1
|
Pôbiš P, Kubalcová J, Milasová T, Kandárová H. Development of Sensitive In Vitro Protocols for the Biocompatibility Testing of Medical Devices and Pharmaceuticals Intended for Contact with the Eyes: Acute Irritation and Phototoxicity Assessment. Altern Lab Anim 2024; 52:261-275. [PMID: 39168512 DOI: 10.1177/02611929241270095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study introduces a novel in vitro methodology that employs the 3-D reconstructed tissue model, EpiOcular, to assess the irritation and phototoxicity potential of medical devices and drugs in contact with the eye. Our study evaluated diverse test materials, including medical devices, ophthalmological solutions and an experimental drug (cemtirestat), for their potential to cause eye irritation and phototoxicity. The protocols used in this study with the EpiOcular tissue model were akin to those used in the ultra-mildness testing of cosmetic formulations, which is challenging to predict with standard in vivo rabbit tests. To design these protocols, we leveraged experience gained from the validation project on the EpiDerm skin irritation test for medical devices (ISO 10993-23:2021) and the OECD TG 498 method for photo-irritation testing. The predictions were based on the tissue viability and inflammatory response, as determined by IL-1α release. By developing and evaluating these protocols for medical devices, we aimed to expand the applicability domain of the tests referred to in ISO 10993-23. This will contribute to the standardisation and cost-effective safety evaluation of ophthalmic products, while reducing reliance on animal testing in this field. The findings obtained from the EpiOcular model in the photo-irritation test could support its implementation in the testing strategies outlined in OECD TG 498.
Collapse
Affiliation(s)
- Peter Pôbiš
- Institute of Experimental Pharmacology and Toxicology (IEPT), Centre of Experimental Medicine (CEM), Slovak Academy of Sciences (SAS), Bratislava, Slovakia
| | - Júlia Kubalcová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Tatiana Milasová
- Institute of Experimental Pharmacology and Toxicology (IEPT), Centre of Experimental Medicine (CEM), Slovak Academy of Sciences (SAS), Bratislava, Slovakia
| | - Helena Kandárová
- Institute of Experimental Pharmacology and Toxicology (IEPT), Centre of Experimental Medicine (CEM), Slovak Academy of Sciences (SAS), Bratislava, Slovakia
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| |
Collapse
|
2
|
Kaya A, Ceylan AF, Kavutcu M, Santamaria A, Šoltésová Prnová M, Stefek M, Karasu Ç. A dual-acting aldose reductase inhibitor impedes oxidative and carbonyl stress in tissues of fructose- and streptozotocin-induced rats: comparison with antioxidant stobadine. Drug Chem Toxicol 2024; 47:710-720. [PMID: 37795621 DOI: 10.1080/01480545.2023.2262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/03/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023]
Abstract
Inhibiting aldose reductase (ALR2, AR) as well as maintaining a concomitant antioxidant (AO) activity via dual-acting agents may be a rational approach to prevent cellular glucotoxicity and at least delay the progression of diabetes mellitus (DM). This study was aimed at evaluating the dual-acting AR inhibitor (ARI) cemtirestat (CMTI) on tissue oxidative stress (OS) and carbonyl stress (CS) biomarkers in rats exposed to fructose alone (F) or fructose plus streptozotocin (D; type-2 diabetic). D and F rats were either untreated or treated daily with low- or high-dose CMTI, ARI drug epalrestat (EPA) or antioxidant stobadine (STB) for 14 weeks. Malondialdehyde (MDA), glutathione S-transferase (GST), nitric oxide synthase (NOS), and catalase (CAT) were increased in the sciatic nerve of F and D. These increases were attenuated by low doses of CMTI and STB in D, but exacerbated by low-dose EPA and high-dose CMTI in F. STB and CMTI and to a lesser extent EPA improved MDA, protein-carbonyl, GST and CAT in the hearts and lungs of F and D. CMTI and STB were more effective than EPA in improving the increased MDA and protein-carbonyl levels in the kidneys of F and especially D. CMTI ameliorated renal GST inhibition in D. In the lungs, hearts, and kidneys of F and D, the GSH to GSSG ratio decreased and caspase-3 activity increased, but partially resolved with treatments. In conclusion, CMTI with ARI/AO activity may be advantageous in overcoming OS, CS, and their undesirable consequences, with low dose efficacy and limited toxicity, compared to ARI or antioxidant alone.
Collapse
Affiliation(s)
- Alican Kaya
- Department of Medical Services and Techniques, Health Services Vocational School, Medical Laboratory Techniques Program, Bayburt University, Bayburt, Turkey
| | - Aslı F Ceylan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City, Mexico
| | - Marta Šoltésová Prnová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Çimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Kovacikova L, Prnova MS, Bodo P, Stefek M. Cemtirestat dimerization in liposomes and erythrocytes exposed to peroxyl radicals was reverted by thiol-disulfide exchange with GSH. Free Radic Res 2024; 58:1-10. [PMID: 38145452 DOI: 10.1080/10715762.2023.2298852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023]
Abstract
In the model system of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) liposomes exposed to peroxyl radicals generated by the azoinitiator AAPH, cemtirestat (CMTI-SH) inhibited lipid peroxidation more efficiently than the natural antioxidant glutathione. In the concentrations 100 to 500 µM, both CMTI-SH and GSH induced distinct lag phases in the initial stages of lipid peroxidation yet GSH produced consistently shorter induction periods (about twice) than equimolar CMTI-SH. Moreover, concentration dependence of lipid peroxidation inhibition measured at the 80th minute, revealed about three times higher IC50 value for GSH compared to CMTI-SH. When the incubations prolonged till 180 min no further absorbance changes at 270 and 302 nm, respectively, occurred. After addition of the reducing agent tris(2-carboxyethyl)phosphine, the absorbance peak at 270 nm shifted back to 302 nm. These findings pointed to the presence of reducible CMTI-SH disulfide whose definite structure was confirmed by proving identity of TLC retention and spectral data with those of the synthesized CMTI disulfide. When CMTI-SH and GSH were present simultaneously in the liposomal incubations, the mixing effect on the induction period was synergistic rather than additive. This was explained by ability of GSH to reduce CMTI disulfide which was proved in separate experiments with an authentic CMTI disulfide prepared synthetically. This finding was also demonstrated by experiment with CMTI-disulfide to protect the erythrocytes against oxidative damage induced by peroxyl radicals. To conclude, CMTI-SH scavenges reactive oxygen species yielding CMTI disulfide while GSH maintains CMTI-SH in the reduced state. This finding was also demonstrated by experiment with CMTI-disulfide to protect the erythrocytes against oxidative damage induced by peroxyl radicals. CMTI-SH would thus represent the first line of the cellular defense against peroxyl radical mediated oxidative stress.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Marta S Prnova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| | - Pavol Bodo
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
4
|
Reihanifar T, Şahin M, Stefek M, Ceylan AF, Karasu Ç. Cemtirestat, an aldose reductase inhibitor and antioxidant compound, induces ocular defense against oxidative and inflammatory stress in rat models for glycotoxicity. Cell Biochem Funct 2023; 41:622-632. [PMID: 37272424 DOI: 10.1002/cbf.3818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023]
Abstract
Fructose, endogenously produced as a consequence of activation of the polyol pathway under hyperglycemic conditions, contribute to formation of advanced glycoxidation end products (AGEs) and carbonyl stress. Oxidative stress is increased in diabetes (DM) due to AGEs formation and the utilization of NADPH by aldo-keto reductase, AKR1B1(AR), the first enzyme in polyol pathway. Since inhibition of AR is an attractive approach for the management of diabetic eye diseases, we aimed to compare the effects of a novel AR inhibitor (ARI)/antioxidant (AO) compound cemtirestat on eye tissues with the effects of ARI drug epalrestat and AO agent stobadine in rat model for glycotoxicity. One group of rats was fed high fructose (10% drinking water; 14 weeks), while type-2 DM was induced in the other group of rats with fructose plus streptozotocin (40 mg/kg-bw/day). Diabetic (D) and nondiabetic fructose-fed rats (F) were either untreated or treated with two different doses of cemtirestat (2.5 and 7.5 mg/kg-bw/day), epalrestat (25 and 50 mg/kg-bw/day), or stobadine (25 and 50 mg/kg-bw/day) for 14 weeks. Cemtirestat, epalrestat, and stobadine elaviate the increase in TNF-α, IL-1β, NF-ƙB, and caspase-3 in retina, lens, cornea, and sclera of F and D rats. Both glycotoxicity models resulted in a decrease in GSH to GSSG ratio and a change in glutathione S-transferase activity in eye tissues, but these alterations were improved especially with cemtirestat and stobadine. Lens D-sorbitol of D rats increased more than that of F rats, this increase was only attenuated by cemtirestat and epalrestat. Epalrestat was more effective than cemtirestat and stobadine in inhibiting the increase of vascular endothelial growth factor (VEGF) in the retina of F and D rats. Cemtirestat and stobadine but not epalrestat decreased high level of Nε-(carboxymethyl)lysine in the lens and retina of F and D rats. Cemtirestat is a potential therapeutic in protecting the rat eye against glycotoxicity insults.
Collapse
Affiliation(s)
- Tala Reihanifar
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| | - Muzaffer Şahin
- Department of Ophthalmology, Ankara City Hospital General Hospital (MHC), Eye Section, Ankara, Turkey
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Aslı F Ceylan
- Department of Medical Pharmacology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
5
|
Martiniakova M, Kovacova V, Mondockova V, Svik K, Londzin P, Folwarczna J, Soltesova Prnova M, Stefek M, Omelka R. The Effects of Prolonged Treatment with Cemtirestat on Bone Parameters Reflecting Bone Quality in Non-Diabetic and Streptozotocin-Induced Diabetic Rats. Pharmaceuticals (Basel) 2023; 16:ph16040628. [PMID: 37111385 PMCID: PMC10145951 DOI: 10.3390/ph16040628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/16/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Cemtirestat, a bifunctional drug acting as an aldose reductase inhibitor with antioxidant ability, is considered a promising candidate for the treatment of diabetic neuropathy. Our study firstly examined the effects of prolonged cemtirestat treatment on bone parameters reflecting bone quality in non-diabetic rats and rats with streptozotocin (STZ)-induced diabetes. Experimental animals were assigned to four groups: non-diabetic rats, non-diabetic rats treated with cemtirestat, diabetic rats, and diabetic rats treated with cemtirestat. Higher levels of plasma glucose, triglycerides, cholesterol, glycated hemoglobin, magnesium, reduced femoral weight and length, bone mineral density and content, parameters characterizing trabecular bone mass and microarchitecture, cortical microarchitecture and geometry, and bone mechanical properties were determined in STZ-induced diabetic versus non-diabetic rats. Treatment with cemtirestat did not affect all aforementioned parameters in non-diabetic animals, suggesting that this drug is safe. In diabetic rats, cemtirestat supplementation reduced plasma triglyceride levels, increased the Haversian canal area and slightly, but insignificantly, improved bone mineral content. Nevertheless, the insufficient effect of cemtirestat treatment on diabetic bone disease does not support its use in the therapy of this complication of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| | - Karol Svik
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Piotr Londzin
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Joanna Folwarczna
- Department of Pharmacology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200 Sosnowiec, Poland
| | - Marta Soltesova Prnova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
- Faculty of Informatics and Information Technologies, Slovak University of Technology in Bratislava, 842 16 Bratislava, Slovakia
| | - Milan Stefek
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, 949 01 Nitra, Slovakia
| |
Collapse
|
6
|
Cu(II) mediated oxidation of cemtirestat yields its disulfide under physiological conditions in vitro. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kovacikova L, Prnova MS, Majekova M, Bohac A, Karasu C, Stefek M. Development of Novel Indole-Based Bifunctional Aldose Reductase Inhibitors/Antioxidants as Promising Drugs for the Treatment of Diabetic Complications. Molecules 2021; 26:molecules26102867. [PMID: 34066081 PMCID: PMC8151378 DOI: 10.3390/molecules26102867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/16/2023] Open
Abstract
Aldose reductase (AR, ALR2), the first enzyme of the polyol pathway, is implicated in the pathophysiology of diabetic complications. Aldose reductase inhibitors (ARIs) thus present a promising therapeutic approach to treat a wide array of diabetic complications. Moreover, a therapeutic potential of ARIs in the treatment of chronic inflammation-related pathologies and several genetic metabolic disorders has been recently indicated. Substituted indoles are an interesting group of compounds with a plethora of biological activities. This article reviews a series of indole-based bifunctional aldose reductase inhibitors/antioxidants (ARIs/AOs) developed during recent years. Experimental results obtained in in vitro, ex vivo, and in vivo models of diabetic complications are presented. Structure–activity relationships with respect to carboxymethyl pharmacophore regioisomerization and core scaffold modification are discussed along with the criteria of ‘drug-likeness”. Novel promising structures of putative multifunctional ARIs/AOs are designed.
Collapse
Affiliation(s)
- Lucia Kovacikova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Marta Soltesova Prnova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Magdalena Majekova
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
| | - Andrej Bohac
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia;
- Biomagi, Inc., Mamateyova 26, 851 04 Bratislava, Slovakia
| | - Cimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, Beşevler, 06500 Ankara, Turkey;
| | - Milan Stefek
- Institute of Experimental Pharmacology and Toxicology, CEM SAS, Dúbravská Cesta 9, 841 04 Bratislava, Slovakia; (L.K.); (M.S.P.); (M.M.)
- Correspondence:
| |
Collapse
|
8
|
Chavira-Ramos K, Orozco-Morales M, Karasu Ç, Tinkov AA, Aschner M, Santamaría A, Colín-González AL. URB597 Prevents the Short-Term Excitotoxic Cell Damage in Rat Cortical Slices: Role of Cannabinoid 1 Receptors. Neurotox Res 2021; 39:146-155. [PMID: 33141426 DOI: 10.1007/s12640-020-00301-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/21/2023]
Abstract
Endocannabinoid-based therapies constitute an emerging tool for the potential treatment of neurodegenerative disorders, requiring characterization at the experimental level. The effects of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH), were tested against the quinolinic acid (QUIN)-induced early toxic effects in rat cortical slices, and compared with those effects exerted by the endocannabinoid anandamide (AEA). URB597 prevented the QUIN-induced loss of mitochondrial function/cell viability and lipid peroxidation, while reduced necrosis, and to a lesser extent, apoptosis. The protective effects of URB597 were mediated by activation of cannabinoid receptor 1 (CB1r), as evidenced by their inhibition by the selective CB1r antagonist AM281. Similar effects were observed when testing AEA against QUIN toxicity. Our findings demonstrate the neuroprotective properties of URB597 during the early stages of excitotoxic damage to cortical tissue, suggesting that these properties are mediated by FAAH inhibition, and might be linked to the protective effects of AEA, or the combination of endocannabinoids.
Collapse
Affiliation(s)
- Karla Chavira-Ramos
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., 14269, Mexico City, Mexico
| | - Mario Orozco-Morales
- Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología, S.S.A., 14080, Mexico City, Mexico
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Department of Medical Pharmacology, Gazi University, Beşevler, 06500, Ankara, Turkey
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Yaroslavl State University, Yaroslavl, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 11354, USA
| | - Abel Santamaría
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., 14269, Mexico City, Mexico.
| | - Ana Laura Colín-González
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., 14269, Mexico City, Mexico
- Banco de Tumores, Instituto Nacional de Cancerología, S.S.A., 14080, Mexico City, Mexico
| |
Collapse
|
9
|
Protective Effects of Novel Substituted Triazinoindole Inhibitors of Aldose Reductase and Epalrestat in Neuron-like PC12 Cells and BV2 Rodent Microglial Cells Exposed to Toxic Models of Oxidative Stress: Comparison with the Pyridoindole Antioxidant Stobadine. Neurotox Res 2021; 39:588-597. [PMID: 33713301 DOI: 10.1007/s12640-021-00349-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
Aldose reductase (AR) catalyzes the conversion of glucose to sorbitol in a NADPH-dependent reaction, thereby increasing the production of reactive oxygen species (ROS). Since AR activation is linked to redox dysregulation and cell damage in neurodegenerative diseases, AR inhibitors (ARIs) constitute promising therapeutic tools for the treatment of these disorders. Among these compounds, the novel substituted triazinoindole derivatives cemtirestat (CMTI) and COTI, as well as the clinically employed epalrestat (EPA) and the pyridoindole-antioxidant stobadine (STB), were tested in both PC12 cells and BV2 microglia exposed to four different neurotoxic models. These include (1) oxidative stress with hydrogen peroxide (H2O2), (2) mitochondrial complex IV inhibition with NaN3, (3) endoplasmic reticulum-stress and lipotoxicity induced by palmitic acid/bovine serum albumin (PAM/BSA), and (4) advanced carbonyl compound lipotoxicity by 4-hydroxynonenal (4-HNE). All toxic compounds decreased cell viability and increased ROS formation in both PC12 and BV2 cells in a concentration-dependent manner (1-1000 μM; NaN3 < H2O2≈PAM/BSA < 4-HNE). In PC12 cells, EPA increased cell viability in all toxic models only at 1 μM, whereas CMTI restored baseline viability in all toxic models. COTI afforded protection against lipotoxicity, while STB only prevented H2O2-induced toxicity. Except for the 4-HNE model, EPA prevented ROS generation in all other toxic models, whereas CMTI, COTI, and STB prevented ROS production in all toxic models. In BV2 cells, EPA and CMTI restored baseline cell viability in all toxic models tested, while COTI and STB did not prevent the loss of viability in the NaN3 model. All ARIs and STB efficiently prevented ROS formation in all toxic models in a concentration-independent manner. The differential protective effects evoked by the novel ARIs and STB on the toxic models tested herein provide novel and relevant comparative evidence for the design of specific therapeutic strategies against neurodegenerative events associated with neurological disorders.
Collapse
|