1
|
Yang W, Xu S, Zhou M, Chan P. Aging-related biomarkers for the diagnosis of Parkinson's disease based on bioinformatics analysis and machine learning. Aging (Albany NY) 2024; 16:12191-12208. [PMID: 39264583 PMCID: PMC11424590 DOI: 10.18632/aging.205954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/22/2024] [Indexed: 09/13/2024]
Abstract
Parkinson's disease (PD) is a multifactorial disease that lacks reliable biomarkers for its diagnosis. It is now clear that aging is the greatest risk factor for developing PD. Therefore, it is necessary to identify novel biomarkers associated with aging in PD. In this study, we downloaded aging-related genes from the Human Ageing Gene Database. To screen and verify biomarkers for PD, we used whole-blood RNA-Seq data from 11 PD patients and 13 healthy control (HC) subjects as a training dataset and three datasets retrieved from the Gene Expression Omnibus (GEO) database as validation datasets. Using the limma package in R, 1435 differentially expressed genes (DEGs) were found in the training dataset. Of these genes, 29 genes were found to occur in both DEGs and 307 aging-related genes. By using machine learning algorithms (LASSO, RF, SVM, and RR), Venn diagrams, and LASSO regression, four of these genes were determined to be potential PD biomarkers; these were further validated in external validation datasets and by qRT-PCR in the peripheral blood mononuclear cells (PBMCs) of 10 PD patients and 10 HC subjects. Based on the biomarkers, a diagnostic model was developed that had reliable predictive ability for PD. Two of the identified biomarkers demonstrated a meaningful correlation with immune cell infiltration status in the PD patients and HC subjects. In conclusion, four aging-related genes were identified as robust diagnostic biomarkers and may serve as potential targets for PD therapeutics.
Collapse
Affiliation(s)
- Weiwei Yang
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Shengli Xu
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Ming Zhou
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Piu Chan
- Department of Neurobiology, Neurology and Geriatrics, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Disorders, Beijing, China
- Clinical Center for Parkinson's Disease, Capital Medical University, Beijing, China
- Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Parkinson Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
2
|
Bhardwaj K, Jha A, Roy A, Kumar H. The crucial role of VPS35 and SHH in Parkinson's disease: Understanding the mechanisms behind the neurodegenerative disorder. Brain Res 2024; 1845:149204. [PMID: 39197569 DOI: 10.1016/j.brainres.2024.149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akanksha Jha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
3
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
4
|
Fu C, Yang N, Chuang JZ, Nakajima N, Iraha S, Roy N, Wu Z, Jiang Z, Otsu W, Radu RA, Yang HH, Lee MP, Worgall TS, Xiong WC, Sung CH. Mutant mice with rod-specific VPS35 deletion exhibit retinal α-synuclein pathology-associated degeneration. Nat Commun 2024; 15:5970. [PMID: 39043666 PMCID: PMC11266608 DOI: 10.1038/s41467-024-50189-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 06/28/2024] [Indexed: 07/25/2024] Open
Abstract
Vacuolar protein sorting 35 (VPS35), the core component of the retromer complex which regulates endosomal trafficking, is genetically linked with Parkinson's disease (PD). Impaired vision is a common non-motor manifestation of PD. Here, we show mouse retinas with VPS35-deficient rods exhibit synapse loss and visual deficit, followed by progressive degeneration concomitant with the emergence of Lewy body-like inclusions and phospho-α-synuclein (P-αSyn) aggregation. Ultrastructural analyses reveal VPS35-deficient rods accumulate aggregates in late endosomes, deposited as lipofuscins bound to P-αSyn. Mechanistically, we uncover a protein network of VPS35 and its interaction with HSC70. VPS35 deficiency promotes sequestration of HSC70 and P-αSyn aggregation in late endosomes. Microglia which engulf lipofuscins and P-αSyn aggregates are activated, displaying autofluorescence, observed as bright dots in fundus imaging of live animals, coinciding with pathology onset and progression. The Rod∆Vps35 mouse line is a valuable tool for further mechanistic investigation of αSyn lesions and retinal degenerative diseases.
Collapse
Affiliation(s)
- Cheng Fu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nan Yang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Jen-Zen Chuang
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Nobuyuki Nakajima
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Urology, Tokai University School of Medicipne, Tokyo, Japan
| | - Satoshi Iraha
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University; Department of Ophthalmology, National Sanatorium Kikuchi Keifuen, Kumamoto, Japan
| | - Neeta Roy
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhenquan Wu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Wataru Otsu
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, Gifu, Japan
| | - Roxana A Radu
- UCLA Stein Eye Institute, and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Howard Hua Yang
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maxwell Ping Lee
- The Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tilla S Worgall
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ching-Hwa Sung
- Department of Ophthalmology, Margaret M. Dyson Vision Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Shiraishi T, Bono K, Hiraki H, Manome Y, Oka H, Iguchi Y, Okano HJ. The impact of VPS35 D620N mutation on alternative autophagy and its reversal by estrogen in Parkinson's disease. Cell Mol Life Sci 2024; 81:103. [PMID: 38409392 PMCID: PMC10896810 DOI: 10.1007/s00018-024-05123-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/28/2024]
Abstract
VPS35 plays a key role in neurodegenerative processes in Alzheimer's disease and Parkinson's disease (PD). Many genetic studies have shown a close relationship between autophagy and PD pathophysiology, and specifically, the PD-causing D620N mutation in VPS35 has been shown to impair autophagy. However, the molecular mechanisms underlying neuronal cell death and impaired autophagy in PD are debated. Notably, increasing evidence suggests that Rab9-dependent "alternative" autophagy, which is driven by a different molecular mechanism that driving ATG5-dependent "conventional" autophagy, also contributes to neurodegenerative process. In this study, we investigated the relationship between alternative autophagy and VPS35 D620N mutant-related PD pathogenesis. We isolated iPSCs from the blood mononuclear cell population of two PD patients carrying the VPS35 D620N mutant. In addition, we used CRISPR-Cas9 to generate SH-SY5Y cells carrying the D620N variant of VPS35. We first revealed that the number of autophagic vacuoles was significantly decreased in ATG5-knockout Mouse Embryonic Fibroblast or ATG5-knockdown patient-derived dopaminergic neurons carrying the VPS35 D620N mutant compared with that of the wild type VPS35 control cells. Furthermore, estrogen, which activates alternative autophagy pathways, increased the number of autophagic vacuoles in ATG5-knockdown VPS35 D620N mutant dopaminergic neurons. Estrogen induces Rab9 phosphorylation, mediated through Ulk1 phosphorylation, ultimately regulating alternative autophagy. Moreover, estrogen reduced the apoptosis rate of VPS35 D620N neurons, and this effect of estrogen was diminished under alternative autophagy knockdown conditions. In conclusion, alternative autophagy might be important for maintaining neuronal homeostasis and may be associated with the neuroprotective effect of estrogen in PD with VPS35 D620N.
Collapse
Affiliation(s)
- Tomotaka Shiraishi
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Keiko Bono
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Hiromi Hiraki
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Yoko Manome
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan
| | - Hisayoshi Oka
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 105‑8461, Japan
| | - Hirotaka James Okano
- Division of Regenerative Medicine, The Jikei University School of Medicine, 3‑25‑8 Nishi‑Shinbashi, Minato‑ku, Tokyo, 1058461, Japan.
| |
Collapse
|
6
|
Bingham R, McCarthy H, Buckley N. Exploring Retrograde Trafficking: Mechanisms and Consequences in Cancer and Disease. Traffic 2024; 25:e12931. [PMID: 38415291 DOI: 10.1111/tra.12931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Retrograde trafficking (RT) orchestrates the intracellular movement of cargo from the plasma membrane, endosomes, Golgi or endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC) in an inward/ER-directed manner. RT works as the opposing movement to anterograde trafficking (outward secretion), and the two work together to maintain cellular homeostasis. This is achieved through maintaining cell polarity, retrieving proteins responsible for anterograde trafficking and redirecting proteins that become mis-localised. However, aberrant RT can alter the correct location of key proteins, and thus inhibit or indeed change their canonical function, potentially causing disease. This review highlights the recent advances in the understanding of how upregulation, downregulation or hijacking of RT impacts the localisation of key proteins in cancer and disease to drive progression. Cargoes impacted by aberrant RT are varied amongst maladies including neurodegenerative diseases, autoimmune diseases, bacterial and viral infections (including SARS-CoV-2), and cancer. As we explore the intricacies of RT, it becomes increasingly apparent that it holds significant potential as a target for future therapies to offer more effective interventions in a wide range of pathological conditions.
Collapse
Affiliation(s)
- Rachel Bingham
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Helen McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Niamh Buckley
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
7
|
Rike WA, Stern S. Proteins and Transcriptional Dysregulation of the Brain Extracellular Matrix in Parkinson's Disease: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087435. [PMID: 37108598 PMCID: PMC10138539 DOI: 10.3390/ijms24087435] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) of the brain is a dynamic structure made up of a vast network of bioactive macromolecules that modulate cellular events. Structural, organizational, and functional changes in these macromolecules due to genetic variation or environmental stressors are thought to affect cellular functions and may result in disease. However, most mechanistic studies to date usually focus on the cellular aspects of diseases and pay less attention to the relevance of the processes governing the dynamic nature of the extracellular matrix in disease pathogenesis. Thus, due to the ECM's diversified biological roles, increasing interest in its involvement in disease, and the lack of sufficient compiled evidence regarding its relationship with Parkinson's disease (PD) pathology, we aimed to compile the existing evidence to boost the current knowledge on the area and provide refined guidance for the future research. Here, in this review, we gathered postmortem brain tissue and induced pluripotent stem cell (iPSC)-related studies from PubMed and Google Scholar to identify, summarize and describe common macromolecular alterations in the expression of brain ECM components in Parkinson's disease (PD). A literature search was conducted up until 10 February 2023. The overall hits from the database and manual search for proteomic and transcriptome studies were 1243 and 1041 articles, respectively. Following a full-text review, 10 articles from proteomic and 24 from transcriptomic studies were found to be eligible for inclusion. According to proteomic studies, proteins such as collagens, fibronectin, annexins, and tenascins were recognized to be differentially expressed in Parkinson's disease. Transcriptomic studies displayed dysregulated pathways including ECM-receptor interaction, focal adhesion, and cell adhesion molecules in Parkinson's disease. A limited number of relevant studies were accessed from our search, indicating that much work remains to be carried out to better understand the roles of the ECM in neurodegeneration and Parkinson's disease. However, we believe that our review will elicit focused primary studies and thus support the ongoing efforts of the discovery and development of diagnostic biomarkers as well as therapeutic agents for Parkinson's disease.
Collapse
Affiliation(s)
- Wote Amelo Rike
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| | - Shani Stern
- Sagol Department of Neurobiology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel
| |
Collapse
|
8
|
Wang Y, Li L, Wu Y, Zhang S, Ju Q, Yang Y, Jin Y, Shi H, Sun C. CD44 deficiency represses neuroinflammation and rescues dopaminergic neurons in a mouse model of Parkinson's disease. Pharmacol Res 2022; 177:106133. [PMID: 35182746 DOI: 10.1016/j.phrs.2022.106133] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/02/2022] [Accepted: 02/13/2022] [Indexed: 02/07/2023]
Abstract
CD44 is a transmembrane protein that transduces extracellular stimuli to immune response. Neuroinflammation is a causative factor in neurodegenerative diseases, such as Parkinson's disease (PD). Owing to its role in inflammation, this study investigated whether CD44 is involved in the pathological progression of PD. Our data showed that CD44 deficiency largely abolished proinflammatory cytokine expression in primary microglia and astrocytes. In PD model mice, CD44 knockout improved behavioral defects, prevented TH loss in the SNpc and striatum, and blocked activation of microglia and astrocytes. Moreover, CD44 neutralization by anti-CD44 antibody recapitulated the phenotypes observed in CD44 knockout mice. Mechanistically, CD44 neutralization blocked TLR4 expression and NF-κB p65 nuclear translocation induced by lipopolysaccharide in BV2 cells. Overall, our results indicate that CD44 deficiency has a beneficial role against PD, which is likely due to repression of the TLR4/NF-κB axis, leading to reduced neuroinflammation. Therefore, CD44 might be a therapeutic target for the development of anti-PD agents.
Collapse
Affiliation(s)
- Yuejun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Li Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yuting Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Shouping Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Qianqian Ju
- Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China; Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinuo Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China
| | - Yan Jin
- School of Life Sciences, Nantong University, Nantong, China.
| | - Hui Shi
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-innovation Center of Neuroregeneration; NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 19 Qixiu Road, Nantong, China; Department of Cardiothoracic Surgery, Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Diseases, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Bonam SR, Tranchant C, Muller S. Autophagy-Lysosomal Pathway as Potential Therapeutic Target in Parkinson's Disease. Cells 2021; 10:3547. [PMID: 34944054 PMCID: PMC8700067 DOI: 10.3390/cells10123547] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Cellular quality control systems have gained much attention in recent decades. Among these, autophagy is a natural self-preservation mechanism that continuously eliminates toxic cellular components and acts as an anti-ageing process. It is vital for cell survival and to preserve homeostasis. Several cell-type-dependent canonical or non-canonical autophagy pathways have been reported showing varying degrees of selectivity with regard to the substrates targeted. Here, we provide an updated review of the autophagy machinery and discuss the role of various forms of autophagy in neurodegenerative diseases, with a particular focus on Parkinson's disease. We describe recent findings that have led to the proposal of therapeutic strategies targeting autophagy to alter the course of Parkinson's disease progression.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Christine Tranchant
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France;
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, 67400 Illkirch, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- CNRS and Strasbourg University, Unit Biotechnology and Cell Signaling/Strasbourg Drug Discovery and Development Institute (IMS), 67000 Strasbourg, France
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France
| |
Collapse
|