1
|
Li M, Guo H, Carey M, Huang C. Transcriptional and epigenetic dysregulation impairs generation of proliferative neural stem and progenitor cells during brain aging. NATURE AGING 2024; 4:62-79. [PMID: 38177329 PMCID: PMC10947366 DOI: 10.1038/s43587-023-00549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
The decline in stem cell function during aging may affect the regenerative capacity of mammalian organisms; however, the gene regulatory mechanism underlying this decline remains unclear. Here we show that the aging of neural stem and progenitor cells (NSPCs) in the male mouse brain is characterized by a decrease in the generation efficacy of proliferative NSPCs rather than the changes in lineage specificity of NSPCs. We reveal that the downregulation of age-dependent genes in NSPCs drives cell aging by decreasing the population of actively proliferating NSPCs while increasing the expression of quiescence markers. We found that epigenetic deregulation of the MLL complex at promoters leads to transcriptional inactivation of age-dependent genes, highlighting the importance of the dynamic interaction between histone modifiers and gene regulatory elements in regulating transcriptional program of aging cells. Our study sheds light on the key intrinsic mechanisms driving stem cell aging through epigenetic regulators and identifies potential rejuvenation targets that could restore the function of aging stem cells.
Collapse
Affiliation(s)
- Meiyang Li
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Hongzhi Guo
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Michael Carey
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA.
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China.
- Department of Biological Chemistry, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
2
|
McSweeney C, Chen M, Dong F, Sebastian A, Reynolds DJ, Mott J, Pei Z, Zou J, Shi Y, Mao Y. Transcriptomic Analyses of Brains of RBM8A Conditional Knockout Mice at Different Developmental Stages Reveal Conserved Signaling Pathways Contributing to Neurodevelopmental Diseases. Int J Mol Sci 2023; 24:4600. [PMID: 36902031 PMCID: PMC10003467 DOI: 10.3390/ijms24054600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
RNA-binding motif 8A (RBM8A) is a core component of the exon junction complex (EJC) that binds pre-mRNAs and regulates their splicing, transport, translation, and nonsense-mediated decay (NMD). Dysfunction in the core proteins has been linked to several detriments in brain development and neuropsychiatric diseases. To understand the functional role of Rbm8a in brain development, we have generated brain-specific Rbm8a knockout mice and used next-generation RNA-sequencing to identify differentially expressed genes (DEGs) in mice with heterozygous, conditional knockout (cKO) of Rbm8a in the brain at postnatal day 17 (P17) and at embryonic day 12. Additionally, we analyzed enriched gene clusters and signaling pathways within the DEGs. At the P17 time point, between the control and cKO mice, about 251 significant DEGs were identified. At E12, only 25 DEGs were identified in the hindbrain samples. Bioinformatics analyses have revealed many signaling pathways related to the central nervous system (CNS). When E12 and P17 results were compared, three DEGs, Spp1, Gpnmb, and Top2a, appeared to peak at different developmental time points in the Rbm8a cKO mice. Enrichment analyses suggested altered activity in pathways affecting cellular proliferation, differentiation, and survival. The results support the hypothesis that loss of Rbm8a causes decreased cellular proliferation, increased apoptosis, and early differentiation of neuronal subtypes, which may lead ultimately to an altered neuronal subtype composition in the brain.
Collapse
Affiliation(s)
- Colleen McSweeney
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Miranda Chen
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Fengping Dong
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aswathy Sebastian
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Derrick James Reynolds
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jizhong Zou
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, Rockville, MD 20892, USA
| | - Yongsheng Shi
- Department of Microbiology & Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Poudel PP, Bhattarai C, Ghosh A, Kalthur SG. Role of engrailed homeobox 2 (EN2) gene in the development of the cerebellum and effects of its altered and ectopic expressions. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Morphological organization, folial pattern formation and establishment of the neural circuitry within the cerebellum are the important events taking place during the development of the cerebellum. Expression of engrailed homeobox 2 (EN2) gene plays an essential role in taking place of these events in the developing cerebellum.
Main body
A search was performed by following the PRISMA guidelines to review the role of the EN2 gene in the development of the cerebellum. Human and animal in vivo and in vitro studies showed that expression of the EN2 gene maintains the normal development of the cerebellum, morphological organization, cerebellar foliation, fissure formation, establishment of the afferent topography, molecular pattern formation and patterned gene expression in the developing cerebellum. Altered expression of the EN2 gene changes the morphology and folial pattern of the cerebellum, whereas its activation rescues these defects. EN2 gene polymorphism is reported as a susceptible cause for autism spectrum disorder (ASD). Ectopic expression of EN2 gene may result cancer and it also may play anti-oncogenic role depending on the organ of its expression.
Conclusion
Expression of the EN2 gene is essential for the normal development of the cerebellum. Its altered expression results deformed cerebellum, polymorphysm is associated with autism and ectopic expression may results cancer.
Collapse
|
4
|
Durens M, Soliman M, Millonig J, DiCicco-Bloom E. Engrailed-2 is a cell autonomous regulator of neurogenesis in cultured hippocampal neural stem cells. Dev Neurobiol 2021; 81:724-735. [PMID: 33852756 DOI: 10.1002/dneu.22824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/07/2022]
Abstract
Abnormalities in genes that regulate early brain development are known risk factors for neurodevelopmental disorders. Engrailed-2 (En2) is a homeodomain transcription factor with established roles in cerebellar patterning. En2 is highly expressed in the developing mid-hindbrain region, and En2 knockout (KO) mice exhibit major deficits in mid-hindbrain structures. However, En2 is also expressed in forebrain regions including the hippocampus, but its function is unknown. Previous studies have shown that the hippocampus of En2-KO mice exhibits reductions in its volume and cell numbers due to aberrant neurogenesis. Aberrant neurogenesis is due, in part, to noncell autonomous effects, specifically, reductions of innervating norepinephrine fibers from the locus coeruleus. In this study, we investigate possible cell autonomous roles of En2 in hippocampal neurogenesis. We examine proliferation, survival, and differentiation using cultures of hippocampal neurospheres of P7 wild-type (WT) and En2-KO hippocampal neural progenitor cells (NPCs). At 7 days, En2-KO neurospheres were larger on average than WT spheres and exhibited 2.5-fold greater proliferation and 2-fold increase in apoptotic cells, similar to in vivo KO phenotype. Further, En2-KO cultures exhibited 40% less cells with neurite projections, suggesting decreased differentiation. Lastly, reestablishing En2 expression in En2-KO NPCs rescued excess proliferation. These results indicate that En2 functions in hippocampal NPCs by inhibiting proliferation and promoting survival and differentiation in a cell autonomous manner. More broadly, this study suggests that En2 impacts brain structure and function in diverse regions outside of the mid-hindbrain.
Collapse
Affiliation(s)
- Madel Durens
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mai Soliman
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - James Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Emanuel DiCicco-Bloom
- School of Graduate Studies, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
5
|
Lv N, Wang Y, Zhao M, Dong L, Wei H. The Role of PAX2 in Neurodevelopment and Disease. Neuropsychiatr Dis Treat 2021; 17:3559-3567. [PMID: 34908837 PMCID: PMC8665868 DOI: 10.2147/ndt.s332747] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022] Open
Abstract
In developmental biology, transcription factors are involved in regulating the process of neural development, controlling the differentiation of nerve cells, and affecting the normal functioning of neural circuits. Transcription factors regulate the expression of multiple genes at the same time and have become a key gene category that is recognized to be disrupted in neurodevelopmental disorders such as autism spectrum disorders. This paper briefly introduces the expression and role of PAX2 in neurodevelopment and discusses the neurodevelopmental disorders associated with Pax2 mutations and its possible mechanism. Firstly, mutations in the human Pax2 gene are associated with abnormalities in multiple systems which can result in neurodevelopmental disorders such as intellectual disability, epilepsy and autism spectrum disorders. Secondly, the structure of Pax2 gene and PAX2 protein, as well as the function of Pax2 gene in neural development, was discussed. Finally, a diagram of the PAX2 protein regulatory network was made and a possible molecular mechanism of Pax2 mutations leading to neurodevelopmental disorders from the perspectives of developmental process and protein function was proposed.
Collapse
Affiliation(s)
- Na Lv
- Department of Physiology, Basic Medical College, Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ying Wang
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Min Zhao
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Lina Dong
- Central Laboratory, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongen Wei
- Department of Neurology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
6
|
Li P, Gao Y, Li X, Tian F, Wang F, Wang Y, Zhao B, Zhang R, Wang C. mRNA and miRNA expression profile reveals the role of miR-31 overexpression in neural stem cell. Sci Rep 2020; 10:17537. [PMID: 33067542 PMCID: PMC7568549 DOI: 10.1038/s41598-020-74541-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
Abstract
A detailed understanding of the character and differentiation mechanism of neural stem cells (NSCs) will help us to effectively utilize their transplantation to treat spinal cord injury. In previous studies, we found that compared with motor neurons (MNs), miR-31 was significantly high-expressed in NSCs and might play an important role in the proliferation of NSCs and the differentiation into MNs. To better understand the role of miR-31, we characterized the mRNA and miRNAs expression profiles in the early stage of spinal cord-derived NSCs after miR-31 overexpression. There were 35 mRNAs and 190 miRNAs differentially expressed between the miR-31 overexpression group and the control group. Compared with the control group, both the up-regulated mRNAs and miRNAs were associated with the stemness maintenance of NSCs and inhibited their differentiation, especially to MNs, whereas the down-regulated had the opposite effect. Further analysis of the inhibition of miR-31 in NSCs showed that interfering with miR-31 could increase the expression of MNs-related genes and produce MNs-like cells. All these indicated that miR-31 is a stemness maintenance gene of NSCs and has a negative regulatory role in the differentiation of NSCs into MNs. This study deepens our understanding of the role of miR-31 in NSCs, provides an effective candidate target for effectively inducing the differentiation of NSCs into MNs, and lays a foundation for the effective application of NSCs in clinic.
Collapse
Affiliation(s)
- Pengfei Li
- Translational Medicine Research Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China.,Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yuantao Gao
- Nanchang University, Nanchang, 330000, People's Republic of China
| | - Xiao Li
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Feng Tian
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fei Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yali Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Bichun Zhao
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Ruxin Zhang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Chunfang Wang
- Laboratory Animal Center, Shanxi Medical University, Xinjian South Road 56, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
7
|
Altered Expression of GABAergic Markers in the Forebrain of Young and Adult Engrailed-2 Knockout Mice. Genes (Basel) 2020; 11:genes11040384. [PMID: 32244845 PMCID: PMC7231099 DOI: 10.3390/genes11040384] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Impaired function of GABAergic interneurons, and the subsequent alteration of excitation/inhibition balance, is thought to contribute to autism spectrum disorders (ASD). Altered numbers of GABAergic interneurons and reduced expression of GABA receptors has been detected in the brain of ASD subjects and mouse models of ASD. We previously showed a reduced expression of GABAergic interneuron markers parvalbumin (PV) and somatostatin (SST) in the forebrain of adult mice lacking the Engrailed2 gene (En2-/- mice). Here, we extended this analysis to postnatal day (P) 30 by using in situ hybridization, immunohistochemistry, and quantitative RT-PCR to study the expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of En2-/- and wild type (WT) mice. In addition, GABA receptor subunit mRNA expression was investigated by quantitative RT-PCR in the same brain regions of P30 and adult En2-/- and WT mice. As observed in adult animals, PV and SST expression was decreased in En2-/- forebrain of P30 mice. The expression of GABA receptor subunits (including the ASD-relevant Gabrb3) was also altered in young and adult En2-/- forebrain. Our results suggest that GABAergic neurotransmission deficits are already evident at P30, confirming that neurodevelopmental defects of GABAergic interneurons occur in the En2 mouse model of ASD.
Collapse
|
8
|
Lee Y, Han PL. Early-Life Stress in D2 Heterozygous Mice Promotes Autistic-like Behaviors through the Downregulation of the BDNF-TrkB Pathway in the Dorsal Striatum. Exp Neurobiol 2019; 28:337-351. [PMID: 31308794 PMCID: PMC6614072 DOI: 10.5607/en.2019.28.3.337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/30/2019] [Accepted: 06/05/2019] [Indexed: 12/12/2022] Open
Abstract
A number of specific genetic variants including gene mutations and single nucleotide variations have been identified in genomewide association studies of autism spectrum disorder (ASD). ASD phenotypes in individuals carrying specific genetic variations are manifest mostly in a heterozygous state. Furthermore, individuals with most genetic variants show incomplete penetrance and phenotypic variability, suggesting that non-genetic factors are also involved in developing ASD. However, the mechanisms of how genetic and environmental factors interactively promote ASD are not clearly understood. In the present study, we investigated whether early-life stress (ELS) in D2 dopamine receptor heterozygous knockout (D2+/−) mice induces ASD-like symptoms. To address that, we exposed D2 heterozygous pups to maternal separation stress for 3 h daily for 13 days beginning on postnatal day 2. D2+/− adult mice that had experienced ELS exhibited impaired sociability in the three-chamber test and home-cage social interaction test and increased grooming behavior, whereas wildtype littermates exposed to ELS did not show those phenotypes. ELS-exposed D2+/− mice had decreased levels of BDNF, TrkB, phospho-ERK1/2 and phospho-CREB in the dorsal striatum. Administration of the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) to ELS-exposed D2+/− mice rescued the sociability deficits and repetitive behavior. In contrast, behavioral rescue by 7,8-DHF in ELS-exposed D2+/− mice was blocked when TrkB expression in the dorsal striatum was locally inhibited by the injection of TrkB-siRNA. Together, our results suggest that the interaction between ELS and defective D2 gene function promotes autistic-like behaviors by downregulating the BDNF-TrkB pathway in the dorsal striatum.
Collapse
Affiliation(s)
- Yunjin Lee
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul 03760, Korea.,Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Zhang X, Piano I, Messina A, D'Antongiovanni V, Crò F, Provenzano G, Bozzi Y, Gargini C, Casarosa S. Retinal defects in mice lacking the autism-associated gene Engrailed-2. Neuroscience 2019; 408:177-190. [DOI: 10.1016/j.neuroscience.2019.03.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/26/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|