1
|
Rustamov N, Souders L, Sheehan L, Carter A, Leuthardt EC. IpsiHand Brain-Computer Interface Therapy Induces Broad Upper Extremity Motor Rehabilitation in Chronic Stroke. Neurorehabil Neural Repair 2025; 39:74-86. [PMID: 39345118 PMCID: PMC11723815 DOI: 10.1177/15459683241287731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
BACKGROUND Chronic hemiparetic stroke patients have very limited benefits from current therapies. Brain-computer interface (BCI) engaging the unaffected hemisphere has emerged as a promising novel therapeutic approach for chronic stroke rehabilitation. OBJECTIVES This study investigated the effectiveness of contralesionally-controlled BCI therapy in chronic stroke patients with impaired upper extremity motor function. We further explored neurophysiological features of motor recovery driven by BCI. We hypothesized that BCI therapy would induce a broad motor recovery in the upper extremity, and there would be corresponding changes in baseline theta and gamma oscillations, which have been shown to be associated with motor recovery. METHODS Twenty-six prospectively enrolled chronic hemiparetic stroke patients performed a therapeutic BCI task for 12 weeks. Motor function assessment data and resting state electroencephalogram signals were acquired before initiating BCI therapy and across BCI therapy sessions. The Upper Extremity Fugl-Meyer assessment served as a primary motor outcome assessment tool. Theta-gamma cross-frequency coupling (CFC) was computed and correlated with motor recovery. RESULTS Chronic stroke patients achieved significant motor improvement in both proximal and distal upper extremity with BCI therapy. Motor function improvement was independent of Botox application. Theta-gamma CFC enhanced bilaterally over the C3/C4 motor electrodes and positively correlated with motor recovery across BCI therapy sessions. CONCLUSIONS BCI therapy resulted in significant motor function improvement across the proximal and distal upper extremities of patients, which significantly correlated with theta-gamma CFC increases in the motor regions. This may represent rhythm-specific cortical oscillatory mechanism for BCI-driven rehabilitation in chronic stroke patients. TRIAL REGISTRATION Advarra Study: https://classic.clinicaltrials.gov/ct2/show/NCT04338971 and Washington University Study: https://classic.clinicaltrials.gov/ct2/show/NCT03611855.
Collapse
Affiliation(s)
- Nabi Rustamov
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Alexandre Carter
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
| | - Eric C. Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University in St. Louis, St. Louis, MO, USA
- Neurolutions, Inc. St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Ikarashi H, Otsuru N, Gomez-Tames J, Hirata A, Nagasaka K, Miyaguchi S, Sakurai N, Ohno K, Kodama N, Onishi H. Modulation of pain perception through transcranial alternating current stimulation and its nonlinear relationship with the simulated electric field magnitude. Eur J Pain 2024; 28:1018-1028. [PMID: 38318653 DOI: 10.1002/ejp.2249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Oscillatory activities observed in multiple regions are closely associated with the experience of pain. Specifically, oscillatory activities within the theta- and beta-frequency bands, observed in the left dorsolateral prefrontal cortex (DLPFC), have been implicated in pain perception among healthy individuals and those with chronic pain. However, their physiological significance remains unclear. METHODS We explored the modulation of pain perception in healthy individuals by theta- and beta-band transcranial alternating current stimulation (tACS) over the left DLPFC and examined the relationship between the modulation effect and magnitude of the electric field elicited by tACS in the left DLPFC using computational simulation. RESULTS Our findings revealed that both theta- and beta-tACS increased the heat pain threshold during and after stimulation. Notably, the simulated electric field magnitude in the left DLPFC exhibited an inverted U-shaped relationship with the pain modulation effect for theta-tACS. CONCLUSIONS Our study findings suggested that there would be an optimal electric field strength to produce a high analgesic effect for theta-tACS. SIGNIFICANCE The application of theta- and beta-tACS interventions targeting the left DLPFC might facilitate the treatment of chronic pain. Furthermore, the attainment of effective pain modulation via theta-tACS over the DLPFC warrants the use of optimal stimulus intensity.
Collapse
Affiliation(s)
- H Ikarashi
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - N Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - J Gomez-Tames
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - A Hirata
- Department of Electromechanical Engineering, Nagoya Institute of Technology, Nagoya, Aichi, Japan
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Nagoya, Aichi, Japan
| | - K Nagasaka
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - S Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - N Sakurai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - K Ohno
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - N Kodama
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - H Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
3
|
Demarest P, Rustamov N, Swift J, Xie T, Adamek M, Cho H, Wilson E, Han Z, Belsten A, Luczak N, Brunner P, Haroutounian S, Leuthardt EC. A novel theta-controlled vibrotactile brain-computer interface to treat chronic pain: a pilot study. Sci Rep 2024; 14:3433. [PMID: 38341457 PMCID: PMC10858946 DOI: 10.1038/s41598-024-53261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Limitations in chronic pain therapies necessitate novel interventions that are effective, accessible, and safe. Brain-computer interfaces (BCIs) provide a promising modality for targeting neuropathology underlying chronic pain by converting recorded neural activity into perceivable outputs. Recent evidence suggests that increased frontal theta power (4-7 Hz) reflects pain relief from chronic and acute pain. Further studies have suggested that vibrotactile stimulation decreases pain intensity in experimental and clinical models. This longitudinal, non-randomized, open-label pilot study's objective was to reinforce frontal theta activity in six patients with chronic upper extremity pain using a novel vibrotactile neurofeedback BCI system. Patients increased their BCI performance, reflecting thought-driven control of neurofeedback, and showed a significant decrease in pain severity (1.29 ± 0.25 MAD, p = 0.03, q = 0.05) and pain interference (1.79 ± 1.10 MAD p = 0.03, q = 0.05) scores without any adverse events. Pain relief significantly correlated with frontal theta modulation. These findings highlight the potential of BCI-mediated cortico-sensory coupling of frontal theta with vibrotactile stimulation for alleviating chronic pain.
Collapse
Affiliation(s)
- Phillip Demarest
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Nabi Rustamov
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - James Swift
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Tao Xie
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Markus Adamek
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Hohyun Cho
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Elizabeth Wilson
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Zhuangyu Han
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
| | - Alexander Belsten
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Nicholas Luczak
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Peter Brunner
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
- Washington University Pain Center, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA
| | - Eric C Leuthardt
- Division of Neurotechnology, Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA.
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St Louis, MO, 63130, USA.
- Department of Neurosurgery, Washington University in St. Louis School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Liu M, Gu H, Hu J, Liu M, Luo Y, Yuan Y, Wu J, Zhou Y, Juan R, Cheng X, Zhuang S, Shen Y, Jin H, Chen J, Li K, Wang F, Liu C, Mao C. Higher cortical excitability to negative emotions involved in musculoskeletal pain in Parkinson's disease. Neurophysiol Clin 2024; 54:102936. [PMID: 38382137 DOI: 10.1016/j.neucli.2023.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 02/23/2024] Open
Abstract
OBJECTIVE Changes in brain structure and neurotransmitter systems are involved in pain in Parkinson's disease (PD), and emotional factors are closely related to pain. Our study applied electroencephalography (EEG) to investigate the role of emotion in PD patients with chronic musculoskeletal pain. METHODS Forty-two PD patients with chronic musculoskeletal pain and 38 without were enrolled. EEG data were recorded under resting conditions, and while viewing pictures with neutral, positive, and negative content. We compared spectrum power, functional connectivity, and late positive potential (LPP), an event-related potential (ERP), between the groups. RESULTS PD patients with pain tended to have higher scores for the Hamilton Rating Scale for Depression (HRSD). In the resting EEG, mean β-band amplitude was significantly higher in patients with pain than in those without. Logistic regression analysis showed that higher HRSD scores and higher mean β-band amplitude were associated with pain. ERP analysis revealed that the amplitudes of LPP difference waves (the absolute difference between positive and negative condition LPP and neutral condition LPP) at the central-parietal region were significantly reduced in patients with pain (P = 0.029). Spearman correlation analysis showed that the amplitudes of late (700-1000 ms) negative versus neutral condition LPP difference waves were negatively correlated with pain intensity, assessed by visual analogue scale, (r = -0.393, P = 0.010) and HRSD scores (r = -0.366, P = 0.017). CONCLUSION Dopaminergic and non-dopaminergic systems may be involved in musculoskeletal pain in PD by increasing β-band activity and weakening the connection of the θ-band at the central-parietal region. PD patients with musculoskeletal pain have higher cortical excitability to negative emotions. The changes in pain-related EEG may be used as electrophysiological markers and therapeutic targets in PD patients with chronic pain.
Collapse
Affiliation(s)
- Ming Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; The First People's Hospital of Zhangjiagang City, Suzhou, China
| | - Hanying Gu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingzhe Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Manhua Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yajun Luo
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuan Yuan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayu Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yan Zhou
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Ru Juan
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaoyu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Zhuang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Shen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hong Jin
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jing Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chunfeng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chengjie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
5
|
Yang D, Jiang J, Li W, Zhang R, Sun L, Meng J. Neural mechanisms of priming effects of spicy food pictures induced analgesia. Biol Psychol 2023; 184:108688. [PMID: 37730170 DOI: 10.1016/j.biopsycho.2023.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
In this study, the effects of the priming of spicy food pictures on pain perception were evaluated in female participants using standardized methods of pain. Results from behavior tests revealed that the priming of spicy food pictures significantly reduced pain perception, particularly at high-pain intensities. Electrophysiological analysis showed that the analgesic effects of spicy food pictures were linked to decreased pain-related event-related potentials, such as N2 and P2 amplitudes, and suppressed θ-oscillations in the sensorimotor cortex. Both N2 amplitudes and θ-oscillations activities were found to be correlated with participants' pain perception. These results suggest that spicy-arousal stimuli may act as an "antagonist" to the increase in N2 amplitudes and θ-oscillations power induced by pain and influence the neuronal networks involved in integrating spontaneous nociceptive resources, which supports the dissociation theory of pain sensation and affection. These findings highlight the potential use of spicy-arousal stimuli as an analgesic and emphasize the importance of considering both the intensity of the stimuli and the individual's emotional state in the assessment and treatment of pain.
Collapse
Affiliation(s)
- Di Yang
- Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China; Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China; Department of Psychology, Soochow University, Suzhou, China
| | - Jin Jiang
- School of Automotive Engineering, Chongqing Wuyi Polytechinc, Chongqing, China
| | - Wanchen Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | | | - Luzhuang Sun
- School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Jing Meng
- Research Center for Brain and Cognitive Science, Chongqing Normal University, Chongqing, China; Key Laboratory of Applied Psychology, Chongqing Normal University, Chongqing, China.
| |
Collapse
|
6
|
Gamma-band oscillations of pain and nociception: A systematic review and meta-analysis of human and rodent studies. Neurosci Biobehav Rev 2023; 146:105062. [PMID: 36682424 DOI: 10.1016/j.neubiorev.2023.105062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Pain-induced gamma-band oscillations (GBOs) are one of the most promising biomarkers of the pain experience. Although GBOs reliably encode pain perception across different individuals and species, considerable heterogeneity could be observed in the characteristics and functions of GBOs. However, such heterogeneity of GBOs and its underlying sources have rarely been detailed previously. Here, we conducted a systematic review and meta-analysis to characterize the temporal, frequential, and spatial characteristics of GBOs and summarize the functional significance of distinct GBOs. We found that GBO heterogeneity was mainly related to pain types, with a higher frequency (∼66 Hz) GBOs at the sensorimotor cortex elicited by phasic pain and a lower frequency (∼55 Hz) GBOs at the prefrontal cortex associated with tonic and chronic pains. Positive correlations between GBO magnitudes and pain intensity were observed in healthy participants. Notably, the characteristics and functions of GBOs seemed to be phylogenetically conserved across humans and rodents. Altogether, we provided a comprehensive description of heterogeneous GBOs in pain and nociception, laying the foundation for clinical applications of GBOs.
Collapse
|
7
|
Li Y, Yang B, Wang Z, Huang R, Lu X, Bi X, Zhou S. EEG assessment of brain dysfunction for patients with chronic primary pain and depression under auditory oddball task. Front Neurosci 2023; 17:1133834. [PMID: 37034156 PMCID: PMC10079993 DOI: 10.3389/fnins.2023.1133834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
In 2019, the International Classification of Diseases 11th Revision International Classification of Diseases (ICD-11) put forward a new concept of "chronic primary pain" (CPP), a kind of chronic pain characterized by severe functional disability and emotional distress, which is a medical problem that deserves great attention. Although CPP is closely related to depressive disorder, its potential neural characteristics are still unclear. This paper collected EEG data from 67 subjects (23 healthy subjects, 22 patients with depression, and 22 patients with CPP) under the auditory oddball paradigm, systematically analyzed the brain network connection matrix and graph theory characteristic indicators, and classified the EEG and PLI matrices of three groups of people by frequency band based on deep learning. The results showed significant differences in brain network connectivity between CPP patients and depressive patients. Specifically, the connectivity within the frontoparietal network of the Theta band in CPP patients is significantly enhanced. The CNN classification model of EEG is better than that of PLI, with the highest accuracy of 85.01% in Gamma band in former and 79.64% in Theta band in later. We propose hyperexcitability in attentional control in CPP patients and provide a novel method for objective assessment of chronic primary pain.
Collapse
Affiliation(s)
- Yunzhe Li
- School of Medicine, School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, Shanghai, China
| | - Banghua Yang
- School of Medicine, School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, Shanghai, China
- Shanghai Shaonao Sensing Technology Ltd., Shanghai, China
- *Correspondence: Banghua Yang,
| | - Zuowei Wang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, China
| | - Ruyan Huang
- Division of Mood Disorders, Shanghai Hongkou Mental Health Center, Shanghai, China
| | - Xi Lu
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiaoying Bi
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
- Xiaoying Bi,
| | - Shu Zhou
- Department of Neurology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China
- Shu Zhou,
| |
Collapse
|
8
|
Hewitt D, Byrne A, Henderson J, Wilford K, Chawla R, Sharma ML, Frank B, Fallon N, Brown C, Stancak A. Pulse Intensity Effects of Burst and Tonic Spinal Cord Stimulation on Neural Responses to Brushing in Patients With Neuropathic Pain. Neuromodulation 2022:S1094-7159(22)01349-6. [DOI: 10.1016/j.neurom.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 12/04/2022]
|
9
|
Relief of chronic pain associated with increase in midline frontal theta power. Pain Rep 2022; 7:e1040. [PMID: 36247110 PMCID: PMC9555895 DOI: 10.1097/pr9.0000000000001040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Unique electroencephalogram signatures of relief from chronic pain demonstrate theta power increase in the midline frontal cortex. Introduction: Objectives: Methods: Results: Conclusion:
Collapse
|
10
|
Abstract
Pain is an unpleasant sensory and emotional experience. Understanding the neural mechanisms of acute and chronic pain and the brain changes affecting pain factors is important for finding pain treatment methods. The emergence and progress of non-invasive neuroimaging technology can help us better understand pain at the neural level. Recent developments in identifying brain-based biomarkers of pain through advances in advanced imaging can provide some foundations for predicting and detecting pain. For example, a neurologic pain signature (involving brain regions that receive nociceptive afferents) and a stimulus intensity-independent pain signature (involving brain regions that do not show increased activity in proportion to noxious stimulus intensity) were developed based on multivariate modeling to identify processes related to the pain experience. However, an accurate and comprehensive review of common neuroimaging techniques for evaluating pain is lacking. This paper reviews the mechanism, clinical application, reliability, strengths, and limitations of common neuroimaging techniques for assessing pain to promote our further understanding of pain.
Collapse
Affiliation(s)
- Jing Luo
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Hui-Qi Zhu
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Sport Rehabilitation, Shenyang Sport University, Shenyang, China
| | - Bo Gou
- Department of Sport Rehabilitation, Xian Physical Education University, Xian, China.
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.
| |
Collapse
|
11
|
Rustamov N, Humphries J, Carter A, Leuthardt EC. Theta-gamma coupling as a cortical biomarker of brain-computer interface-mediated motor recovery in chronic stroke. Brain Commun 2022; 4:fcac136. [PMID: 35702730 PMCID: PMC9188323 DOI: 10.1093/braincomms/fcac136] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 03/19/2022] [Accepted: 05/23/2022] [Indexed: 11/15/2022] Open
Abstract
Chronic stroke patients with upper-limb motor disabilities are now beginning to see treatment options that were not previously available. To date, the two options recently approved by the United States Food and Drug Administration include vagus nerve stimulation and brain-computer interface therapy. While the mechanisms for vagus nerve stimulation have been well defined, the mechanisms underlying brain-computer interface-driven motor rehabilitation are largely unknown. Given that cross-frequency coupling has been associated with a wide variety of higher-order functions involved in learning and memory, we hypothesized this rhythm-specific mechanism would correlate with the functional improvements effected by a brain-computer interface. This study investigated whether the motor improvements in chronic stroke patients induced with a brain-computer interface therapy are associated with alterations in phase-amplitude coupling, a type of cross-frequency coupling. Seventeen chronic hemiparetic stroke patients used a robotic hand orthosis controlled with contralesional motor cortical signals measured with EEG. Patients regularly performed a therapeutic brain-computer interface task for 12 weeks. Resting-state EEG recordings and motor function data were acquired before initiating brain-computer interface therapy and once every 4 weeks after the therapy. Changes in phase-amplitude coupling values were assessed and correlated with motor function improvements. To establish whether coupling between two different frequency bands was more functionally important than either of those rhythms alone, we calculated power spectra as well. We found that theta-gamma coupling was enhanced bilaterally at the motor areas and showed significant correlations across brain-computer interface therapy sessions. Importantly, an increase in theta-gamma coupling positively correlated with motor recovery over the course of rehabilitation. The sources of theta-gamma coupling increase following brain-computer interface therapy were mostly located in the hand regions of the primary motor cortex on the left and right cerebral hemispheres. Beta-gamma coupling decreased bilaterally at the frontal areas following the therapy, but these effects did not correlate with motor recovery. Alpha-gamma coupling was not altered by brain-computer interface therapy. Power spectra did not change significantly over the course of the brain-computer interface therapy. The significant functional improvement in chronic stroke patients induced by brain-computer interface therapy was strongly correlated with increased theta-gamma coupling in bihemispheric motor regions. These findings support the notion that specific cross-frequency coupling dynamics in the brain likely play a mechanistic role in mediating motor recovery in the chronic phase of stroke recovery.
Collapse
Affiliation(s)
- Nabi Rustamov
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
| | - Joseph Humphries
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
| | - Alexandre Carter
- Department of Neurology, Washington University in St Louis, St Louis, MO, USA
| | - Eric C. Leuthardt
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, USA
- Center for Innovation in Neuroscience and Technology, Washington University School of Medicine, St Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|