1
|
Liu S, Akinwande D, Kireev D, Incorvia JAC. Graphene-Based Artificial Dendrites for Bio-Inspired Learning in Spiking Neuromorphic Systems. NANO LETTERS 2024. [PMID: 38819288 DOI: 10.1021/acs.nanolett.4c00739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Analog neuromorphic computing systems emulate the parallelism and connectivity of the human brain, promising greater expressivity and energy efficiency compared to those of digital systems. Though many devices have emerged as candidates for artificial neurons and artificial synapses, there have been few device candidates for artificial dendrites. In this work, we report on biocompatible graphene-based artificial dendrites (GrADs) that can implement dendritic processing. By using a dual side-gate configuration, current applied through a Nafion membrane can be used to control device conductance across a trilayer graphene channel, showing spatiotemporal responses of leaky recurrent, alpha, and Gaussian dendritic potentials. The devices can be variably connected to enable higher-order neuronal responses, and we show through data-driven spiking neural network simulations that spiking activity is reduced by ≤15% without accuracy loss while low-frequency operation is stabilized. This positions the GrADs as strong candidates for energy efficient bio-interfaced spiking neural networks.
Collapse
Affiliation(s)
- Samuel Liu
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Deji Akinwande
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Dmitry Kireev
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Jean Anne C Incorvia
- Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| |
Collapse
|
2
|
Tschumak A, Feldhoff F, Klefenz F. The switching and learning behavior of an octopus cell implemented on FPGA. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5762-5781. [PMID: 38872557 DOI: 10.3934/mbe.2024254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A dendrocentric backpropagation spike timing-dependent plasticity learning rule has been derived based on temporal logic for a single octopus neuron. It receives parallel spike trains and collectively adjusts its synaptic weights in the range [0, 1] during training. After the training phase, it spikes in reaction to event signaling input patterns in sensory streams. The learning and switching behavior of the octopus cell has been implemented in field-programmable gate array (FPGA) hardware. The application in an FPGA is described and the proof of concept for its application in hardware that was obtained by feeding it with spike cochleagrams is given; also, it is verified by performing a comparison with the pre-computed standard software simulation results.
Collapse
Affiliation(s)
- Alexej Tschumak
- Audio Communication Group, Technische Universität Berlin, Berlin, Germany
| | - Frank Feldhoff
- Advanced Electromagnetics Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - Frank Klefenz
- Fraunhofer Institute for Digital Media Technology, Ilmenau, Germany
| |
Collapse
|
3
|
D'Agostino S, Moro F, Torchet T, Demirağ Y, Grenouillet L, Castellani N, Indiveri G, Vianello E, Payvand M. DenRAM: neuromorphic dendritic architecture with RRAM for efficient temporal processing with delays. Nat Commun 2024; 15:3446. [PMID: 38658524 PMCID: PMC11043378 DOI: 10.1038/s41467-024-47764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 04/26/2024] Open
Abstract
An increasing number of studies are highlighting the importance of spatial dendritic branching in pyramidal neurons in the neocortex for supporting non-linear computation through localized synaptic integration. In particular, dendritic branches play a key role in temporal signal processing and feature detection. This is accomplished thanks to coincidence detection (CD) mechanisms enabled by the presence of synaptic delays that align temporally disparate inputs for effective integration. Computational studies on spiking neural networks further highlight the significance of delays for achieving spatio-temporal pattern recognition with pure feed-forward neural networks, without the need of resorting to recurrent architectures. In this work, we present "DenRAM", the first realization of a feed-forward spiking neural network with dendritic compartments, implemented using analog electronic circuits integrated into a 130 nm technology node and coupled with Resistive Random Access Memory (RRAM) technology. DenRAM's dendritic circuits use RRAM devices to implement both delays and synaptic weights in the network. By configuring the RRAM devices to reproduce bio-realistic timescales, and by exploiting their heterogeneity we experimentally demonstrate DenRAM's ability to replicate synaptic delay profiles, and to efficiently implement CD for spatio-temporal pattern recognition. To validate the architecture, we conduct comprehensive system-level simulations on two representative temporal benchmarks, demonstrating DenRAM's resilience to analog hardware noise, and its superior accuracy compared to recurrent architectures with an equivalent number of parameters. DenRAM not only brings rich temporal processing capabilities to neuromorphic architectures, but also reduces the memory footprint of edge devices, warrants high accuracy on temporal benchmarks, and represents a significant step-forward in low-power real-time signal processing technologies.
Collapse
Affiliation(s)
- Simone D'Agostino
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- CEA-Leti, Université Grenoble Alpes, Grenoble, France
| | - Filippo Moro
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
- CEA-Leti, Université Grenoble Alpes, Grenoble, France
| | - Tristan Torchet
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yiğit Demirağ
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | | | - Giacomo Indiveri
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Melika Payvand
- Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Galloni AR, Yuan Y, Zhu M, Yu H, Bisht RS, Wu CTM, Grienberger C, Ramanathan S, Milstein AD. Neuromorphic one-shot learning utilizing a phase-transition material. Proc Natl Acad Sci U S A 2024; 121:e2318362121. [PMID: 38630718 PMCID: PMC11047090 DOI: 10.1073/pnas.2318362121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Design of hardware based on biological principles of neuronal computation and plasticity in the brain is a leading approach to realizing energy- and sample-efficient AI and learning machines. An important factor in selection of the hardware building blocks is the identification of candidate materials with physical properties suitable to emulate the large dynamic ranges and varied timescales of neuronal signaling. Previous work has shown that the all-or-none spiking behavior of neurons can be mimicked by threshold switches utilizing material phase transitions. Here, we demonstrate that devices based on a prototypical metal-insulator-transition material, vanadium dioxide (VO2), can be dynamically controlled to access a continuum of intermediate resistance states. Furthermore, the timescale of their intrinsic relaxation can be configured to match a range of biologically relevant timescales from milliseconds to seconds. We exploit these device properties to emulate three aspects of neuronal analog computation: fast (~1 ms) spiking in a neuronal soma compartment, slow (~100 ms) spiking in a dendritic compartment, and ultraslow (~1 s) biochemical signaling involved in temporal credit assignment for a recently discovered biological mechanism of one-shot learning. Simulations show that an artificial neural network using properties of VO2 devices to control an agent navigating a spatial environment can learn an efficient path to a reward in up to fourfold fewer trials than standard methods. The phase relaxations described in our study may be engineered in a variety of materials and can be controlled by thermal, electrical, or optical stimuli, suggesting further opportunities to emulate biological learning in neuromorphic hardware.
Collapse
Affiliation(s)
- Alessandro R. Galloni
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Yifan Yuan
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Minning Zhu
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Haoming Yu
- School of Materials Engineering, Purdue University, West Lafayette, IN47907
| | - Ravindra S. Bisht
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Chung-Tse Michael Wu
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Christine Grienberger
- Department of Neuroscience, Brandeis University, Waltham, MA02453
- Department of Biology and Volen National Center for Complex Systems, Brandeis University, Waltham, MA02453
| | - Shriram Ramanathan
- Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| | - Aaron D. Milstein
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ08854
- Center for Advanced Biotechnology and Medicine, Rutgers, The State University of New Jersey, Piscataway, NJ08854
| |
Collapse
|
5
|
Miedema R, Strydis C. ExaFlexHH: an exascale-ready, flexible multi-FPGA library for biologically plausible brain simulations. Front Neuroinform 2024; 18:1330875. [PMID: 38680548 PMCID: PMC11045893 DOI: 10.3389/fninf.2024.1330875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/05/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction In-silico simulations are a powerful tool in modern neuroscience for enhancing our understanding of complex brain systems at various physiological levels. To model biologically realistic and detailed systems, an ideal simulation platform must possess: (1) high performance and performance scalability, (2) flexibility, and (3) ease of use for non-technical users. However, most existing platforms and libraries do not meet all three criteria, particularly for complex models such as the Hodgkin-Huxley (HH) model or for complex neuron-connectivity modeling such as gap junctions. Methods This work introduces ExaFlexHH, an exascale-ready, flexible library for simulating HH models on multi-FPGA platforms. Utilizing FPGA-based Data-Flow Engines (DFEs) and the dataflow programming paradigm, ExaFlexHH addresses all three requirements. The library is also parameterizable and compliant with NeuroML, a prominent brain-description language in computational neuroscience. We demonstrate the performance scalability of the platform by implementing a highly demanding extended-Hodgkin-Huxley (eHH) model of the Inferior Olive using ExaFlexHH. Results Model simulation results show linear scalability for unconnected networks and near-linear scalability for networks with complex synaptic plasticity, with a 1.99 × performance increase using two FPGAs compared to a single FPGA simulation, and 7.96 × when using eight FPGAs in a scalable ring topology. Notably, our results also reveal consistent performance efficiency in GFLOPS per watt, further facilitating exascale-ready computing speeds and pushing the boundaries of future brain-simulation platforms. Discussion The ExaFlexHH library shows superior resource efficiency, quantified in FLOPS per hardware resources, benchmarked against other competitive FPGA-based brain simulation implementations.
Collapse
Affiliation(s)
- Rene Miedema
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Christos Strydis
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, Netherlands
- Quantum and Computer Engineering Department, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Pagkalos M, Makarov R, Poirazi P. Leveraging dendritic properties to advance machine learning and neuro-inspired computing. Curr Opin Neurobiol 2024; 85:102853. [PMID: 38394956 DOI: 10.1016/j.conb.2024.102853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
The brain is a remarkably capable and efficient system. It can process and store huge amounts of noisy and unstructured information, using minimal energy. In contrast, current artificial intelligence (AI) systems require vast resources for training while still struggling to compete in tasks that are trivial for biological agents. Thus, brain-inspired engineering has emerged as a promising new avenue for designing sustainable, next-generation AI systems. Here, we describe how dendritic mechanisms of biological neurons have inspired innovative solutions for significant AI problems, including credit assignment in multi-layer networks, catastrophic forgetting, and high-power consumption. These findings provide exciting alternatives to existing architectures, showing how dendritic research can pave the way for building more powerful and energy efficient artificial learning systems.
Collapse
Affiliation(s)
- Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece; Department of Biology, University of Crete, Heraklion, 70013, Greece. https://twitter.com/MPagkalos
| | - Roman Makarov
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece; Department of Biology, University of Crete, Heraklion, 70013, Greece. https://twitter.com/_RomanMakarov
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
7
|
Stradmann Y, Schemmel J. Closing the loop: High-speed robotics with accelerated neuromorphic hardware. Front Neurosci 2024; 18:1360122. [PMID: 38595976 PMCID: PMC11002072 DOI: 10.3389/fnins.2024.1360122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024] Open
Abstract
The BrainScaleS-2 system is an established analog neuromorphic platform with versatile applications in the diverse fields of computational neuroscience and spike-based machine learning. In this work, we extend the system with a configurable realtime event interface that enables a tight coupling of its distinct analog network core to external sensors and actuators. The 1,000-fold acceleration of the emulated nerve cells allows us to target high-speed robotic applications that require precise timing on a microsecond scale. As a showcase, we present a closed-loop setup for commuting brushless DC motors: we utilize PyTorch to train a spiking neural network emulated on the analog substrate to control an electric motor from a sensory event stream. The presented system enables research in the area of event-driven controllers for high-speed robotics, including self-supervised and biologically inspired online learning for such applications.
Collapse
Affiliation(s)
- Yannik Stradmann
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
8
|
Pagkalos M, Chavlis S, Poirazi P. Introducing the Dendrify framework for incorporating dendrites to spiking neural networks. Nat Commun 2023; 14:131. [PMID: 36627284 PMCID: PMC9832130 DOI: 10.1038/s41467-022-35747-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
Computational modeling has been indispensable for understanding how subcellular neuronal features influence circuit processing. However, the role of dendritic computations in network-level operations remains largely unexplored. This is partly because existing tools do not allow the development of realistic and efficient network models that account for dendrites. Current spiking neural networks, although efficient, are usually quite simplistic, overlooking essential dendritic properties. Conversely, circuit models with morphologically detailed neuron models are computationally costly, thus impractical for large-network simulations. To bridge the gap between these two extremes and facilitate the adoption of dendritic features in spiking neural networks, we introduce Dendrify, an open-source Python package based on Brian 2. Dendrify, through simple commands, automatically generates reduced compartmental neuron models with simplified yet biologically relevant dendritic and synaptic integrative properties. Such models strike a good balance between flexibility, performance, and biological accuracy, allowing us to explore dendritic contributions to network-level functions while paving the way for developing more powerful neuromorphic systems.
Collapse
Affiliation(s)
- Michalis Pagkalos
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
- Department of Biology, University of Crete, Heraklion, 70013, Greece
| | - Spyridon Chavlis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece
| | - Panayiota Poirazi
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology Hellas (FORTH), Heraklion, 70013, Greece.
| |
Collapse
|
9
|
Chiappalone M, Cota VR, Carè M, Di Florio M, Beaubois R, Buccelli S, Barban F, Brofiga M, Averna A, Bonacini F, Guggenmos DJ, Bornat Y, Massobrio P, Bonifazi P, Levi T. Neuromorphic-Based Neuroprostheses for Brain Rewiring: State-of-the-Art and Perspectives in Neuroengineering. Brain Sci 2022; 12:1578. [PMID: 36421904 PMCID: PMC9688667 DOI: 10.3390/brainsci12111578] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Neuroprostheses are neuroengineering devices that have an interface with the nervous system and supplement or substitute functionality in people with disabilities. In the collective imagination, neuroprostheses are mostly used to restore sensory or motor capabilities, but in recent years, new devices directly acting at the brain level have been proposed. In order to design the next-generation of neuroprosthetic devices for brain repair, we foresee the increasing exploitation of closed-loop systems enabled with neuromorphic elements due to their intrinsic energy efficiency, their capability to perform real-time data processing, and of mimicking neurobiological computation for an improved synergy between the technological and biological counterparts. In this manuscript, after providing definitions of key concepts, we reviewed the first exploitation of a real-time hardware neuromorphic prosthesis to restore the bidirectional communication between two neuronal populations in vitro. Starting from that 'case-study', we provide perspectives on the technological improvements for real-time interfacing and processing of neural signals and their potential usage for novel in vitro and in vivo experimental designs. The development of innovative neuroprosthetics for translational purposes is also presented and discussed. In our understanding, the pursuit of neuromorphic-based closed-loop neuroprostheses may spur the development of novel powerful technologies, such as 'brain-prostheses', capable of rewiring and/or substituting the injured nervous system.
Collapse
Affiliation(s)
- Michela Chiappalone
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Vinicius R. Cota
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Marta Carè
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Mattia Di Florio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Romain Beaubois
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Stefano Buccelli
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Federico Barban
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital, University of Bern, 3012 Bern, Switzerland
| | - Francesco Bonacini
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
| | - David J. Guggenmos
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, KS 66103, USA
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS 66103, USA
| | - Yannick Bornat
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| | - Paolo Massobrio
- Department of Informatics, Bioengineering, Robotics System Engineering (DIBRIS), University of Genova, 16145 Genova, Italy
- National Institute for Nuclear Physics (INFN), 16146 Genova, Italy
| | - Paolo Bonifazi
- IKERBASQUE, The Basque Fundation, 48009 Bilbao, Spain
- Biocruces Health Research Institute, 48903 Barakaldo, Spain
| | - Timothée Levi
- IMS Laboratory, CNRS UMR 5218, University of Bordeaux, 33405 Talence, France
| |
Collapse
|
10
|
Jedlicka P, Tomko M, Robins A, Abraham WC. Contributions by metaplasticity to solving the Catastrophic Forgetting Problem. Trends Neurosci 2022; 45:656-666. [PMID: 35798611 DOI: 10.1016/j.tins.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 10/17/2022]
Abstract
Catastrophic forgetting (CF) refers to the sudden and severe loss of prior information in learning systems when acquiring new information. CF has been an Achilles heel of standard artificial neural networks (ANNs) when learning multiple tasks sequentially. The brain, by contrast, has solved this problem during evolution. Modellers now use a variety of strategies to overcome CF, many of which have parallels to cellular and circuit functions in the brain. One common strategy, based on metaplasticity phenomena, controls the future rate of change at key connections to help retain previously learned information. However, the metaplasticity properties so far used are only a subset of those existing in neurobiology. We propose that as models become more sophisticated, there could be value in drawing on a richer set of metaplasticity rules, especially when promoting continual learning in agents moving about the environment.
Collapse
Affiliation(s)
- Peter Jedlicka
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University, Giessen, Germany; Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe University Frankfurt, Frankfurt/Main, Germany; Frankfurt Institute for Advanced Studies, Frankfurt 60438, Germany.
| | - Matus Tomko
- ICAR3R - Interdisciplinary Centre for 3Rs in Animal Research, Faculty of Medicine, Justus Liebig University, Giessen, Germany; Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Anthony Robins
- Department of Computer Science, University of Otago, Dunedin 9016, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
11
|
Ward M, Rhodes O. Beyond LIF Neurons on Neuromorphic Hardware. Front Neurosci 2022; 16:881598. [PMID: 35864984 PMCID: PMC9294628 DOI: 10.3389/fnins.2022.881598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
Neuromorphic systems aim to provide accelerated low-power simulation of Spiking Neural Networks (SNNs), typically featuring simple and efficient neuron models such as the Leaky Integrate-and-Fire (LIF) model. Biologically plausible neuron models developed by neuroscientists are largely ignored in neuromorphic computing due to their increased computational costs. This work bridges this gap through implementation and evaluation of a single compartment Hodgkin-Huxley (HH) neuron and a multi-compartment neuron incorporating dendritic computation on the SpiNNaker, and SpiNNaker2 prototype neuromorphic systems. Numerical accuracy of the model implementations is benchmarked against reference models in the NEURON simulation environment, with excellent agreement achieved by both the fixed- and floating-point SpiNNaker implementations. The computational cost is evaluated in terms of timing measurements profiling neural state updates. While the additional model complexity understandably increases computation times relative to LIF models, it was found a wallclock time increase of only 8× was observed for the HH neuron (11× for the mutlicompartment model), demonstrating the potential of hardware accelerators in the next-generation neuromorphic system to optimize implementation of complex neuron models. The benefits of models directly corresponding to biophysiological data are demonstrated: HH neurons are able to express a range of output behaviors not captured by LIF neurons; and the dendritic compartment provides the first implementation of a spiking multi-compartment neuron model with XOR-solving capabilities on neuromorphic hardware. The work paves the way for inclusion of more biologically representative neuron models in neuromorphic systems, and showcases the benefits of hardware accelerators included in the next-generation SpiNNaker2 architecture.
Collapse
|
12
|
Müller E, Arnold E, Breitwieser O, Czierlinski M, Emmel A, Kaiser J, Mauch C, Schmitt S, Spilger P, Stock R, Stradmann Y, Weis J, Baumbach A, Billaudelle S, Cramer B, Ebert F, Göltz J, Ilmberger J, Karasenko V, Kleider M, Leibfried A, Pehle C, Schemmel J. A Scalable Approach to Modeling on Accelerated Neuromorphic Hardware. Front Neurosci 2022; 16:884128. [PMID: 35663548 PMCID: PMC9157770 DOI: 10.3389/fnins.2022.884128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022] Open
Abstract
Neuromorphic systems open up opportunities to enlarge the explorative space for computational research. However, it is often challenging to unite efficiency and usability. This work presents the software aspects of this endeavor for the BrainScaleS-2 system, a hybrid accelerated neuromorphic hardware architecture based on physical modeling. We introduce key aspects of the BrainScaleS-2 Operating System: experiment workflow, API layering, software design, and platform operation. We present use cases to discuss and derive requirements for the software and showcase the implementation. The focus lies on novel system and software features such as multi-compartmental neurons, fast re-configuration for hardware-in-the-loop training, applications for the embedded processors, the non-spiking operation mode, interactive platform access, and sustainable hardware/software co-development. Finally, we discuss further developments in terms of hardware scale-up, system usability, and efficiency.
Collapse
Affiliation(s)
- Eric Müller
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Elias Arnold
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Oliver Breitwieser
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Milena Czierlinski
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Arne Emmel
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Jakob Kaiser
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Christian Mauch
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Sebastian Schmitt
- Third Institute of Physics, University of Göttingen, Göttingen, Germany
| | - Philipp Spilger
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Raphael Stock
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Yannik Stradmann
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Weis
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Andreas Baumbach
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | | | - Benjamin Cramer
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Falk Ebert
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Julian Göltz
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Joscha Ilmberger
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Vitali Karasenko
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Mitja Kleider
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Aron Leibfried
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Christian Pehle
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| | - Johannes Schemmel
- Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
13
|
Pehle C, Billaudelle S, Cramer B, Kaiser J, Schreiber K, Stradmann Y, Weis J, Leibfried A, Müller E, Schemmel J. The BrainScaleS-2 Accelerated Neuromorphic System With Hybrid Plasticity. Front Neurosci 2022; 16:795876. [PMID: 35281488 PMCID: PMC8907969 DOI: 10.3389/fnins.2022.795876] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Since the beginning of information processing by electronic components, the nervous system has served as a metaphor for the organization of computational primitives. Brain-inspired computing today encompasses a class of approaches ranging from using novel nano-devices for computation to research into large-scale neuromorphic architectures, such as TrueNorth, SpiNNaker, BrainScaleS, Tianjic, and Loihi. While implementation details differ, spiking neural networks-sometimes referred to as the third generation of neural networks-are the common abstraction used to model computation with such systems. Here we describe the second generation of the BrainScaleS neuromorphic architecture, emphasizing applications enabled by this architecture. It combines a custom analog accelerator core supporting the accelerated physical emulation of bio-inspired spiking neural network primitives with a tightly coupled digital processor and a digital event-routing network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Johannes Schemmel
- Electronic Visions, Kirchhoff-Institute for Physics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
14
|
Yang L, Zhang H, Luo T, Qu C, Aung MTL, Cui Y, Zhou J, Wong MM, Pu J, Do AT, Goh RSM, Wong WF. Coreset: Hierarchical neuromorphic computing supporting large-scale neural networks with improved resource efficiency. Neurocomputing 2022. [DOI: 10.1016/j.neucom.2021.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|