplementation in early life improves and low levels of choline can impair outcomes in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.12.540428. [PMID: 37214805 PMCID: PMC10197642 DOI: 10.1101/2023.05.12.540428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Maternal choline supplementation (MCS) improves cognition in Alzheimer's disease (AD) models. However, effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes; IIS). IIS also are common in other mouse models and occur in AD patients. Im mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ΔFosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore we studied ΔFosB expression in GCs. We also studied the the neuronal marker NeuN within hilar neurons of the DG because other studies have reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ΔFosB expression was reduced, and NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB and spatial memory in an animal model of AD.
Collapse
Affiliation(s)
- Elissavet Chartampila
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address:Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27510
| | - Karim S. Elayouby
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029
| | - Paige Leary
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
| | - John J. LaFrancois
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - David Alcantara-Gonzalez
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
| | - Swati Jain
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
| | - Kasey Gerencer
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Psychology, University of Maine, Orono, ME 04469
| | - Justin J. Botterill
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Current address: Department of Anatomy, Physiology, & Pharmacology, College of Medicine, Saskatoon, SK S7N 5E5
| | - Stephen D. Ginsberg
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| | - Helen E. Scharfman
- Center for Dementia Research, The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 100016
- Department of Child and Adolescent Psychiatry , New York University Grossman School of Medicine, New York, NY 10016
- Department of Psychiatry, New York University Grossman School of Medicine New York, NY 10016
- NYU Neuroscience Institute,, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
4
|
Kim SH, Das D, Sillé FCM, Ramachandran G, Biswal S. Subchronic exposure to ambient PM 2.5 impairs novelty recognition and spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.07.556582. [PMID: 37745318 PMCID: PMC10515782 DOI: 10.1101/2023.09.07.556582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Air pollution remains a great challenge for public health, with the detrimental effects of air pollution on cardiovascular, rhinosinusitis, and pulmonary health increasingly well understood. Recent epidemiological associations point to the adverse effects of air pollution on cognitive decline and neurodegenerative diseases. Mouse models of subchronic exposure to PM 2.5 (ambient air particulate matter < 2.5 µm) provide an opportunity to demonstrate the causality of target diseases. Here, we subchronically exposed mice to concentrated ambient PM 2.5 for 7 weeks (5 days/week; 8h/day) and assessed its effect on behavior using standard tests measuring cognition or anxiety-like behaviors. Average daily PM 2.5 concentration was 200 µg/m 3 in the PM 2.5 group and 10 µg/m 3 in the filtered air group. The novel object recognition (NOR) test was used to assess the effect of PM 2.5 exposure on recognition memory. The increase in exploration time for a novel object versus a familiarized object was lower for PM 2.5 -exposed mice (42% increase) compared to the filtered air (FA) control group (110% increase). In addition, the calculated discrimination index for novel object recognition was significantly higher in FA mice (67 %) compared to PM 2.5 exposed mice (57.3%). The object location test (OLT) was used to examine the effect of PM 2.5 exposure on spatial memory. In contrast to the FA-exposed control mice, the PM 2.5 exposed mice exhibited no significant increase in their exploration time between novel location versus familiarized location indicating their deficit in spatial memory. Furthermore, the discrimination index for novel location was significantly higher in FA mice (62.6%) compared to PM 2.5 exposed mice (51%). Overall, our results demonstrate that subchronic exposure to higher levels of PM 2.5 in mice causes impairment of novelty recognition and spatial memory.
Collapse
|
5
|
Li X, Du ZJ, Xu JN, Liang ZM, Lin S, Chen H, Li SJ, Li XW, Yang JM, Gao TM. mGluR5 in hippocampal CA1 pyramidal neurons mediates stress-induced anxiety-like behavior. Neuropsychopharmacology 2023; 48:1164-1174. [PMID: 36797374 PMCID: PMC10267178 DOI: 10.1038/s41386-023-01548-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Pharmacological manipulation of mGluR5 has showed that mGluR5 is implicated in the pathophysiology of anxiety and mGluR5 has been proposed as a potential drug target for anxiety disorders. Nevertheless, the mechanism underlying the mGluR5 involvement in stress-induced anxiety-like behavior remains largely unknown. Here, we found that chronic restraint stress induced anxiety-like behavior and decreased the expression of mGluR5 in hippocampal CA1. Specific knockdown of mGluR5 in hippocampal CA1 pyramidal neurons produced anxiety-like behavior. Furthermore, both chronic restraint stress and mGluR5 knockdown impaired inhibitory synaptic inputs in hippocampal CA1 pyramidal neurons. Notably, positive allosteric modulator of mGluR5 rescued stress-induced anxiety-like behavior and restored the inhibitory synaptic inputs. These findings point to an essential role for mGluR5 in hippocampal CA1 pyramidal neurons in mediating stress-induced anxiety-like behavior.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhuo-Jun Du
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun-Nan Xu
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhi-Man Liang
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Song Lin
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hao Chen
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shu-Ji Li
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Plaut S. “Long COVID-19” and viral “fibromyalgia-ness”: Suggesting a mechanistic role for fascial myofibroblasts (Nineveh, the shadow is in the fascia). Front Med (Lausanne) 2023; 10:952278. [PMID: 37089610 PMCID: PMC10117846 DOI: 10.3389/fmed.2023.952278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
The coronavirus pandemic has led to a wave of chronic disease cases; “Long COVID-19” is recognized as a new medical entity and resembles “fibromyalgia” which, likewise, lacks a clear mechanism. Observational studies indicate that up to 30%–40% of convalescent COVID-19 patients develop chronic widespread pain and fatigue and fulfill the 2016 diagnostic criteria for “fibromyalgia.” A recent study suggested a theoretical neuro-biomechanical model (coined “Fascial Armoring”) to help explain the pathogenesis and cellular pathway of fibromyalgia, pointing toward mechanical abnormalities in connective tissue and fascia, driven by contractile myo/fibroblasts and altered extracellular matrix remodeling with downstream corresponding neurophysiological aberrations. This may help explain several of fibromyalgia’s manifestations such as pain, distribution of pain, trigger points/tender spots, hyperalgesia, chronic fatigue, cardiovascular abnormalities, metabolic abnormalities, autonomic abnormalities, small fiber neuropathy, various psychosomatic symptoms, lack of obvious inflammation, and silent imaging investigations. Pro-inflammatory and pro-fibrotic pathways provide input into this mechanism via stimulation of proto/myofibroblasts. In this hypothesis and theory paper the theoretical model of Fascial Armoring is presented to help explain the pathogenesis and manifestations of “long COVID-19” as a disease of immuno-rheumo-psycho-neurology. The model is also used to make testable experimental predictions on investigations and predict risk and relieving factors.
Collapse
|
7
|
Plaut S. Scoping review and interpretation of myofascial pain/fibromyalgia syndrome: An attempt to assemble a medical puzzle. PLoS One 2022; 17:e0263087. [PMID: 35171940 PMCID: PMC8849503 DOI: 10.1371/journal.pone.0263087] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Myofascial Pain Syndrome (MPS) is a common, overlooked, and underdiagnosed condition and has significant burden. MPS is often dismissed by clinicians while patients remain in pain for years. MPS can evolve into fibromyalgia, however, effective treatments for both are lacking due to absence of a clear mechanism. Many studies focus on central sensitization. Therefore, the purpose of this scoping review is to systematically search cross-disciplinary empirical studies of MPS, focusing on mechanical aspects, and suggest an organic mechanism explaining how it might evolve into fibromyalgia. Hopefully, it will advance our understanding of this disease. METHODS Systematically searched multiple phrases in MEDLINE, EMBASE, COCHRANE, PEDro, and medRxiv, majority with no time limit. Inclusion/exclusion based on title and abstract, then full text inspection. Additional literature added on relevant side topics. Review follows PRISMA-ScR guidelines. PROSPERO yet to adapt registration for scoping reviews. FINDINGS 799 records included. Fascia can adapt to various states by reversibly changing biomechanical and physical properties. Trigger points, tension, and pain are a hallmark of MPS. Myofibroblasts play a role in sustained myofascial tension. Tension can propagate in fascia, possibly supporting a tensegrity framework. Movement and mechanical interventions treat and prevent MPS, while living sedentarily predisposes to MPS and recurrence. CONCLUSIONS MPS can be seen as a pathological state of imbalance in a natural process; manifesting from the inherent properties of the fascia, triggered by a disrupted biomechanical interplay. MPS might evolve into fibromyalgia through deranged myofibroblasts in connective tissue ("fascial armoring"). Movement is an underemployed requisite in modern lifestyle. Lifestyle is linked to pain and suffering. The mechanism of needling is suggested to be more mechanical than currently thought. A "global percutaneous needle fasciotomy" that respects tensegrity principles may treat MPS/fibromyalgia more effectively. "Functional-somatic syndromes" can be seen as one entity (myofibroblast-generated-tensegrity-tension), sharing a common rheuma-psycho-neurological mechanism.
Collapse
Affiliation(s)
- Shiloh Plaut
- School of Medicine, St. George’s University of London, London, United Kingdom
| |
Collapse
|
8
|
FOXO1 Is a Critical Switch Molecule for Autophagy and Apoptosis of Sow Endometrial Epithelial Cells Caused by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:1172273. [PMID: 34970413 PMCID: PMC8714345 DOI: 10.1155/2021/1172273] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Oxidative stress (OS) is involved in various reproductive diseases and can induce autophagy and apoptosis, which determine the different fates of cells. However, the sequence and the switch mechanism between autophagy and apoptosis are unclear. Here, we reported that chronic restraint stress (CRS) induced OS (decreased T-AOC, T-SOD, CAT and GSH-Px and increased MDA) and then disturbed the endocrine environment of sows during early pregnancy, including the hypothalamic-pituitary-ovarian (HPO) and the hypothalamic-pituitary-adrenal (HPA) axes. Meanwhile, after CRS, the KEAP1/NRF2 pathway was inhibited and attenuated the antioxidative ability to cause OS of the endometrium. The norepinephrine (NE) triggered β2-AR to activate the FOXO1/NF-κB pathway, which induced endometrial inflammation. CRS induced the caspase-dependent apoptosis pathway and caused MAP1LC3-II accumulation, SQSTM1/p62 degradation, and autophagosome formation to initiate autophagy. Furthermore, in vitro, a cellular OS model was established by adding hydrogen peroxide into cells. Low OS maintained the viability of endometrial epithelial cells by triggering autophagy, while high OS induced cell death by initiating caspase-dependent apoptosis. Autophagy preceded the occurrence of apoptosis, which depended on the subcellular localization of FOXO1. In the low OS group, FOXO1 was exported from the nucleus to be modified into Ac-FOXO1 and bound to ATG7 in the cytoplasm, which promoted autophagy to protect cells. In the high OS group, FOXO1 located in the nucleus to promote transcription of proapoptotic proteins and then induce apoptosis. Here, FOXO1, as a redox sensor switch, regulated the transformation of cell autophagy and apoptosis. In summary, the posttranslational modification of FOXO1 may become the target of OS treatment.
Collapse
|
9
|
Wang H, Jiang N, Lv J, Huang H, Liu X. Ginsenoside Rd reverses cognitive deficits by modulating BDNF-dependent CREB pathway in chronic restraint stress mice. Life Sci 2020; 258:118107. [PMID: 32682919 DOI: 10.1016/j.lfs.2020.118107] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 10/23/2022]
Abstract
Cognitive impairment has been widely recognized as a common symptom of chronic stress. Ginsenoside Rd (GRd), the major active compound in Panax ginseng, was previously reported in various neurological researches. However, little research is available regarding on the effect of GRd on cognitive improvement in mice subjected to chronic stress. In the present study, we investigated the neuroprotective effects of GRd in chronic restraint stress (CRS)-induced cognitive deficits and explored the potential mechanism in male C57BL/6J mice. Our results demonstrated that oral administration of GRd for 28 days markedly increased the spontaneous alternation in Y-maze and the relative discrimination index in novel object or location recognition tests following CRS. Additionally, GRd treatment considerably increased the antioxidant enzymes activities in the hippocampus. The expression levels of hippocampus and serum inflammation factors in the CRS groups were also counter-regulated by GRd treatment. Meanwhile, GRd treatment could reverse CRS-induced the decrease in phosphorylated phosphoinositide 3-kinase (PI3K), camp-reflecting element binding protein (CREB), brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) expression in the hippocampus. These findings provided evidences that GRd improves cognitive impairment in CRS mice by mitigating oxidative stress and inflammation, while upregulating the hippocampal BDNF-mediated CREB signaling pathway.
Collapse
Affiliation(s)
- Haixia Wang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ning Jiang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jingwei Lv
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong Huang
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Xinmin Liu
- Research Center of Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|