1
|
Li L, Chen J, Li YQ. The Downregulation of Opioid Receptors and Neuropathic Pain. Int J Mol Sci 2023; 24:ijms24065981. [PMID: 36983055 PMCID: PMC10053236 DOI: 10.3390/ijms24065981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Neuropathic pain (NP) refers to pain caused by primary or secondary damage or dysfunction of the peripheral or central nervous system, which seriously affects the physical and mental health of 7-10% of the general population. The etiology and pathogenesis of NP are complex; as such, NP has been a hot topic in clinical medicine and basic research for a long time, with researchers aiming to find a cure by studying it. Opioids are the most commonly used painkillers in clinical practice but are regarded as third-line drugs for NP in various guidelines due to the low efficacy caused by the imbalance of opioid receptor internalization and their possible side effects. Therefore, this literature review aims to evaluate the role of the downregulation of opioid receptors in the development of NP from the perspective of dorsal root ganglion, spinal cord, and supraspinal regions. We also discuss the reasons for the poor efficacy of opioids, given the commonness of opioid tolerance caused by NP and/or repeated opioid treatments, an angle that has received little attention to date; in-depth understanding might provide a new method for the treatment of NP.
Collapse
Affiliation(s)
- Lin Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Jing Chen
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| | - Yun-Qing Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Anatomy, Histology and Embryology and K. K. Leung Brain Research Centre, The Fourth Military Medical University, No. 169, West Changle Road, Xi'an 710032, China
| |
Collapse
|
2
|
Ciapała K, Pawlik K, Ciechanowska A, Mika J, Rojewska E. Effect of pharmacological modulation of the kynurenine pathway on pain-related behavior and opioid analgesia in a mouse model of neuropathic pain. Toxicol Appl Pharmacol 2023; 461:116382. [PMID: 36681127 DOI: 10.1016/j.taap.2023.116382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/26/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
Dysfunction of the central nervous system are accompanied by changes in tryptophan metabolism, with the kynurenine pathway (KP) being the main route of its catabolism. Recently, KP metabolites, which are collectively called kynurenines, have become an area of intense research due to their ability to directly and indirectly affect a variety of classic neurotransmitter systems. However, the significance of KP in neuropathic pain is still poorly understood. Therefore, we designed several experiments to verify changes in the mRNA levels of KP enzymes in parallel with other factors related to this metabolic route after chronic constriction injury of the sciatic nerve (CCI model) in mice. The analysis revealed an increase in, Kmo, Kynu and Haoo mRNA levels in the spinal cord on the 7th day after CCI, while Kat1, Kat2, Tdo2, Ido2 and Qprt mRNA levels remain unchanged. Subsequent pharmacological studies provided evidence that modulation of KP by single intrathecal administration of 1-D-MT, UPF468 or L-kynurenine attenuates mechanical and thermal hypersensitivity and increases the effectiveness of selected opioids in mice as measured on day 7 after CCI. Moreover, our results provide the first evidence that the injection of L-kynurenine preceded by UPF468 (KMO inhibitor) is more effective at reducing hypersensitivity in animals with neuropathic pain. Importantly, L-kynurenine also exerts an analgesic effect after intravenous injections, which is enhanced by the administration of minocycline, an inhibitor of microglial activation. Additionally, L-kynurenine administered intrathecally and intravenously enhances analgesia evoked by all tested opioids (morphine, buprenorphine and oxycodone). Overall, our results indicate that the modulation of KP at different levels might be a new pharmacological tool in neuropathy management.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Agata Ciechanowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewelina Rojewska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
3
|
Kaur S, Bali A, Singh N, Jaggi AS. Demystifying the dual role of the angiotensin system in neuropathic pain. Neuropeptides 2022; 94:102260. [PMID: 35660757 DOI: 10.1016/j.npep.2022.102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/04/2022] [Accepted: 05/22/2022] [Indexed: 11/18/2022]
Abstract
Neuropathic Pain is caused by damage to a nerve or disease of the somatosensory nervous system. Apart from the blood pressure regulating actions of angiotensin ligands, studies have shown that it also modulates neuropathic pain. In the animal models including surgical, chemotherapeutic, and retroviral-induced neuropathic pain, an increase in the levels of angiotensin II has been identified and it has been proposed that an increase in angiotensin II may participate in the induction of neuropathic pain. The pain-inducing actions of the angiotensin system are primarily due to the activation of AT1 and AT2 receptors, which trigger the diverse molecular mechanisms including the induction of neuroinflammation to initiate and maintain the state of neuropathic pain. On the other hand, the pain attenuating action of the angiotensin system has been attributed to decreasing in the levels of Ang(1-7), and Ang IV and an increase in the levels of bradykinin. Ang(1-7) may attenuate neuropathic pain via activation of the spinal Mas receptor. However, the detailed molecular mechanism involved in Ang(1-7) and Ang IV-mediated pain attenuating actions needs to be explored. The present review discusses the dual role of angiotensin ligands in neuropathic pain along with the possible mechanisms involved in inducing or attenuating the state of neuropathic pain.
Collapse
Affiliation(s)
- Sahibpreet Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India
| | - Anjana Bali
- Department of Pharmacology, Central University of Punjab, Bathinda, India.
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India
| | - Amteshwar Singh Jaggi
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University Patiala, Patiala 147002, India.
| |
Collapse
|
4
|
You HJ, Lei J, Pertovaara A. Thalamus: The 'promoter' of endogenous modulation of pain and potential therapeutic target in pathological pain. Neurosci Biobehav Rev 2022; 139:104745. [PMID: 35716873 DOI: 10.1016/j.neubiorev.2022.104745] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/11/2022] [Indexed: 11/25/2022]
Abstract
More recently, the thalamic mediodorsal (MD) and ventromedial (VM) nuclei have been revealed to be functioned as 'nociceptive discriminator' in discriminating noxious and innocuous peripheral afferents, and exhibits distinct different descending controls of nociception. Of particularly importance, the function of thalamic nuclei in engaging descending modulation of nociception is 'silent' or inactive during the physiological state as well as in condition exposed to insufficient noxious stimulation. Once initiation by sufficient noxious or innocuous C-afferents associated with temporal and spatial summation, the thalamic MD and VM nuclei exhibit salient, different effects: facilitation and inhibition, on noxious mechanically and heat evoked nociception, respectively. Based on series of experimental evidence, we here summarize a novel hypothesis involving thalamic MD and VM nuclei functioned as 'promoter' in initiating descending facilitation and inhibition of pain with specific spatiotemporal characteristics. We further hypothesize that clinical remedy in targeting thalamic VM nucleus by enhancing its activities in recruiting inhibition alone or decreasing thalamic MD nucleus induced facilitation may provide promising way in effectively control of pathological pain.
Collapse
Affiliation(s)
- Hao-Jun You
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China.
| | - Jing Lei
- Center for Translational Medicine Research on Sensory-Motor Diseases, Yan'an University, Yan'an 716000, PR China; Key Laboratory of Yan'an Sports Rehabilitation Medicine, Yan'an 716000, PR China
| | - Antti Pertovaara
- Department of Physiology, Faculty of Medicine, University of Helsinki, POB 63, Helsinki 00014, Finland
| |
Collapse
|
5
|
Best KM, Mojena MM, Barr GA, Schmidt HD, Cohen AS. Endogenous Opioid Dynorphin Is a Potential Link between Traumatic Brain Injury, Chronic Pain, and Substance Use Disorder. J Neurotrauma 2022; 39:1-19. [PMID: 34751584 PMCID: PMC8978570 DOI: 10.1089/neu.2021.0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a serious public health problem associated with numerous physical and neuropsychiatric comorbidities. Chronic pain is prevalent and interferes with post-injury functioning and quality of life, whereas substance use disorder (SUD) is the third most common neuropsychiatric diagnosis after TBI. Neither of these conditions has a clear mechanistic explanation based on the known pathophysiology of TBI. Dynorphin is an endogenous opioid neuropeptide that is significantly dysregulated after TBI. Both dynorphin and its primary receptor, the ĸ-opioid receptor (KOR), are implicated in the neuropathology of chronic pain and SUD. Here, we review the known roles of dynorphin and KORs in chronic pain and SUDs. We synthesize this information with our current understanding of TBI and highlight potential mechanistic parallels between and across conditions that suggest a role for dynorphin in long-term sequelae after TBI. In pain studies, dynorphin/KOR activation has either antinociceptive or pro-nociceptive effects, and there are similarities between the signaling pathways influenced by dynorphin and those underlying development of chronic pain. Moreover, the dynorphin/KOR system is considered a key regulator of the negative affective state that characterizes drug withdrawal and protracted abstinence in SUD, and molecular and neurochemical changes observed during the development of SUD are mirrored by the pathophysiology of TBI. We conclude by proposing hypotheses and directions for future research aimed at elucidating the potential role of dynorphin/KOR in chronic pain and/or SUD after TBI.
Collapse
Affiliation(s)
- Kaitlin M. Best
- Department of Nursing and Clinical Care Services, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marissa M. Mojena
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gordon A. Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Heath D. Schmidt
- Department of Biobehavioral Health Sciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Address correspondence to: Akiva S. Cohen, PhD, Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of Pennsylvania, 3615 Civic Center Boulevard, Room 816-I, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Fang S, Zhong L, Wang AQ, Zhang H, Yin ZS. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 2021; 58:2643-2662. [PMID: 33484404 DOI: 10.1007/s12035-021-02289-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using "batch normalization." The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.
Collapse
Affiliation(s)
- Sheng Fang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Lin Zhong
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
- Department of Orthopedics, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - An-Quan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Hui Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zong-Sheng Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, #218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
7
|
Piotrowska A, Starnowska-Sokół J, Makuch W, Mika J, Witkowska E, Tymecka D, Ignaczak A, Wilenska B, Misicka A, Przewłocka B. Novel bifunctional hybrid compounds designed to enhance the effects of opioids and antagonize the pronociceptive effects of nonopioid peptides as potent analgesics in a rat model of neuropathic pain. Pain 2021; 162:432-445. [PMID: 32826750 PMCID: PMC7808367 DOI: 10.1097/j.pain.0000000000002045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT The purpose of our work was to determine the role of nonopioid peptides derived from opioid prohormones in sensory hypersensitivity characteristics of neuropathic pain and to propose a pharmacological approach to restore the balance of these endogenous opioid systems. Nonopioid peptides may have a pronociceptive effect and therefore contribute to less effective opioid analgesia in neuropathic pain. In our study, we used unilateral chronic constriction injury (CCI) of the sciatic nerve as a neuropathic pain model in rats. We demonstrated the pronociceptive effects of proopiomelanocortin- and proenkephalin-derived nonopioid peptides assessed by von Frey and cold plate tests, 7 to 14 days after injury. The concentration of proenkephalin-derived pronociceptive peptides was increased more robustly than that of Met-enkephalin in the ipsilateral lumbar spinal cord of CCI-exposed rats, as shown by mass spectrometry, and the pronociceptive effect of one of these peptides was blocked by an antagonist of the melanocortin 4 (MC4) receptor. The above results confirm our hypothesis regarding the possibility of creating an analgesic drug for neuropathic pain based on enhancing opioid activity and blocking the pronociceptive effect of nonopioid peptides. We designed and synthesized bifunctional hybrids composed of opioid (OP) receptor agonist and MC4 receptor antagonist (OP-linker-MC4). Moreover, we demonstrated that they have potent and long-lasting antinociceptive effects after a single administration and a delayed development of tolerance compared with morphine after repeated intrathecal administration to rats subjected to CCI. We conclude that the bifunctional hybrids OP-linker-MC4 we propose are important prototypes of drugs for use in neuropathic pain.
Collapse
Affiliation(s)
- Anna Piotrowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Starnowska-Sokół
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewa Witkowska
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Dagmara Tymecka
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Angelika Ignaczak
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Beata Wilenska
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Aleksandra Misicka
- Faculty of Chemistry, Biological, and Chemistry Research Centre, University of Warsaw, Warsaw, Poland
| | - Barbara Przewłocka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| |
Collapse
|
8
|
Multifunctional Opioid-Derived Hybrids in Neuropathic Pain: Preclinical Evidence, Ideas and Challenges. Molecules 2020; 25:molecules25235520. [PMID: 33255641 PMCID: PMC7728063 DOI: 10.3390/molecules25235520] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 12/21/2022] Open
Abstract
When the first- and second-line therapeutics used to treat neuropathic pain (NP) fail to induce efficient analgesia—which is estimated to relate to more than half of the patients—opioid drugs are prescribed. Still, the pathological changes following the nerve tissue injury, i.a. pronociceptive neuropeptide systems activation, oppose the analgesic effects of opiates, enforcing the use of relatively high therapeutic doses in order to obtain satisfying pain relief. In parallel, the repeated use of opioid agonists is associated with burdensome adverse effects due to compensatory mechanisms that arise thereafter. Rational design of hybrid drugs, in which opioid ligands are combined with other pharmacophores that block the antiopioid action of pronociceptive systems, delivers the opportunity to ameliorate the NP-oriented opioid treatment via addressing neuropathological mechanisms shared both by NP and repeated exposition to opioids. Therewith, the new dually acting drugs, tailored for the specificity of NP, can gain in efficacy under nerve injury conditions and have an improved safety profile as compared to selective opioid agonists. The current review presents the latest ideas on opioid-comprising hybrid drugs designed to treat painful neuropathy, with focus on their biological action, as well as limitations and challenges related to this therapeutic approach.
Collapse
|
9
|
Abstract
This paper is the forty-first consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2018 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (2), the roles of these opioid peptides and receptors in pain and analgesia in animals (3) and humans (4), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (5), opioid peptide and receptor involvement in tolerance and dependence (6), stress and social status (7), learning and memory (8), eating and drinking (9), drug abuse and alcohol (10), sexual activity and hormones, pregnancy, development and endocrinology (11), mental illness and mood (12), seizures and neurologic disorders (13), electrical-related activity and neurophysiology (14), general activity and locomotion (15), gastrointestinal, renal and hepatic functions (16), cardiovascular responses (17), respiration and thermoregulation (18), and immunological responses (19).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY, 11367, United States.
| |
Collapse
|
10
|
Bioinformatics Analysis of Genes and Mechanisms in Postherpetic Neuralgia. Pain Res Manag 2020; 2020:1380504. [PMID: 33029266 PMCID: PMC7532419 DOI: 10.1155/2020/1380504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/29/2020] [Indexed: 01/03/2023]
Abstract
Objective Elderly patients are prone to postherpetic neuralgia (PHN), which may cause anxiety, depression, and sleep disorders and reduce quality of life. As a result, the life quality of patients was seriously reduced. However, the pathogenesis of PHN has not been fully elucidated, and current treatments remain inadequate. Therefore, it is important to explore the molecular mechanism of PHN. Methods We analyzed the GSE64345 dataset, which includes gene expression from the ipsilateral dorsal root ganglia (DRG) of PHN model rats. Differentially expressed genes (DEGs) were identified and analyzed by Gene Ontology. Protein-protein interaction (PPI) network was constructed. The miRNA associated with neuropathic pain and inflammation was found in miRNet. Hub genes were identified and analyzed in Comparative Toxicogenomics Database (CTD). miRNA-mRNA networks associated with PHN were constructed. Results A total of 116 genes were up-regulated in the DRG of PHN rats, and 135 genes were down-regulated. Functional analysis revealed that variations were predominantly enriched for genes involved in neuroactive ligand-receptor interactions, the Jak-STAT signaling pathway, and calcium channel activity. Eleven and thirty-one miRNAs associated with neuropathic pain and inflammation, respectively, were found. Eight hub genes (S1PR1, OPRM1, PDYN, CXCL3, S1PR5, TBX5, TNNI3, MYL7, PTGDR2, and FBXW2) associated with PHN were identified. Conclusions Bioinformatics analysis is a useful tool to explore the mechanism and pathogenesis of PHN. The identified hub genes may participate in the onset and development of PHN and serve as therapeutic targets.
Collapse
|
11
|
Llorca-Torralba M, Pilar-Cuéllar F, da Silva Borges G, Mico JA, Berrocoso E. Opioid receptors mRNAs expression and opioids agonist-dependent G-protein activation in the rat brain following neuropathy. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109857. [PMID: 31904442 DOI: 10.1016/j.pnpbp.2019.109857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/24/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Potent opioid-based therapies are often unsuccessful in promoting satisfactory analgesia in neuropathic pain. Moreover, the side effects associated with opioid therapy are still manifested in neuropathy-like diseases, including tolerance, abuse, addiction and hyperalgesia, although the mechanisms underlying these effects remain unclear. Studies in the spinal cord and periphery indicate that neuropathy alters the expression of mu-[MOP], delta-[DOP] or kappa-[KOP] opioid receptors, interfering with their activity. However, there is no consensus as to the supraspinal opioidergic modulation provoked by neuropathy, the structures where the sensory and affective-related pain components are processed. In this study we explored the effect of chronic constriction of the sciatic nerve (CCI) over 7 and 30 days (CCI-7d and CCI-30d, respectively) on MOP, DOP and KOP mRNAs expression, using in situ hybridization, and the efficacy of G-protein stimulation by DAMGO, DPDPE and U-69593 (MOP, DOP and KOP specific agonists, respectively), using [35S]GTPγS binding, within opioid-sensitive brain structures. After CCI-7d, CCI-30d or both, opioid receptor mRNAs expression was altered throughout the brain: MOP - in the paracentral/centrolateral thalamic nuclei, ventral posteromedial thalamic nuclei, superior olivary complex, parabrachial nucleus [PB] and posterodorsal tegmental nucleus; DOP - in the somatosensory cortex [SSC], ventral tegmental area, caudate putamen [CPu], nucleus accumbens [NAcc], raphe magnus [RMg] and PB; and KOP - in the locus coeruleus. Agonist-stimulated [35S]GTPγS binding was altered following CCI: MOP - CPu and RMg; DOP - prefrontal cortex [PFC], SSC, RMg and NAcc; and KOP - PFC and SSC. Thus, this study shows that several opioidergic circuits in the brain are recruited and modified following neuropathy.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Fuencisla Pilar-Cuéllar
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | | | - Juan A Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain; Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain
| | - Esther Berrocoso
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain; Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of Cádiz, Cádiz, Spain; Neuropsychopharmacology and Psychobiology Research Group, Department of Psychology, University of Cádiz, Cádiz, Spain.
| |
Collapse
|
12
|
Neuropathic Pain Dysregulates Gene Expression of the Forebrain Opioid and Dopamine Systems. Neurotox Res 2020; 37:800-814. [PMID: 32026358 PMCID: PMC7085470 DOI: 10.1007/s12640-020-00166-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/23/2022]
Abstract
Disturbances in the function of the mesostriatal dopamine system may contribute to the development and maintenance of chronic pain, including its sensory and emotional/cognitive aspects. In the present study, we assessed the influence of chronic constriction injury (CCI) of the sciatic nerve on the expression of genes coding for dopamine and opioid receptors as well as opioid propeptides in the mouse mesostriatal system, particularly in the nucleus accumbens. We demonstrated bilateral increases in mRNA levels of the dopamine D1 and D2 receptors (the latter accompanied by elevated protein level), opioid propeptides proenkephalin and prodynorphin, as well as delta and kappa (but not mu) opioid receptors in the nucleus accumbens at 7 to 14 days after CCI. These results show that CCI-induced neuropathic pain is accompanied by a major transcriptional dysregulation of molecules involved in dopaminergic and opioidergic signaling in the striatum/nucleus accumbens. Possible functional consequences of these changes include opposite effects of upregulated enkephalin/delta opioid receptor signaling vs. dynorphin/kappa opioid receptor signaling, with the former most likely having an analgesic effect and the latter exacerbating pain and contributing to pain-related negative emotional states.
Collapse
|