1
|
Kaur N, do Rosario MC, Majethia P, Mascarenhas S, Rao LP, Nair KV, Hunakunti B, Prasannakumar AP, Naik R, Narayanan DL, Nayak SS, Bhat V, Sharma S, Ramesh Bhat Y, Yatheesha BL, Kulkarni R, Patil SJ, Nampoothiri S, Siddiqui S, Girisha KM, Bielas S, Shukla A. Neuroimaging to Genotype: Delineating the Spectrum of Disorders With Deficient Myelination in the Indian Population. Am J Med Genet A 2024:e63914. [PMID: 39470296 DOI: 10.1002/ajmg.a.63914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024]
Abstract
Several genetic disorders are associated with either a permanent deficit or a delay in central nervous system myelination. We investigated 24 unrelated families (25 individuals) with deficient myelination after clinical and radiological evaluation. A combinatorial approach of targeting and/or genomic testing was employed. Molecular diagnosis was achieved in 22 out of 24 families (92%). Four families (4/9, 44%) were diagnosed with targeted testing and 18 families (18/23, 78%) were diagnosed using broad genomic testing. Overall, 14 monogenic disorders were identified. Twenty disease-causing variants were identified in 14 genes including PLP1, GJC2, POLR1C, TUBB4A, UFM1, NKX6-2, DEGS1, RNASEH2C, HEXA, ATP7A, SETBP1, GRIN2B, OCLN, and ZBTB18. Among these, nine (45%) variants are novel. Fourteen families (82%, 14/17) were diagnosed using proband-only exome sequencing (ES) complemented with deep phenotyping, thus highlighting the utility of singleton ES as a valuable diagnostic tool for identifying these disorders in resource-limited settings.
Collapse
Affiliation(s)
- Namanpreet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Purvi Majethia
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Selinda Mascarenhas
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Lakshmi Priya Rao
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Vijay Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Bhagesh Hunakunti
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Adarsh Pooradan Prasannakumar
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Rohit Naik
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Dhanya Lakshmi Narayanan
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Shalini S Nayak
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Vivekananda Bhat
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Neurology Division, Department of Pediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children's Hospital, New Delhi, India
| | - Y Ramesh Bhat
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - B L Yatheesha
- Paediatric Neurology, Dheemahi Child Neurology and Development Center, Shimoga, India
| | - Rajesh Kulkarni
- Department of Paediatrics, Postgraduate Institute, Yashwantrao Chavan Memorial Hospital, Pune, India
| | - Siddaramappa J Patil
- Division of Medical Genetics, Narayana Hrudayalaya Hospitals/Mazumdar-Shaw Medical Center, Bangalore, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India
| | - Shahyan Siddiqui
- Department of Neuro and Vascular Interventional Radiology, Yashoda Hospitals, Hyderabad, India
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
He YL, Ye YC, Wang PY, Liang XY, Gu YJ, Zhang SQ, Han DQ, Chi Q, Liu WH, Zhou P, Zhai QX, Li BM, Yi YH, Luo S, Meng H. CCDC22 variants caused X-linked focal epilepsy and focal cortical dysplasia. Seizure 2024; 123:1-8. [PMID: 39426154 DOI: 10.1016/j.seizure.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/09/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND The CCDC22 gene plays vital roles in regulating the NF-κB pathway, an essential pathway for neuroinflammation, neurodevelopment, and epileptogenesis. Previously, variants in CCDC22 were reported to be associated with intellectual disability. This study aimed to explore the association between CCDC22 and epilepsy. METHODS Trios-based whole-exome sequencing (WES) was performed in a cohort of patients with epilepsy of unknown cause recruited from the China Epilepsy Gene 1.0 Project. Damaging effects of variants were analysed using protein modelling. RESULTS Hemizygous missense CCDC22 variants were identified in three unrelated cases. These variants had no hemizygous frequencies in controls. All missense variants identified in this study were predicted to be "damaging" by multiple in silico tools and to alter the hydrogen bonds with surrounding residues and/or protein stability. The three patients presented with focal epilepsy of varying severity, including one with refractory seizures and focal cortical dysplasia (FCD) and two with seizures responding to antiseizure medicine. Notably, the variant associated with the severe phenotype was located in the coiled-coil domain and predicted to alter hydrogen bonding and protein stability, whereas the two variants associated with mild epilepsy were located outside functional domains and had moderate molecular alterations. Analysis of spatiotemporal expression indicated that CCDC22 was expressed in brain subregions with three peaks in the fetal stage, infancy, and early adulthood, especially in the fetal stage, explaining the occurrence of developmental abnormities. SIGNIFICANCE CCDC22 variants are potentially associated with X-linked focal epilepsy and FCD. The molecular subregional effects supported the occurrence of FCD.
Collapse
Affiliation(s)
- Yu-Lei He
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China; Department of Neurology, The First People's Hospital of Chenzhou affiliated to the University of South China, The First Affiliated Hospital of Xiangnan University, Chenzhou, PR China; Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yi-Chen Ye
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Xiao-Yu Liang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yu-Jie Gu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Si-Qi Zhang
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China
| | - Dong-Qian Han
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China
| | - Qi Chi
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China
| | - Wen-Hui Liu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, PR China
| | - Bing-Mei Li
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Yong-Hong Yi
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, PR China.
| | - Heng Meng
- Department of Neurology, The First Affiliated Hospital & Clinical Neuroscience Institute of Jinan University, Guangzhou, PR China.
| |
Collapse
|
3
|
Wang X, Zhang Y, Luo S, Zhao K, Gao C, Mei D, Duan Y, Hu S. Restoration of nNOS Expression Rescues Autistic-Like Phenotypes Through Normalization of AMPA Receptor-Mediated Neurotransmission. Mol Neurobiol 2024; 61:6599-6612. [PMID: 38329681 DOI: 10.1007/s12035-024-03997-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Autism spectrum disorder (ASD) is associated with a range of abnormalities characterized by deficits in socialization, communication, repetitive behaviors, and restricted interests. We have recently shown that neuronal nitric oxide synthase (nNOS) expression was decreased in the basolateral amygdala (BLA) of mice after postnatal valproic acid exposure. Neuronal activity-regulated pentraxin (Narp) could contribute to the regulation of the GluA4 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid (AMPA) subunits which are predominantly expressed in interneurons. However, the specific role of nNOS re-expression on excitatory neurotransmitter with relevance to ASD core symptoms in VPA-treated animals remains to be elucidated. Herein, nNOS overexpression using a lentiviral vector and L-arginine-activating PI3K-Akt-mTOR signaling can restore nNOS expression in the BLA induced by VPA. Restoration of nNOS expression in these mice was sufficient to reduce the severity of ASD-like behavioral patterns such that animals exhibited decreases in abnormal social interactions and communication, stereotyped/repetitive behaviors, and anxiety-like traits. Most strikingly, re-expression of nNOS upregulated surface expression of Narp and GluA4 in nNOS-positive interneuron as shown by immunoprecipitation and Western blotting. Whole-cell patch-clamp recordings demonstrated that restoration of nNOS had a significant enhancing effect on AMPA receptor-mediated excitatory glutamatergic synaptic neurotransmission, which was inhibited by disturbing the interaction between Narp and GluA4 in acutely dissociated BLA slices. Overall, these data offer a scientific basis for the additional study of nNOS re-expression as a promising therapeutic target by correcting AMPA receptor-mediated synaptic function in ASD and related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China.
| | - Yaodong Zhang
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shuying Luo
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Ke Zhao
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Department of Rehabilitation, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yongtao Duan
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Shunan Hu
- Henan Children's Hospital, Zhengzhou Children's Hospital, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Henan Children's Neurodevelopment Engineering Research Center, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Córdova-Fletes C, Rivera H, Domínguez-Quezada MG, Aguayo-Orozco TA, Garza-González E, Núñez-García LA, Mercado-Silvae FM, Rosales-Reynoso MA, Barros-Núñez P. Whole-Genome Sequencing Reveals a Novel Pathogenic GRIN2B Variant in a Patient with Neurodevelopmental Disorder and an inv(6)(p24p11.2)pat. Cytogenet Genome Res 2024; 164:92-102. [PMID: 38934155 DOI: 10.1159/000539975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Neurodevelopmental disorders (NDDs) are diverse and can be explained by either genomic aberrations or single nucleotide variants. Most likely due to methodological approaches and/or disadvantages, the concurrence of both genetic events in a single patient has hardly been reported and even more rarely the pathogenic variant has been regarded as the cause of the phenotype when a chromosomal alteration is initially identified. CASE PRESENTATION Here, we describe a NDD patient with a 6p nonpathogenic paracentric inversion paternally transmitted and a de novo pathogenic variant in the GRIN2B gene. Molecular-cytogenetic studies characterized the familial 6p inversion and revealed a paternal 9q inversion not transmitted to the patient. Subsequent whole-genome sequencing in the patient-father dyad corroborated the previous findings, discarded inversions-related cryptic genomic rearrangements as causative of the patient's phenotype, and unveiled a novel heterozygous GRIN2B variant (p.(Ser570Pro)) only in the proband. In addition, Sanger sequencing ruled out such a variant in her mother and thereby confirmed its de novo origin. Due to predicted disturbances in the local secondary structure, this variant may alter the ion channel function of the M1 transmembrane domain. Other pathogenic variants in GRIN2B have been related to the autosomal dominant neurodevelopmental disorder MRD6 (intellectual developmental disorder, autosomal dominant 6, with or without seizures), which presents with a high variability ranging from mild intellectual disability (ID) without seizures to a more severe encephalopathy. In comparison, our patient's clinical manifestations include, among others, mild ID and brain anomalies previously documented in subjects with MRD6. CONCLUSION Occasionally, gross chromosomal abnormalities can be coincidental findings rather than a prime cause of a clinical phenotype (even though they appear to be the causal agent). In brief, this case underscores the importance of comprehensive genomic analysis in unraveling the wide-ranging genetic causes of NDDs and may bring new insights into the MRD6 variability.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Laboratorio de Citogenómica y Microarreglos, Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, Monterrey, Mexico
- Department of Obstetrics and Gynecology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Horacio Rivera
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ma Guadalupe Domínguez-Quezada
- Laboratorio de Citogenética, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Thania Alejandra Aguayo-Orozco
- Laboratorio de Citogenética, División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Elvira Garza-González
- Laboratorio de Citogenómica y Microarreglos, Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Luis A Núñez-García
- Laboratorio de Citogenómica y Microarreglos, Departamento de Bioquímica, Facultad de Medicina, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Francisco Miguel Mercado-Silvae
- Hospital de Pediatría, Unidad Médica de Alta Especialidad, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Mónica Alejandra Rosales-Reynoso
- División de Medicina Molecular, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Mexico
| | - Patricio Barros-Núñez
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
5
|
Korinek M, Candelas Serra M, Abdel Rahman F, Dobrovolski M, Kuchtiak V, Abramova V, Fili K, Tomovic E, Hrcka Krausova B, Krusek J, Cerny J, Vyklicky L, Balik A, Smejkalova T. Disease-Associated Variants in GRIN1, GRIN2A and GRIN2B genes: Insights into NMDA Receptor Structure, Function, and Pathophysiology. Physiol Res 2024; 73:S413-S434. [PMID: 38836461 PMCID: PMC11412357 DOI: 10.33549/physiolres.935346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors critical for synaptic transmission and plasticity, and for the development of neural circuits. Rare or de-novo variants in GRIN genes encoding NMDAR subunits have been associated with neurodevelopmental disorders characterized by intellectual disability, developmental delay, autism, schizophrenia, or epilepsy. In recent years, some disease-associated variants in GRIN genes have been characterized using recombinant receptors expressed in non-neuronal cells, and a few variants have also been studied in neuronal preparations or animal models. Here we review the current literature on the functional evaluation of human disease-associated variants in GRIN1, GRIN2A and GRIN2B genes at all levels of analysis. Focusing on the impact of different patient variants at the level of receptor function, we discuss effects on receptor agonist and co-agonist affinity, channel open probability, and receptor cell surface expression. We consider how such receptor-level functional information may be used to classify variants as gain-of-function or loss-of-function, and discuss the limitations of this classification at the synaptic, cellular, or system level. Together this work by many laboratories worldwide yields valuable insights into NMDAR structure and function, and represents significant progress in the effort to understand and treat GRIN disorders. Keywords: NMDA receptor , GRIN genes, Genetic variants, Electrophysiology, Synapse, Animal models.
Collapse
Affiliation(s)
- M Korinek
- Department of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
He YY, Luo S, Jin L, Wang PY, Xu J, Jiao HL, Yan HJ, Wang Y, Zhai QX, Ji JJ, Zhang WJ, Zhou P, Li H, Liao WP, Lan S, Xu L. DLG3 variants caused X-linked epilepsy with/without neurodevelopmental disorders and the genotype-phenotype correlation. Front Mol Neurosci 2024; 16:1290919. [PMID: 38249294 PMCID: PMC10796462 DOI: 10.3389/fnmol.2023.1290919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024] Open
Abstract
Background The DLG3 gene encodes disks large membrane-associated guanylate kinase scaffold protein 3, which plays essential roles in the clustering of N-methyl-D-aspartate receptors (NMDARs) at excitatory synapses. Previously, DLG3 has been identified as the causative gene of X-linked intellectual developmental disorder-90 (XLID-90; OMIM# 300850). This study aims to explore the phenotypic spectrum of DLG3 and the genotype-phenotype correlation. Methods Trios-based whole-exome sequencing was performed in patients with epilepsy of unknown causes. To analyze the genotype-phenotype correlations, previously reported DLG3 variants were systematically reviewed. Results DLG3 variants were identified in seven unrelated cases with epilepsy. These variants had no hemizygous frequencies in controls. All variants were predicted to be damaging by silico tools and alter the hydrogen bonds with surrounding residues and/or protein stability. Four cases mainly presented with generalized seizures, including generalized tonic-clonic and myoclonic seizures, and the other three cases exhibited secondary generalized tonic-clonic seizures and focal seizures. Multifocal discharges were recorded in all cases during electroencephalography monitoring, including the four cases with generalized discharges initially but multifocal discharges after drug treating. Protein-protein interaction network analysis revealed that DLG3 interacts with 52 genes with high confidence, in which the majority of disease-causing genes were associated with a wide spectrum of neurodevelopmental disorder (NDD) and epilepsy. Three patients with variants locating outside functional domains all achieved seizure-free, while the four patients with variants locating in functional domains presented poor control of seizures. Analysis of previously reported cases revealed that patients with non-null variants presented higher percentages of epilepsy than those with null variants, suggesting a genotype-phenotype correlation. Significance This study suggested that DLG3 variants were associated with epilepsy with/without NDD, expanding the phenotypic spectrum of DLG3. The observed genotype-phenotype correlation potentially contributes to the understanding of the underlying mechanisms driving phenotypic variation.
Collapse
Affiliation(s)
- Yun-Yan He
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Liang Jin
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Department of Neurology, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng-Yu Wang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jie Xu
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong-Liang Jiao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong-Jun Yan
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Yao Wang
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jing-Jing Ji
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Weng-Jun Zhang
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Peng Zhou
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hua Li
- Epilepsy Center, Guangdong 999 Brain Hospital, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Song Lan
- Department of Neurology, Maoming People’s Hospital, Maoming, China
| | - Lin Xu
- Department of Neurology, Women and Children’s Hospital, Qingdao University, Qingdao, China
| |
Collapse
|