1
|
Gebru NT, Hill SE, Blair LJ. Genetically engineered mouse models of FK506-binding protein 5. J Cell Biochem 2024; 125:e30374. [PMID: 36780339 PMCID: PMC10423308 DOI: 10.1002/jcb.30374] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 01/15/2023] [Indexed: 02/14/2023]
Abstract
FK506 binding protein 51 (FKBP51) is a molecular chaperone that influences stress response. In addition to having an integral role in the regulation of steroid hormone receptors, including glucocorticoid receptor, FKBP51 has been linked with several biological processes including metabolism and neuronal health. Genetic and epigenetic alterations in the gene that encodes FKBP51, FKBP5, are associated with increased susceptibility to multiple neuropsychiatric disorders, which has fueled much of the research on this protein. Because of the complexity of these processes, animal models have been important in understanding the role of FKBP51. This review examines each of the current mouse models of FKBP5, which include whole animal knockout, conditional knockout, overexpression, and humanized mouse models. The generation of each model and observational details are discussed, including behavioral phenotypes, molecular changes, and electrophysiological alterations basally and following various challenges. While much has been learned through these models, there are still many aspects of FKBP51 biology that remain opaque and future studies are needed to help illuminate these current gaps in knowledge. Overall, FKBP5 continues to be an exciting potential target for stress-related disorders.
Collapse
Affiliation(s)
- Niat T. Gebru
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Shannon E. Hill
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
| | - Laura J. Blair
- USF Health Byrd Alzheimer’s Institute, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Department of Molecular Medicine, University of South Florida, 4001 E. Fletcher Ave. Tampa, Florida 33613, United States
- Research Service, James A. Haley Veterans Hospital, 13000 Bruce B Downs Blvd, Tampa, FL 33612, United States
| |
Collapse
|
2
|
Kremer TL, Chen J, Buhl A, Berhe O, Bilek E, Geiger LS, Ma R, Moessnang C, Reichert M, Reinhard I, Schwarz K, Schweiger JI, Streit F, Witt SH, Zang Z, Zhang X, Nöthen MM, Rietschel M, Ebner-Priemer UW, Schwarz E, Meyer-Lindenberg A, Braun U, Tost H. Multimodal Associations of FKBP5 Methylation With Emotion-Regulatory Brain Circuits. Biol Psychiatry 2024; 96:858-867. [PMID: 38460581 DOI: 10.1016/j.biopsych.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/02/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Understanding the biological processes that underlie individual differences in emotion regulation and stress responsivity is a key challenge for translational neuroscience. The gene FKBP5 is a core regulator in molecular stress signaling that is implicated in the development of psychiatric disorders. However, it remains unclear how FKBP5 DNA methylation in peripheral blood is related to individual differences in measures of neural structure and function and their relevance to daily-life stress responsivity. METHODS Here, we characterized multimodal correlates of FKBP5 DNA methylation by combining epigenetic data with neuroimaging and ambulatory assessment in a sample of 395 healthy individuals. RESULTS First, we showed that FKBP5 demethylation as a psychiatric risk factor was related to an anxiety-associated reduction of gray matter volume in the ventromedial prefrontal cortex, a brain area that is involved in emotion regulation and mental health risk and resilience. This effect of epigenetic upregulation of FKBP5 on neuronal structure is more pronounced where FKBP5 is epigenetically downregulated at baseline. Leveraging 208 functional magnetic resonance imaging scans during a well-established emotion-processing task, we found that FKBP5 DNA methylation in peripheral blood was associated with functional differences in prefrontal-limbic circuits that modulate affective responsivity to daily stressors, which we measured using ecological momentary assessment in daily life. CONCLUSIONS Overall, we demonstrated how FKBP5 contributes to interindividual differences in neural and real-life affect regulation via structural and functional changes in prefrontal-limbic brain circuits.
Collapse
Affiliation(s)
- Thomas L Kremer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Junfang Chen
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Anais Buhl
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Oksana Berhe
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Edda Bilek
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ren Ma
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carolin Moessnang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus Reichert
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Mental mHealth Lab, Chair of Applied Psychology, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany; Department of eHealth and Sports Analytics, Ruhr University Bochum, Bochum, Germany
| | - Iris Reinhard
- Department of Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Fabian Streit
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiaolong Zhang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Marcella Rietschel
- DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ulrich W Ebner-Priemer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Mental mHealth Lab, Chair of Applied Psychology, Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Emanuel Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany; Hector Institute for Artificial Intelligence in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; DZPG (German Center for Mental Health), partner site Mannheim/Heidelberg/Ulm, Germany.
| |
Collapse
|
3
|
Irizarry-Méndez N, Criado-Marrero M, Hernandez A, Colón M, Porter JT. Reducing FKBP51 Expression in the Ventral Hippocampus Decreases Auditory Fear Conditioning in Male Rats. Int J Mol Sci 2024; 25:7097. [PMID: 39000204 PMCID: PMC11241630 DOI: 10.3390/ijms25137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Fear conditioning evokes a physiologic release of glucocorticoids that assists learning. As a cochaperone in the glucocorticoid receptor complex, FKBP51 modulates stress-induced glucocorticoid signaling and may influence conditioned fear responses. This study combines molecular and behavioral approaches to examine whether locally reducing FKBP51 expression in the ventral hippocampus is sufficient to affect fear-related behaviors. We hypothesized that reducing FKBP51 expression in the VH would increase glucocorticoid signaling to alter auditory fear conditioning. Adult male rats were injected with an adeno-associated virus (AAV) vector expressing short hairpin - RNAs (shRNA) targeting FKBP5 into the ventral hippocampus to reduce FKBP5 levels or a control AAV. Infusion of FKBP5-shRNA into the ventral hippocampus decreased auditory fear acquisition and recall. Although animals injected with FKBP5-shRNA showed less freezing during extinction recall, the difference was due to a reduced fear recall rather than improved extinction. Reducing ventral hippocampus FKBP51 did not affect exploratory behavior in either the open field test or the elevated zero maze test but did increase passive behavior in the forced swim test, suggesting that the reduction in auditory fear recall was not due to more active responses to acute stress. Furthermore, lower ventral hippocampus FKBP51 levels did not alter corticosterone release in response to restraint stress, suggesting that the reduced fear recall was not due to lower corticosterone release. Our findings suggest FKBP51 in the ventral hippocampus plays a selective role in modulating fear-learning processes and passive behavioral responses to acute stress rather than hypothalamic-pituitary-adrenal axis reactivity or exploratory responses.
Collapse
Affiliation(s)
- Nashaly Irizarry-Méndez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | | | - Anixa Hernandez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | - Maria Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce 00716, Puerto Rico; (N.I.-M.)
| |
Collapse
|
4
|
Harbour K, Cappel Z, Baccei ML. Effects of Corticosterone on the Excitability of Glutamatergic and GABAergic Neurons of the Adolescent Mouse Superficial Dorsal Horn. Neuroscience 2023; 526:290-304. [PMID: 37437798 PMCID: PMC10530204 DOI: 10.1016/j.neuroscience.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Stress evokes age-dependent effects on pain sensitivity and commonly occurs during adolescence. However, the mechanisms linking adolescent stress and pain remain poorly understood, in part due to a lack of information regarding how stress hormones modulate the function of nociceptive circuits in the adolescent CNS. Here we investigate the short- and long-term effects of corticosterone (CORT) on the excitability of GABAergic and presumed glutamatergic neurons of the spinal superficial dorsal horn (SDH) in Gad1-GFP mice at postnatal days (P)21-P34. In situ hybridization revealed that glutamatergic SDH neurons expressed significantly higher mRNA levels of both glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) compared to adjacent GABAergic neurons. The incubation of spinal cord slices with CORT (90 min) evoked select long-term changes in spontaneous synaptic transmission across both cell types in a sex-dependent manner, without altering the intrinsic firing of either Gad1-GFP+ or GFP- neurons. Meanwhile, the acute bath application of CORT significantly decreased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as the frequency of miniature inhibitory postsynaptic currents (mIPSCs), in both cell types leading to a net reduction in the balance of spontaneous excitation vs. inhibition (E:I ratio). This CORT-induced reduction in the E:I ratio was not prevented by selective antagonists of either GR (mifepristone) or MR (eplerenone), although eplerenone blocked the effect on mEPSC amplitude. Collectively, these data suggest that corticosterone modulates synaptic function within the adolescent SDH which could influence the overall excitability and output of the spinal nociceptive network.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Zoe Cappel
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
5
|
Fries GR, Saldana VA, Finnstein J, Rein T. Molecular pathways of major depressive disorder converge on the synapse. Mol Psychiatry 2023; 28:284-297. [PMID: 36203007 PMCID: PMC9540059 DOI: 10.1038/s41380-022-01806-1] [Citation(s) in RCA: 169] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 01/07/2023]
Abstract
Major depressive disorder (MDD) is a psychiatric disease of still poorly understood molecular etiology. Extensive studies at different molecular levels point to a high complexity of numerous interrelated pathways as the underpinnings of depression. Major systems under consideration include monoamines, stress, neurotrophins and neurogenesis, excitatory and inhibitory neurotransmission, mitochondrial dysfunction, (epi)genetics, inflammation, the opioid system, myelination, and the gut-brain axis, among others. This review aims at illustrating how these multiple signaling pathways and systems may interact to provide a more comprehensive view of MDD's neurobiology. In particular, considering the pattern of synaptic activity as the closest physical representation of mood, emotion, and conscience we can conceptualize, each pathway or molecular system will be scrutinized for links to synaptic neurotransmission. Models of the neurobiology of MDD will be discussed as well as future actions to improve the understanding of the disease and treatment options.
Collapse
Affiliation(s)
- Gabriel R. Fries
- grid.267308.80000 0000 9206 2401Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX 77054 USA ,grid.240145.60000 0001 2291 4776Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Valeria A. Saldana
- grid.262285.90000 0000 8800 2297Frank H. Netter MD School of Medicine at Quinnipiac University, 370 Bassett Road, North Haven, CT 06473 USA
| | - Johannes Finnstein
- grid.419548.50000 0000 9497 5095Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804 Munich, Germany
| | - Theo Rein
- Department of Translational Research in Psychiatry, Project Group Molecular Pathways of Depression, Max Planck Institute of Psychiatry, Kraepelinstr. 10, 80804, Munich, Germany.
| |
Collapse
|
6
|
Faborode OS, Dalle E, Mabandla MV. Inescapable footshocks induce molecular changes in the prefrontal cortex of rats in an amyloid-beta-42 model of Alzheimer's disease. Behav Brain Res 2022; 419:113679. [PMID: 34826515 DOI: 10.1016/j.bbr.2021.113679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) affects several brain areas, including the prefrontal cortex (PFC) involved in execution, working memory, and fear extinction. Despite these critical roles, the PFC is understudied in AD pathology. People with post-traumatic stress disorder (PTSD) have twice the risk of developing AD, and the underlying mechanisms linking these two diseases are less understood. Here, we investigated the effect of footshock stress on behavioural vis-a-vis molecular changes in the PFC of an amyloid-beta (Aβ)-42 lesion rat model of AD. Trauma-like conditions were induced by exposing the animals to several footshocks. AD-like condition was induced via intra-hippocampal injection of Aβ-42 peptide. Following Aβ-42 injections, animals were tested for behavioural changes using the Open Field Test (OFT) and Y-maze test. The PFC was later harvested for neurochemical analyses. Our results showed an interactive effect of footshocks and Aβ-42 lesion on: reduced percentage alternation in the Y-maze test, suggesting memory impairment; reduced number of line crosses and time spent in the centre square of the OFT, indicating anxiogenic responses. Similarly, there was an interactive effect of footshocks and Aβ-42 lesion on: increased FK506 binding protein 51 (FKBP5) expression, which can be associated with stress-induced anxiogenic behaviours; and increased neuronal apoptosis in the PFC of the animals. In addition, footshocks, as well as Aβ-42 lesion, reduced superoxide dismutase levels and Bridging Integrator-1 (BIN1) expression in the PFC of the animals, which can be linked to the observed memory impairment. In conclusion, our findings indicate that footshocks exaggerate PFC-associated behavioural and molecular changes induced by an AD-like pathology.
Collapse
MESH Headings
- Alzheimer Disease/chemically induced
- Alzheimer Disease/etiology
- Alzheimer Disease/metabolism
- Alzheimer Disease/physiopathology
- Amyloid beta-Peptides/pharmacology
- Animals
- Anxiety/chemically induced
- Anxiety/etiology
- Anxiety/metabolism
- Anxiety/physiopathology
- Apoptosis/drug effects
- Apoptosis/physiology
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Disease Models, Animal
- Electroshock
- Male
- Memory Disorders/chemically induced
- Memory Disorders/etiology
- Memory Disorders/metabolism
- Memory Disorders/physiopathology
- Memory, Short-Term/drug effects
- Memory, Short-Term/physiology
- Peptide Fragments/pharmacology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- Rats
- Rats, Sprague-Dawley
- Stress Disorders, Post-Traumatic/chemically induced
- Stress Disorders, Post-Traumatic/etiology
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Tacrolimus Binding Proteins/metabolism
Collapse
Affiliation(s)
- Oluwaseun Samuel Faborode
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Ernest Dalle
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| | - Musa Vuyisile Mabandla
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa.
| |
Collapse
|