1
|
Giraud M, Javadi AH, Lenatti C, Allen J, Tamè L, Nava E. The role of the somatosensory system in the feeling of emotions: a neurostimulation study. Soc Cogn Affect Neurosci 2024; 19:nsae062. [PMID: 39275796 PMCID: PMC11488518 DOI: 10.1093/scan/nsae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta, and sham) while participants saw emotional stimuli with different degrees of pleasantness and levels of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant versus unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions-arousal and valence-corroborating the view of a dissociation between these two dimensions of emotions.
Collapse
Affiliation(s)
- Michelle Giraud
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| | - Amir-Homayoun Javadi
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
- School of Rehabilitation, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Carmen Lenatti
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - John Allen
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Luigi Tamè
- School of Psychology, University of Kent, Canterbury CT2 7NZ, United Kingdom
| | - Elena Nava
- Department of Psychology, University of Milano-Bicocca, Milano 20126, Italy
- Psychology Department and NeuroMi, Milan Centre of Neuroscience, University of Milano-Bicocca, Milan 20126, Italy
| |
Collapse
|
2
|
Kipping M, Mai-Lippold SA, Herbert BM, Desdentado L, Kammer T, Pollatos O. Insights into interoceptive and emotional processing: Lessons from studies on insular HD-tDCS. Psychophysiology 2024; 61:e14639. [PMID: 38946148 DOI: 10.1111/psyp.14639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 05/03/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Interoception, the processing of internal bodily signals, is proposed as the fundamental mechanism underlying emotional experiences. Interoceptive and emotional processing appear distorted in psychiatric disorders. However, our understanding of the neural structures involved in both processes remains limited. To explore the feasibility of enhancing interoception and emotion, we conducted two studies using high-definition transcranial direct current stimulation (HD-tDCS) applied to the right anterior insula. In study one, we compared the effects of anodal HD-tDCS and sham tDCS on interoceptive abilities (sensibility, confidence, accuracy, emotional evaluation) in 52 healthy subjects. Study two additionally included physical activation through ergometer cycling at the beginning of HD-tDCS and examined changes in interoceptive and emotional processing in 39 healthy adults. In both studies, HD-tDCS was applied in a single-blind cross-over online design with two separate sessions. Study one yielded no significant effects of HD-tDCS on interoceptive dimensions. In study two, significant improvements in interoceptive sensibility and confidence were observed over time with physical preactivation, while no differential effects were found between sham and insula stimulation. The expected enhancement of interoceptive and emotional processing following insula stimulation was not observed. We conclude that HD-tDCS targeting the insula does not consistently increase interoceptive or emotional variables. The observed increase in interoceptive sensibility may be attributed to the activation of the interoceptive network through physical activity or training effects. Future research on HD-tDCS involving interoceptive network structures could benefit from protocols targeting larger regions within the network, rather than focusing solely on insula stimulation.
Collapse
Affiliation(s)
- Miriam Kipping
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Beate M Herbert
- Biological Psychology and Experimental Psychopathology, Charlotte-Fresenius-University, Munich, Germany
- Department Psychology, Clinical Psychology and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Lorena Desdentado
- Polibienestar Research Institute, University of Valencia, Valencia, Spain
- CIBER of Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Thomas Kammer
- Section for Neurostimulation, Department of Psychiatry, Ulm University, Ulm, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| |
Collapse
|
3
|
Feldman MJ, Bliss-Moreau E, Lindquist KA. The neurobiology of interoception and affect. Trends Cogn Sci 2024; 28:643-661. [PMID: 38395706 PMCID: PMC11222051 DOI: 10.1016/j.tics.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Scholars have argued for centuries that affective states involve interoception, or representations of the state of the body. Yet, we lack a mechanistic understanding of how signals from the body are transduced, transmitted, compressed, and integrated by the brains of humans to produce affective states. We suggest that to understand how the body contributes to affect, we first need to understand information flow through the nervous system's interoceptive pathways. We outline such a model and discuss how unique anatomical and physiological aspects of interoceptive pathways may give rise to the qualities of affective experiences in general and valence and arousal in particular. We conclude by considering implications and future directions for research on interoception, affect, emotions, and human mental experiences.
Collapse
Affiliation(s)
- M J Feldman
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - E Bliss-Moreau
- Department of Psychology, University of California Davis, Davis, CA, USA; California National Primate Research Center, University of California Davis, Davis, CA, USA
| | - K A Lindquist
- Department of Psychology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Mai-Lippold SA, Schultze J, Pollatos O. Interoceptive abilities impairment correlates with emotional eating and taste abnormalities in children with overweight and obesity. Appetite 2024; 194:107182. [PMID: 38154574 DOI: 10.1016/j.appet.2023.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Weight problems in children are associated with emotional eating, which has been linked to interoceptive abilities. Previous research also shows altered olfactory and gustatory perception in children with obesity and overweight. Therefore, we aimed to investigate the connection of alterations in olfactory and gustatory perception to interoceptive abilities and emotional eating among children with obesity and overweight. 23 children with overweight and obesity and age-matched controls with normal weight (12-16 years old) underwent olfactory and gustatory testing. Interoceptive abilities were assessed, focusing on interoceptive accuracy and interoceptive sensibility. Children with overweight and obesity showed significantly higher accuracy for detection of sweet taste, but descriptively lower accuracy for all other taste qualities compared to normal weight children. We found no changes in olfactory abilities in children with overweight and obesity. Emotional eating scores were elevated for children with overweight and obesity, and interoceptive accuracy scores were significantly lower. In both groups, interoceptive accuracy was inversely correlated with emotional eating. Our results support prior findings of altered gustatory abilities in children with overweight and obesity. The observed link between impaired interoceptive processes and heightened emotional eating in this group implies that interventions for overweight in children could benefit from targeting interoceptive abilities. This study provides meaningful grounds for further investigations into the roles of taste, emotional eating, and interoceptive abilities for overweight in children and adolescents.
Collapse
Affiliation(s)
- Sandra A Mai-Lippold
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany
| | - Jasmin Schultze
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany
| | - Olga Pollatos
- Clinical and Health Psychology, Institute of Psychology, Ulm University, Germany.
| |
Collapse
|
5
|
Liu H, Liang H, Yu X, Wang G, Han Y, Yan M, Li S, Wang W. Enhanced external counterpulsation modulates the heartbeat evoked potential. Front Physiol 2023; 14:1144073. [PMID: 37078023 PMCID: PMC10106756 DOI: 10.3389/fphys.2023.1144073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
Introduction: Accumulating evidence suggests that enhanced external counterpulsation (EECP) influences cardiac functions, hemodynamic characteristics and cerebral blood flow. However, little is known about whether or how the EECP affects the brain-heart coupling to produce these physiological and functional changes. We aimed to determine if the brain-heart coupling is altered during or after EECP intervention by assessing the heartbeat evoked potential (HEP) in healthy adults.Methods: Based on a random sham-controlled design, simultaneous electroencephalography and electrocardiography signals as well as blood pressure and flow status data were recorded before, during and after two consecutive 30-min EECP in 40 healthy adults (female/male: 17/23; age: 23.1 ± 2.3 years). HEP amplitude, frequency domain heart rate variability, electroencephalographic power and hemodynamic measurements of 21 subjects (female/male: 10/11; age: 22.7 ± 2.1 years) receiving active EECP were calculated and compared with those of 19 sham control subjects (female/male: 7/12; age: 23.6 ± 2.5 years).Results: EECP intervention caused immediate obvious fluctuations of HEP from 100 to 400 ms after T-peak and increased HEP amplitudes in the (155–169) ms, (354–389) ms and (367–387) ms time windows after T-peak in the region of the frontal pole lobe. The modifications in HEP amplitude were not associated with changes in the analyzed significant physiological measurements and hemodynamic variables.Discussion: Our study provides evidence that the HEP is modulated by immediate EECP stimuli. We speculate that the increased HEP induced by EECP may be a marker of enhanced brain-heart coupling. HEP may serve as a candidate biomarker for the effects and responsiveness to EECP.
Collapse
Affiliation(s)
- Hongyun Liu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Hongyun Liu, ; Muyang Yan, ; Shijun Li, ; Weidong Wang,
| | - Hui Liang
- Department of Hyperbaric Oxygen, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaohua Yu
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Guojing Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Yi Han
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
| | - Muyang Yan
- Department of Hyperbaric Oxygen, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Hongyun Liu, ; Muyang Yan, ; Shijun Li, ; Weidong Wang,
| | - Shijun Li
- Department of Diagnostic Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Hongyun Liu, ; Muyang Yan, ; Shijun Li, ; Weidong Wang,
| | - Weidong Wang
- Research Center for Biomedical Engineering, Medical Innovation Research Division, Chinese PLA General Hospital, Beijing, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing, China
- *Correspondence: Hongyun Liu, ; Muyang Yan, ; Shijun Li, ; Weidong Wang,
| |
Collapse
|
6
|
Aksu S, Soyata AZ, Mursalova Z, Eskicioğlu G, Tükel R. Transcranial direct current stimulation does not improve clinical and neurophysiological outcomes in panic disorder: A randomized sham-controlled trial. Psychiatry Clin Neurosci 2022; 76:384-392. [PMID: 35587504 DOI: 10.1111/pcn.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/08/2022] [Accepted: 05/16/2022] [Indexed: 11/28/2022]
Abstract
AIM Emerging evidence suggests that transcranial direct current stimulation (tDCS) has anxiolytic effects and may enhance emotional processing of threat and reduce threat-related attentional bias. Panic disorder (PD) is considered to be a fear network disorder along with prefrontal activity alterations. We aim to assess the effect of tDCS on clinical and physiological parameters in PD for the first time. METHODS In this triple-blind randomized sham-controlled pilot study, 30 individuals with PD were allocated into active and sham groups to receive 10 sessions of tDCS targeting the dorsolateral prefrontal cortex bilaterally at 2 mA for 20-min duration over 2 weeks. The clinical severity, threat-related attentional bias, interoceptive accuracy, and emotional recognition were assessed before, immediately after, and 1 month after tDCS. RESULTS Active tDCS, in comparison to sham, did not elicit more favorable clinical and neuropsychological/physiological outcomes in PD. CONCLUSION The present study provides the first clinical and neurobehavioral results of prefrontal tDCS in PD and indicates that prefrontal tDCS was not superior to sham in PD.
Collapse
Affiliation(s)
- Serkan Aksu
- Department of Physiology, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey.,Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | | | - Zhala Mursalova
- Department of Psychiatry, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Gaye Eskicioğlu
- Department of Psychology, Istanbul University, Istanbul, Turkey
| | - Raşit Tükel
- Department of Psychiatry, Istanbul University, Istanbul Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
7
|
Neacsiu AD, Beynel L, Graner JL, Szabo ST, Appelbaum LG, Smoski MJ, LaBar KS. Enhancing cognitive restructuring with concurrent fMRI-guided neurostimulation for emotional dysregulation-A randomized controlled trial. J Affect Disord 2022; 301:378-389. [PMID: 35038479 PMCID: PMC9937022 DOI: 10.1016/j.jad.2022.01.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Transdiagnostic clinical emotional dysregulation is a key component of many mental health disorders and offers an avenue to address multiple disorders with one transdiagnostic treatment. In the current study, we pilot an intervention that combines a one-time teaching and practice of cognitive restructuring (CR) with repetitive transcranial magnetic stimulation (rTMS), targeted based on functional magnetic resonance imaging (fMRI). METHODS Thirty-seven clinical adults who self-reported high emotional dysregulation were enrolled in this randomized, double-blind, placebo-controlled trial. fMRI was collected as participants were reminded of lifetime stressors and asked to downregulate their distress using CR tactics. fMRI BOLD data were analyzed to identify the cluster of voxels within the left dorsolateral prefrontal cortex (dlPFC) with the highest activation when participants attempted to downregulate, versus passively remember, distressing memories. Participants underwent active or sham rTMS (10 Hz) over the left dlPFC target while practicing CR following emotional induction using recent autobiographical stressors. RESULTS Receiving active versus sham rTMS led to significantly higher high frequency heart rate variability during regulation, lower regulation duration during the intervention, and higher likelihood to use CR during the week following the intervention. There were no differences between conditions when administering neurostimulation alone without the CR skill and compared to sham. Participants in the sham versus active condition experienced less distress the week after the intervention. There were no differences between conditions at the one-month follow up. CONCLUSION This study demonstrated that combining active rTMS with emotion regulation training for one session significantly enhances emotion regulation and augments the impact of training for as long as a week. These findings are a promising step towards a combined intervention for transdiagnostic emotion dysregulation.
Collapse
|
8
|
Lateralized deficits in arousal processing after insula lesions: Behavioral and autonomic evidence. Cortex 2022; 148:168-179. [DOI: 10.1016/j.cortex.2021.12.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
|
9
|
Dysconnectivity of a brain functional network was associated with blood inflammatory markers in depression. Brain Behav Immun 2021; 98:299-309. [PMID: 34450247 DOI: 10.1016/j.bbi.2021.08.226] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE There is increasing evidence for a subgroup of major depressive disorder (MDD) associated with heightened peripheral blood inflammatory markers. In this study, we aimed to understand the mechanistic brain-immune axis in inflammation-linked depression by investigating associations between functional connectivity (FC) of brain networks and peripheral blood immune markers in depression. METHODS Resting-state functional magnetic resonance imaging (fMRI) and peripheral blood inflammatory markers (C-reactive protein; CRP, interleukin-6; IL-6 and immune cells) were collected on N = 46 healthy controls (HC; CRP ≤ 3 mg/L) and N = 83 cases of depression, stratified further into low CRP cases (loCRP cases; ≤ 3 mg/L; N = 50) and high CRP cases (hiCRP cases; > 3 mg/L; N = 33). In a two-part analysis, network-based statistics (NBS) was firstly used to ascertain whole-brain FC differences in HC vs hiCRP cases. Secondly, we investigated the association between this network of interconnected brain regions and continuous measures of peripheral CRP (N = 83), IL-6 (N = 72), neutrophils and CD4+ T-cells (N = 36) in depression cases only. RESULTS Case-control NBS testing revealed a single network of abnormally attenuated FC in the high CRP depression cases compared to healthy controls. Connections within this network were mainly between brain regions located in the left insula/frontal operculum and posterior cingulate cortex, which were assigned to ventral attention and default mode canonical fMRI networks respectively. Within-group analysis across all depression cases, secondarily demonstrated that FC within the identified network significantly negatively scaled with CRP, IL-6 and neutrophils. CONCLUSIONS The findings suggest that inflammation is associated with disruption of functional connectivity within a brain network deemed critical for interoceptive signalling, e.g. accurate communication of peripheral bodily signals such as immune states to the brain, with implications for the pathogenesis of inflammation-linked depression.
Collapse
|
10
|
Kershner JR. Multisensory deficits in dyslexia may result from a locus coeruleus attentional network dysfunction. Neuropsychologia 2021; 161:108023. [PMID: 34530025 DOI: 10.1016/j.neuropsychologia.2021.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
A fundamental educational requirement of beginning reading is to learn, access, and rapidly process associations between novel visuospatial symbols and their phonological representations in speech. Children with difficulties in such cross-modal integration are often divided into dyslexia subtypes, based on whether their primary problem is with the written or spoken component of decoding. The present review suggests that starting in infancy, perceptions of audiovisual speech are integrated by mutual oscillatory phase-resetting between sensory cortices, and throughout development visual and auditory experiences are coupled into unified perceptions. Entirely separate subtypes are incompatible with this view. Visual or auditory deficits will invariably affect processing to some degree in both domains. It is suggested that poor auditory/visual integration may be diagnostic for both forms of dyslexia, stemming from an encoding weakness in the early cross-sensory binding of audiovisual speech. The review presents a model of dyslexia as a dysfunction of the large-scale ventral and dorsal attention networks controlling such binding. Excessive glutamatergic neuronal excitability of the attention networks by the Locus coeruleus-norepinephrine system may interfere with multisensory integration, with deleterious effects on the acquisition of reading by degrading graphene/phoneme conversion.
Collapse
Affiliation(s)
- John R Kershner
- Dept. of Applied Psychology and Human Resources University of Toronto, ON, M5S 1A1, Canada.
| |
Collapse
|
11
|
Andò A, Vasilotta ML, Zennaro A. The modulation of emotional awareness using non-invasive brain stimulation techniques: a literature review on TMS and tDCS. JOURNAL OF COGNITIVE PSYCHOLOGY 2021. [DOI: 10.1080/20445911.2021.1954013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Agata Andò
- Department of Psychology, University of Turin, Turin, Italy
| | | | | |
Collapse
|
12
|
Developmental Dyslexia: Environment Matters. Brain Sci 2021; 11:brainsci11060782. [PMID: 34199166 PMCID: PMC8231524 DOI: 10.3390/brainsci11060782] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Developmental dyslexia (DD) is a multifactorial, specific learning disorder. Susceptibility genes have been identified, but there is growing evidence that environmental factors, and especially stress, may act as triggering factors that determine an individual's risk of developing DD. In DD, as in most complex phenotypes, the presence of a genetic mutation fails to explain the broad phenotypic spectrum observed. Early life stress has been repeatedly associated with the risk of multifactorial disorders, due to its effects on chromatin regulation, gene expression, HPA axis function and its long-term effects on the systemic stress response. Based on recent evidence, we discuss the potential role of stress on DD occurrence, its putative epigenetic effects on the HPA axis of affected individuals, as well as the necessity of early and appropriate intervention, based on the individual stress-associated (endo)phenotype.
Collapse
|
13
|
Salamone PC, Legaz A, Sedeño L, Moguilner S, Fraile-Vazquez M, Campo CG, Fittipaldi S, Yoris A, Miranda M, Birba A, Galiani A, Abrevaya S, Neely A, Caro MM, Alifano F, Villagra R, Anunziata F, Okada de Oliveira M, Pautassi RM, Slachevsky A, Serrano C, García AM, Ibañez A. Interoception Primes Emotional Processing: Multimodal Evidence from Neurodegeneration. J Neurosci 2021; 41:4276-4292. [PMID: 33827935 PMCID: PMC8143206 DOI: 10.1523/jneurosci.2578-20.2021] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Recent frameworks in cognitive neuroscience and behavioral neurology underscore interoceptive priors as core modulators of negative emotions. However, the field lacks experimental designs manipulating the priming of emotions via interoception and exploring their multimodal signatures in neurodegenerative models. Here, we designed a novel task that involves interoceptive and control-exteroceptive priming conditions followed by post-interoception and post-exteroception facial emotion recognition (FER). We recruited 114 participants, including healthy controls (HCs) as well as patients with behavioral variant frontotemporal dementia (bvFTD), Parkinson's disease (PD), and Alzheimer's disease (AD). We measured online EEG modulations of the heart-evoked potential (HEP), and associations with both brain structural and resting-state functional connectivity patterns. Behaviorally, post-interoception negative FER was enhanced in HCs but selectively disrupted in bvFTD and PD, with AD presenting generalized disruptions across emotion types. Only bvFTD presented impaired interoceptive accuracy. Increased HEP modulations during post-interoception negative FER was observed in HCs and AD, but not in bvFTD or PD patients. Across all groups, post-interoception negative FER correlated with the volume of the insula and the ACC. Also, negative FER was associated with functional connectivity along the (a) salience network in the post-interoception condition, and along the (b) executive network in the post-exteroception condition. These patterns were selectively disrupted in bvFTD (a) and PD (b), respectively. Our approach underscores the multidimensional impact of interoception on emotion, while revealing a specific pathophysiological marker of bvFTD. These findings inform a promising theoretical and clinical agenda in the fields of nteroception, emotion, allostasis, and neurodegeneration.SIGNIFICANCE STATEMENT We examined whether and how emotions are primed by interoceptive states combining multimodal measures in healthy controls and neurodegenerative models. In controls, negative emotion recognition and ongoing HEP modulations were increased after interoception. These patterns were selectively disrupted in patients with atrophy across key interoceptive-emotional regions (e.g., the insula and the cingulate in frontotemporal dementia, frontostriatal networks in Parkinson's disease), whereas persons with Alzheimer's disease presented generalized emotional processing abnormalities with preserved interoceptive mechanisms. The integration of both domains was associated with the volume and connectivity (salience network) of canonical interoceptive-emotional hubs, critically involving the insula and the anterior cingulate. Our study reveals multimodal markers of interoceptive-emotional priming, laying the groundwork for new agendas in cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Paula C Salamone
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Agustina Legaz
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sebastián Moguilner
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Nuclear Medicine School Foundation, National Commission of Atomic Energy, Mendoza, Argentina
| | | | - Cecilia Gonzalez Campo
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Sol Fittipaldi
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adrián Yoris
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Magdalena Miranda
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Agustina Birba
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agostina Galiani
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Sofía Abrevaya
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Alejandra Neely
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| | - Miguel Martorell Caro
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Florencia Alifano
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Institute of Cognitive and Translational Neuroscience, INECO Foundation, Favaloro University, CONICET, Buenos Aires, Argentina
| | - Roque Villagra
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
| | - Florencia Anunziata
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Maira Okada de Oliveira
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Department of Neurology, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP Brazil
- Department of Neurology, Hospital Santa Marcelina, Sao Paulo, SP Brazil
| | - Ricardo M Pautassi
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación Médica M. y M. Ferreyra, INIMEC-CONICET-UNC, Córdoba, Argentina
| | - Andrea Slachevsky
- Memory and Neuropsychiatric Clinic, Neurology Department, Hospital del Salvador, SSMO & Faculty of Medicine, University of Chile, Santiago, Chile
- Gerosciences Center for Brain Health and Metabolism, Santiago, Chile
- Neuropsychology and Clinical Neuroscience Laboratory, Physiopathology Department, ICBM, Neurosciences Department, Faculty of Medicine, University of Chile, Santiago, Chile
- Servicio de Neurología, Departamento de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Cecilia Serrano
- Neurología Cognitiva, Hospital Cesar Milstein, Buenos Aires, Argentina
| | - Adolfo M García
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Faculty of Education, National University of Cuyo, Mendoza, M5502JMA, Argentina
- Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Agustín Ibañez
- Cognitive Neuroscience Center, Universidad de San Andrés, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
- Global Brain Health Institute, University of California-San Francisco, San Francisco, California, and Trinity College Dublin, Dublin, Ireland
- Latin American Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile
| |
Collapse
|
14
|
Goldsworthy MR, Hordacre B, Rothwell JC, Ridding MC. Effects of rTMS on the brain: is there value in variability? Cortex 2021; 139:43-59. [PMID: 33827037 DOI: 10.1016/j.cortex.2021.02.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/16/2021] [Accepted: 02/26/2021] [Indexed: 01/02/2023]
Abstract
The ability of repetitive transcranial magnetic stimulation (rTMS) to non-invasively induce neuroplasticity in the human cortex has opened exciting possibilities for its application in both basic and clinical research. Changes in the amplitude of motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation has so far provided a convenient model for exploring the neurophysiology of rTMS effects on the brain, influencing the ways in which these stimulation protocols have been applied therapeutically. However, a growing number of studies have reported large inter-individual variability in the mean MEP response to rTMS, raising legitimate questions about the usefulness of this model for guiding therapy. Although the increasing application of different neuroimaging approaches has made it possible to probe rTMS-induced neuroplasticity outside the motor cortex to measure changes in neural activity that impact other aspects of human behaviour, the high variability of rTMS effects on these measurements remains an important issue for the field to address. In this review, we seek to move away from the conventional facilitation/inhibition dichotomy that permeates much of the rTMS literature, presenting a non-standard approach for measuring rTMS-induced neuroplasticity. We consider the evidence that rTMS is able to modulate an individual's moment-to-moment variability of neural activity, and whether this could have implications for guiding the therapeutic application of rTMS.
Collapse
Affiliation(s)
- Mitchell R Goldsworthy
- Lifespan Human Neurophysiology Group, Adelaide Medical School, University of Adelaide, Adelaide, Australia; Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia; Discipline of Psychiatry, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Brenton Hordacre
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Michael C Ridding
- Innovation, IMPlementation and Clinical Translation (IIMPACT) in Health, University of South Australia, Adelaide, Australia
| |
Collapse
|
15
|
Kershner JR. An Evolutionary Perspective of Dyslexia, Stress, and Brain Network Homeostasis. Front Hum Neurosci 2021; 14:575546. [PMID: 33551772 PMCID: PMC7859477 DOI: 10.3389/fnhum.2020.575546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Evolution fuels interindividual variability in neuroplasticity, reflected in brain anatomy and functional connectivity of the expanding neocortical regions subserving reading ability. Such variability is orchestrated by an evolutionarily conserved, competitive balance between epigenetic, stress-induced, and cognitive-growth gene expression programs. An evolutionary developmental model of dyslexia, suggests that prenatal and childhood subclinical stress becomes a risk factor for dyslexia when physiological adaptations to stress promoting adaptive fitness, may attenuate neuroplasticity in the brain regions recruited for reading. Stress has the potential to blunt the cognitive-growth functions of the predominantly right hemisphere Ventral and Dorsal attention networks, which are primed with high entropic levels of synaptic plasticity, and are critical for acquiring beginning reading skills. The attentional networks, in collaboration with the stress-responsive Default Mode network, modulate the entrainment and processing of the low frequency auditory oscillations (1-8 Hz) and visuospatial orienting linked etiologically to dyslexia. Thus, dyslexia may result from positive, but costly adaptations to stress system dysregulation: protective measures that reset the stress/growth balance of processing to favor the Default Mode network, compromising development of the attentional networks. Such a normal-variability conceptualization of dyslexia is at odds with the frequent assumption that dyslexia results from a neurological abnormality. To put the normal-variability model in the broader perspective of the state of the field, a traditional evolutionary account of dyslexia is presented to stimulate discussion of the scientific merits of the two approaches.
Collapse
Affiliation(s)
- John R. Kershner
- Department of Applied Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Penton T, Catmur C, Banissy MJ, Bird G, Walsh V. Non-invasive stimulation in the social brain: the methodological challenges. Soc Cogn Affect Neurosci 2020; 17:15-25. [PMID: 32734295 PMCID: PMC9083106 DOI: 10.1093/scan/nsaa102] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 11/15/2022] Open
Abstract
Use of non-invasive brain stimulation methods (NIBS) has become a common approach to study social processing in addition to behavioural, imaging and lesion studies. However, research using NIBS to investigate social processing faces challenges. Overcoming these is important to allow valid and reliable interpretation of findings in neurotypical cohorts, but also to allow us to tailor NIBS protocols to atypical groups with social difficulties. In this review, we consider the utility of brain stimulation as a technique to study and modulate social processing. We also discuss challenges that face researchers using NIBS to study social processing in neurotypical adults with a view to highlighting potential solutions. Finally, we discuss additional challenges that face researchers using NIBS to study and modulate social processing in atypical groups. These are important to consider given that NIBS protocols are rarely tailored to atypical groups before use. Instead, many rely on protocols designed for neurotypical adults despite differences in brain function that are likely to impact response to NIBS.
Collapse
Affiliation(s)
- Tegan Penton
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Michael J Banissy
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, UK
| | - Geoffrey Bird
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| |
Collapse
|
17
|
Kershner JR. Dyslexia as an adaptation to cortico-limbic stress system reactivity. Neurobiol Stress 2020; 12:100223. [PMID: 32435671 PMCID: PMC7231974 DOI: 10.1016/j.ynstr.2020.100223] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/07/2020] [Accepted: 04/09/2020] [Indexed: 02/08/2023] Open
Abstract
A new school of thought in evolutionary developmental biology, combined with research in the neurobiology of stress, suggest that early exposure to stressful circumstances may be a cause of dyslexia. A balance between epigenetic, stress-induced and cognitive-growth genetic programs modulates the brain's cellular, regional, and network homeostasis. This balance is essential for adaptability to the normative range of everyday stress. However, even mild chronic stress exposition may overactivate the hypothalmic-pituitary-adrenal stress axis, upsetting the homeostatic balance between these programs, and exposing the brain to harmful levels of stress hormones. A protective strategy to sustained disequilibrium precociously advances maturation at the cost of neuroplasticity, which blunts stress axis reactivity but also compromises learning potential in the prefrontal cortex and networks associated with dyslexia. Stress exceeding an individual's range of resilience: (1) reduces levels of TFEB and BDNF, gene regulatory factors prolonging maturation and neuroplasticity; (2) interferes with the insular cortex, amygdala and hippocampus in coordinating afferent visceral signals with cognitive performance; (3) over-recruits the brain's Default Mode network; and (4) amplifies release from the Locus coeruleus/norepinephrine system which impairs the entrainment of oscillations in the lower phonological frequencies of speech. Evidence supporting a stress-growth imbalance is preliminary, but holds promise for reconceptualizing the neurobiology of dyslexia and reducing its prevalence.
Collapse
Affiliation(s)
- John R. Kershner
- University of Toronto, Dept of Applied Psychology University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|