1
|
Ramirez-Garcia G, Escutia-Macedo X, Cook DJ, Moreno-Andrade T, Villarreal-Garza E, Campos-Coy M, Elizondo-Riojas G, Gongora-Rivera F, Garza-Villarreal EA, Fernandez-Ruiz J. Consistent spatial lesion-symptom patterns: A comprehensive analysis using triangulation in lesion-symptom mapping in a cohort of stroke patients. Magn Reson Imaging 2024; 109:286-293. [PMID: 38531463 DOI: 10.1016/j.mri.2024.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION The relationship between brain lesions and stroke outcomes is crucial for advancing patient prognosis and developing effective therapies. Stroke is a leading cause of disability worldwide, and it is important to understand the neurological basis of its varied symptomatology. Lesion-symptom mapping (LSM) methods provide a means to identify brain areas that are strongly associated with specific symptoms. However, inner variations in LSM methods can yield different results. To address this, our study aimed to characterize the lesion-symptom mapping variability using three different LSM methods. Specifically, we sought to determine a lesion symptom core across LSM approaches enhancing the robustness of the analysis and removing potential spatial bias. MATERIAL & METHODS A cohort consisting of 35 patients with either right- or left-sided middle cerebral artery strokes were enrolled and evaluated using the NIHSS at 24 h post-stroke. Anatomical T1w MRI scans were also obtained 24 h post-stroke. Lesion masks were segmented manually and three distinctive LSM methods were implemented: ROI correlation-based, univariate, and multivariate approaches. RESULTS The results of the LSM analyses showed substantial spatial differences in the extension of each of the three lesion maps. However, upon overlaying all three lesion-symptom maps, a consistent lesion core emerged, corresponding to the territory associated with elevated NIHSS scores. This finding not only enhances the spatial accuracy of the lesion map but also underscores its clinical relevance. CONCLUSION This study underscores the significance of exploring complementary LSM approaches to investigate the association between brain lesions and stroke outcomes. By utilizing multiple methods, we can increase the robustness of our results, effectively addressing and neutralizing potential spatial bias introduced by each individual method. Such an approach holds promise for enhancing our understanding of stroke pathophysiology and optimizing patient care strategies.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Laboratorio de Neuropsicologia, Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico; Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ximena Escutia-Macedo
- Laboratorio de Neuropsicologia, Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Translational Stroke Research Lab, Department of Surgery, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Talia Moreno-Andrade
- Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico; Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Estefania Villarreal-Garza
- Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
| | - Mario Campos-Coy
- Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico; Departamento de Imagen Diagnostica, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Guillermo Elizondo-Riojas
- Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico; Departamento de Imagen Diagnostica, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Fernando Gongora-Rivera
- Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico; Unidad de Neuromodulacion y Plasticidad Cerebral, Centro de Investigacion y Desarrollo en Ciencias de la Salud, Universidad Autonoma de Nuevo Leon, Monterrey, Nuevo Leon, Mexico
| | - Eduardo A Garza-Villarreal
- Instituto de Neurobiologia, Universidad Nacional Autonoma de Mexico, Juriquilla, Queretaro, Mexico; Departamento de Neurologia, Hospital Universitario Dr. Jose Eleuterio Gonzalez Universidad Autonoma de Nuevo León, Monterrey, Nuevo Leon, Mexico
| | - Juan Fernandez-Ruiz
- Laboratorio de Neuropsicologia, Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico; Facultad de Psicologia, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| |
Collapse
|
2
|
Sperber C, Wiesen D, Karnath H, de Haan B. The neuroanatomy of visual extinction following right hemisphere brain damage: Insights from multivariate and Bayesian lesion analyses in acute stroke. Hum Brain Mapp 2024; 45:e26639. [PMID: 38433712 PMCID: PMC10910281 DOI: 10.1002/hbm.26639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/08/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Multi-target attention, that is, the ability to attend and respond to multiple visual targets presented simultaneously on the horizontal meridian across both visual fields, is essential for everyday real-world behaviour. Given the close link between the neuropsychological deficit of extinction and attentional limits in healthy subjects, investigating the anatomy that underlies extinction is uniquely capable of providing important insights concerning the anatomy critical for normal multi-target attention. Previous studies into the brain areas critical for multi-target attention and its failure in extinction patients have, however, produced heterogeneous results. In the current study, we used multivariate and Bayesian lesion analysis approaches to investigate the anatomical substrate of visual extinction in a large sample of 108 acute right hemisphere stroke patients. The use of acute stroke patient data and multivariate/Bayesian lesion analysis approaches allowed us to address limitations associated with previous studies and so obtain a more complete picture of the functional network associated with visual extinction. Our results demonstrate that the right temporo-parietal junction (TPJ) is critically associated with visual extinction. The Bayesian lesion analysis additionally implicated the right intraparietal sulcus (IPS), in line with the results of studies in neurologically healthy participants that highlighted the IPS as the area critical for multi-target attention. Our findings resolve the seemingly conflicting previous findings, and emphasise the urgent need for further research to clarify the precise cognitive role of the right TPJ in multi-target attention and its failure in extinction patients.
Collapse
Affiliation(s)
- Christoph Sperber
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of NeurologyInselspital, University Hospital BernBernSwitzerland
| | - Daniel Wiesen
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
| | - Hans‐Otto Karnath
- Center of Neurology, Division of NeuropsychologyHertie‐Institute for Clinical Brain Research, University of TübingenTübingenGermany
- Department of PsychologyUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Bianca de Haan
- Centre for Cognitive Neuroscience, College of Health and Life Sciences, Brunel University LondonUxbridgeUK
| |
Collapse
|
3
|
Sperber C, Gallucci L, Mirman D, Arnold M, Umarova RM. Stroke lesion size - Still a useful biomarker for stroke severity and outcome in times of high-dimensional models. Neuroimage Clin 2023; 40:103511. [PMID: 37741168 PMCID: PMC10520672 DOI: 10.1016/j.nicl.2023.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/05/2023] [Accepted: 09/16/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND The volumetric size of a brain lesion is a frequently used stroke biomarker. It stands out among most imaging biomarkers for being a one-dimensional variable that is applicable in simple statistical models. In times of machine learning algorithms, the question arises of whether such a simple variable is still useful, or whether high-dimensional models on spatial lesion information are superior. METHODS We included 753 first-ever anterior circulation ischemic stroke patients (age 68.4±15.2 years; NIHSS at 24 h 4.4±5.1; modified Rankin Scale (mRS) at 3-months median[IQR] 1[0.75;3]) and traced lesions on diffusion-weighted MRI. In an out-of-sample model validation scheme, we predicted stroke severity as measured by NIHSS 24 h and functional stroke outcome as measured by mRS at 3 months either from spatial lesion features or lesion size. RESULTS For stroke severity, the best regression model based on lesion size performed significantly above chance (p < 0.0001) with R2 = 0.322, but models with spatial lesion features performed significantly better with R2 = 0.363 (t(752) = 2.889; p = 0.004). For stroke outcome, the best classification model based on lesion size again performed significantly above chance (p < 0.0001) with an accuracy of 62.8%, which was not different from the best model with spatial lesion features (62.6%, p = 0.80). With smaller training data sets of only 150 or 50 patients, the performance of high-dimensional models with spatial lesion features decreased up to the point of being equivalent or even inferior to models trained on lesion size. The combination of lesion size and spatial lesion features in one model did not improve predictions. CONCLUSIONS Lesion size is a decent biomarker for stroke outcome and severity that is slightly inferior to spatial lesion features but is particularly suited in studies with small samples. When low-dimensional models are desired, lesion size provides a viable proxy biomarker for spatial lesion features, whereas high-precision prediction models in personalised prognostic medicine should operate with high-dimensional spatial imaging features in large samples.
Collapse
Affiliation(s)
- Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| | - Laura Gallucci
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Daniel Mirman
- Department of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcel Arnold
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roza M Umarova
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Sperber C, Gallucci L, Umarova R. The low dimensionality of post-stroke cognitive deficits: it's the lesion anatomy! Brain 2023; 146:2443-2452. [PMID: 36408903 DOI: 10.1093/brain/awac443] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 10/06/2023] Open
Abstract
For years, dissociation studies on neurological single-case patients with brain lesions were the dominant method to infer fundamental cognitive functions in neuropsychology. In contrast, the association between deficits was considered to be of less epistemological value. Still, associational computational methods for dimensionality reduction-such as principal component analysis or factor analysis-became popular for the identification of fundamental cognitive functions and to understand human cognitive brain architecture from post-stroke neuropsychological profiles. In the present in silico study with lesion imaging of 300 stroke patients, we investigated the dimensionality of artificial simulated neuropsychological profiles that exclusively contained independent fundamental cognitive functions without any underlying low-dimensional cognitive architecture. Still, the anatomy of stroke lesions alone was sufficient to create a dependence between variables that allowed a low-dimensional description of the data with principal component analysis. All criteria that we used to estimate the dimensionality of data, including the Kaiser criterion, were strongly affected by lesion anatomy, while the Joliffe criterion provided the least affected estimates. The dimensionality of profiles was reduced by 62-70% for the Kaiser criterion, up to the degree that is commonly found in neuropsychological studies on actual cognitive measures. The interpretability of such low-dimensional factors as deficits of fundamental cognitive functions and their provided insights into human cognitive architecture thus seem to be severely limited, and the heavy focus of current cognitive neuroscience on group studies and associations calls for improvements. We suggest that qualitative criteria and dissociation patterns could be used to refine estimates for the dimensionality of the cognitive architecture behind post-stroke deficits. Further, given the strong impact of lesion anatomy on the associational structure of data, we see the need for further optimization of interpretation strategies of computational factors in post-stroke lesion studies of cognitive deficits.
Collapse
Affiliation(s)
- Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Laura Gallucci
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roza Umarova
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| |
Collapse
|
5
|
van Grinsven EE, Smits AR, van Kessel E, Raemaekers MAH, de Haan EHF, Huenges Wajer IMC, Ruijters VJ, Philippens MEP, Verhoeff JJC, Ramsey NF, Robe PAJT, Snijders TJ, van Zandvoort MJE. The impact of etiology in lesion-symptom mapping - A direct comparison between tumor and stroke. Neuroimage Clin 2022; 37:103305. [PMID: 36610310 PMCID: PMC9850191 DOI: 10.1016/j.nicl.2022.103305] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Lesion-symptom mapping is a key tool in understanding the relationship between brain structures and behavior. However, the behavioral consequences of lesions from different etiologies may vary because of how they affect brain tissue and how they are distributed. The inclusion of different etiologies would increase the statistical power but has been critically debated. Meanwhile, findings from lesion studies are a valuable resource for clinicians and used across different etiologies. Therefore, the main objective of the present study was to directly compare lesion-symptom maps for memory and language functions from two populations, a tumor versus a stroke population. METHODS Data from two different studies were combined. Both the brain tumor (N = 196) and stroke (N = 147) patient populations underwent neuropsychological testing and an MRI, pre-operatively for the tumor population and within three months after stroke. For this study, we selected two internationally widely used standardized cognitive tasks, the Rey Auditory Verbal Learning Test and the Verbal Fluency Test. We used a state-of-the-art machine learning-based, multivariate voxel-wise approach to produce lesion-symptom maps for these cognitive tasks for both populations separately and combined. RESULTS Our lesion-symptom mapping results for the separate patient populations largely followed the expected neuroanatomical pattern based on previous literature. Substantial differences in lesion distribution hindered direct comparison. Still, in brain areas with adequate coverage in both groups, considerable LSM differences between the two populations were present for both memory and fluency tasks. Post-hoc analyses of these locations confirmed that the cognitive consequences of focal brain damage varied between etiologies. CONCLUSION The differences in the lesion-symptom maps between the stroke and tumor population could partly be explained by differences in lesion volume and topography. Despite these methodological limitations, both the lesion-symptom mapping results and the post-hoc analyses confirmed that etiology matters when investigating the cognitive consequences of lesions with lesion-symptom mapping. Therefore, caution is advised with generalizing lesion-symptom results across etiologies.
Collapse
Affiliation(s)
- E E van Grinsven
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands.
| | - A R Smits
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - E van Kessel
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M A H Raemaekers
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - E H F de Haan
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands; St. Hugh's College, Oxford University, UK
| | - I M C Huenges Wajer
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| | - V J Ruijters
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M E P Philippens
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - J J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - N F Ramsey
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - P A J T Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - T J Snijders
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands
| | - M J E van Zandvoort
- Department of Neurology & Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands; Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| |
Collapse
|
6
|
Grange R, Grange S, Lutz N, Garnier P, Marinescu D, Varvat J, Barral FG, Boutet C, Schneider FC. Internal border zone injury predicts the functional outcome of acute MCA stroke patients. J Neuroradiol 2022; 50:281-287. [PMID: 35385772 DOI: 10.1016/j.neurad.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND PURPOSE Classification of deep (D), superficial (S) MCA territories and their junctional vascular area (the internal border zone, IBZ) can help to identify patients most likely to benefit from aggressive reperfusion therapy after stroke. We tested the prognostic value of an IBZ injury compared to DWI-ASPECTS and infarct volume. MATERIALS AND METHODS DW lesions of 168 patients with acute (4.2±6.5 h) MCA strokes were retrospectively examined and manually delineated. Patients with haemorrhagic transformation or other neurological diseases were excluded. Clinical data were recorded within 24 h following symptom onset and 48 h for patients who benefited from reperfusion therapy. The occurrence of an IBZ injury was determined using a standardized stereotaxic atlas. Performance to predict a good outcome (mRS<3 at 3 months) was estimated through ROC curves for DWI-ASPECTS≤6, lesion volume≥100 mL and IBZ injury. Logistic regression models were performed to estimate independent outcomes for infarct volume and IBZ injury. RESULTS Infarcts involving the IBZ were larger (94.9±98.8 mL vs. 30.2±31.3 mL), had higher NIHSS (13.8±7.2 vs. 7.2±5.7), more frequent MCA occlusions (64.9% vs. 28.3%), and worse outcomes (mRS 3.0±1.8 vs. 1.9±1.7), and were less responsive to IVtPA (34±47% vs. 55±48% of NIHSS improvement). The area under the ROC curves was comparable between the occurrence of IBZ injury (0.651), ASPECTS≤6 (0.657) and volume≥100 mL (0.629). Logistic regression analyses showed an independent effect of an IBZ injury, especially for superficial MCA strokes and for patients who benefited from reperfusion therapy. CONCLUSION An IBZ injury is an early and independent marker of stroke severity, functional prognosis and treatment responsiveness.
Collapse
Affiliation(s)
- R Grange
- Radiology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - S Grange
- Radiology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - N Lutz
- Radiology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - P Garnier
- Neurology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - D Marinescu
- Neurology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - J Varvat
- Neurology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - F G Barral
- Radiology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France
| | - C Boutet
- Radiology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France; TAPE, EA7423, University of Lyon, Saint Etienne, France
| | - F C Schneider
- Radiology Department, CHU de Saint Etienne, Avenue Albert Raimond, 42270 Saint-Priest-En-Jarez, France; TAPE, EA7423, University of Lyon, Saint Etienne, France.
| |
Collapse
|
7
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
8
|
Benke T, Dazinger F, Pechlaner R, Willeit K, Clausen J, Knoflach M. Lesion topography of posterior cerebral artery infarcts. J Neurol Sci 2021; 428:117585. [PMID: 34371243 DOI: 10.1016/j.jns.2021.117585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/24/2021] [Accepted: 07/19/2021] [Indexed: 11/18/2022]
Abstract
This study analyzed the topography of acute ischemic stroke in the posterior cerebral artery (PCA) territory. We studied 84 patients with unilateral ischemic PCA stroke. Patients were classified according to lesion levels as cortico-subcortical (superficial), combined (cortical and mesodiencephalic) or isolated thalamic. To receive a lesion map, data from acute MR and CT imaging were normalized and labelled automatically by mapping to stereotaxic anatomical atlases. Cortical lesions accounted for 41.7%, combined for 36.9%, and isolated thalamic lesions for 21.4%. The maximum overlay of ischemia and, thus, highest occurrence of PCA ischemic stroke was found in the ventral and medial occipito-temporal cortex and adjacent white matter association tracts. Dorsal and peripheral segments of the occipito-temporo-parietal region were only rarely lesioned. This configuration was similar in both hemispheres. Consistent with this lesion pattern, visual field defects (VFD) were the most frequent signs, followed by sensorimotor signs, dizziness and sopor, cognitive and oculomotor deficits, and ataxia. The three vascular subgroups differed not only by their anatomical lesion profile and lesion load, but also by their clinical manifestation; although patients with combined and thalamic lesions were sigificantly younger, they were more disabled than participants with cortical lesions. VFD were only found in cortical and combined, and oculomotor deficits only in mesodiencephalic lesions. White matter lesions were common in the cortico-subcortical and the combined group. Basal occipito-temporal and calcarine regions, and neighbouring white matter tracts have the highest risk of ischemia in acute PCA stroke.
Collapse
Affiliation(s)
- T Benke
- Clinic of Neurology, Medical University Innsbruck, Austria.
| | - F Dazinger
- Clinic of Neuroradiology, Medical University Innsbruck, Austria
| | - R Pechlaner
- Clinic of Neurology, Medical University Innsbruck, Austria
| | - K Willeit
- Clinic of Neurology, Medical University Innsbruck, Austria
| | - J Clausen
- Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany
| | - M Knoflach
- Clinic of Neurology, Medical University Innsbruck, Austria
| |
Collapse
|
9
|
Zeiger WA, Marosi M, Saggi S, Noble N, Samad I, Portera-Cailliau C. Barrel cortex plasticity after photothrombotic stroke involves potentiating responses of pre-existing circuits but not functional remapping to new circuits. Nat Commun 2021; 12:3972. [PMID: 34172735 PMCID: PMC8233353 DOI: 10.1038/s41467-021-24211-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/01/2021] [Indexed: 01/14/2023] Open
Abstract
Recovery after stroke is thought to be mediated by adaptive circuit plasticity, whereby surviving neurons assume the roles of those that died. However, definitive longitudinal evidence of neurons changing their response selectivity after stroke is lacking. We sought to directly test whether such functional “remapping” occurs within mouse primary somatosensory cortex after a stroke that destroys the C1 barrel. Using in vivo calcium imaging to longitudinally record sensory-evoked activity under light anesthesia, we did not find any increase in the number of C1 whisker-responsive neurons in the adjacent, spared D3 barrel after stroke. To promote plasticity after stroke, we also plucked all whiskers except C1 (forced use therapy). This led to an increase in the reliability of sensory-evoked responses in C1 whisker-responsive neurons but did not increase the number of C1 whisker-responsive neurons in spared surround barrels over baseline levels. Our results argue against remapping of functionality after barrel cortex stroke, but support a circuit-based mechanism for how rehabilitation may improve recovery. Definitive evidence for functional remapping after stroke remains lacking. Here, the authors performed in vivo intrinsic signal imaging and two-photon calcium imaging of sensory-evoked responses before and after photothrombotic stroke and found no evidence of remapping of lost functionalities to new circuits in peri-infarct cortex.
Collapse
Affiliation(s)
- William A Zeiger
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Máté Marosi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Satvir Saggi
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Natalie Noble
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Isa Samad
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Carlos Portera-Cailliau
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA. .,Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Ivanova MV, Herron TJ, Dronkers NF, Baldo JV. An empirical comparison of univariate versus multivariate methods for the analysis of brain-behavior mapping. Hum Brain Mapp 2020; 42:1070-1101. [PMID: 33216425 PMCID: PMC7856656 DOI: 10.1002/hbm.25278] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/14/2020] [Accepted: 10/29/2020] [Indexed: 02/06/2023] Open
Abstract
Lesion symptom mapping (LSM) tools are used on brain injury data to identify the neural structures critical for a given behavior or symptom. Univariate lesion symptom mapping (ULSM) methods provide statistical comparisons of behavioral test scores in patients with and without a lesion on a voxel by voxel basis. More recently, multivariate lesion symptom mapping (MLSM) methods have been developed that consider the effects of all lesioned voxels in one model simultaneously. In the current study, we provide a much-needed systematic comparison of several ULSM and MLSM methods, using both synthetic and real data to identify the potential strengths and weaknesses of both approaches. We tested the spatial precision of each LSM method for both single and dual (network type) anatomical target simulations across anatomical target location, sample size, noise level, and lesion smoothing. Additionally, we performed false positive simulations to identify the characteristics associated with each method's spurious findings. Simulations showed no clear superiority of either ULSM or MLSM methods overall, but rather highlighted specific advantages of different methods. No single method produced a thresholded LSM map that exclusively delineated brain regions associated with the target behavior. Thus, different LSM methods are indicated, depending on the particular study design, specific hypotheses, and sample size. Overall, we recommend the use of both ULSM and MLSM methods in tandem to enhance confidence in the results: Brain foci identified as significant across both types of methods are unlikely to be spurious and can be confidently reported as robust results.
Collapse
Affiliation(s)
- Maria V Ivanova
- University of California, Berkeley, California, USA.,VA Northern California Health Care System, Martinez, California, USA
| | - Timothy J Herron
- VA Northern California Health Care System, Martinez, California, USA
| | - Nina F Dronkers
- University of California, Berkeley, California, USA.,VA Northern California Health Care System, Martinez, California, USA.,University of California, Davis, California, USA
| | - Juliana V Baldo
- VA Northern California Health Care System, Martinez, California, USA
| |
Collapse
|
11
|
Disconnection somewhere down the line: Multivariate lesion-symptom mapping of the line bisection error. Cortex 2020; 133:120-132. [PMID: 33120190 DOI: 10.1016/j.cortex.2020.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/17/2020] [Accepted: 09/04/2020] [Indexed: 11/23/2022]
Abstract
Line Bisection is a simple task frequently used in stroke patients to diagnose disorders of spatial perception characterized by a directional bisection bias to the ipsilesional side. However, previous anatomical and behavioural findings are contradictory, and the diagnostic validity of the line bisection task has been challenged. We hereby aimed to re-analyse the anatomical basis of pathological line bisection by using multivariate lesion-symptom mapping and disconnection-symptom mapping based on support vector regression in a sample of 163 right hemispheric acute stroke patients. In line with some previous studies, we observed that pathological line bisection was related to more than a single focal lesion location. Cortical damage primarily to right parietal areas, particularly the inferior parietal lobe, including the angular gyrus, as well as damage to the right basal ganglia contributed to the pathology. In contrast to some previous studies, an involvement of frontal cortical brain areas in the line bisection task was not observed. Subcortically, damage to the right superior longitudinal fasciculus (I, II and III) and arcuate fasciculus as well as the internal capsule was associated with line bisection errors. Moreover, white matter damage of interhemispheric fibre bundles, such as the anterior commissure and posterior parts of the corpus callosum projecting into the left hemisphere, was predictive of pathological deviation in the line bisection task.
Collapse
|
12
|
Pflugshaupt T, Bauer D, Frey J, Vanbellingen T, Kaufmann BC, Bohlhalter S, Nyffeler T. The right anterior temporal lobe critically contributes to magnitude knowledge. Brain Commun 2020; 2:fcaa157. [PMID: 33225278 PMCID: PMC7667527 DOI: 10.1093/braincomms/fcaa157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 11/14/2022] Open
Abstract
Cognitive estimation is a mental ability applied to solve numerical problems when precise facts are unknown, unavailable or impractical to calculate. It has been associated with several underlying cognitive components, most often with executive functions and semantic memory. Little is known about the neural correlates of cognitive estimation. To address this issue, the present cross-sectional study applied lesion-symptom mapping in a group of 55 patients with left hemineglect due to right-hemisphere stroke. Previous evidence suggests a high prevalence of cognitive estimation impairment in these patients, as they might show a general bias towards large magnitudes. Compared to 55 age- and gender-matched healthy controls, the patient group demonstrated impaired cognitive estimation. However, the expected large magnitude bias was not found. Lesion-symptom mapping related their general estimation impairment predominantly to brain damage in the right anterior temporal lobe. Also critically involved were the right uncinate fasciculus, the anterior commissure and the right inferior frontal gyrus. The main findings of this study emphasize the role of semantic memory in cognitive estimation, with reference to a growing body of neuroscientific literature postulating a transmodal hub for semantic cognition situated in the bilateral anterior temporal lobe. That such semantic hub function may also apply to numerical knowledge is not undisputed. We here propose a critical contribution of the right anterior temporal lobe to at least one aspect of number processing, i.e. the knowledge about real-world numerical magnitudes.
Collapse
Affiliation(s)
| | - Daniel Bauer
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
| | - Julia Frey
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
| | - Tim Vanbellingen
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | - Brigitte C Kaufmann
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| | | | - Thomas Nyffeler
- Neurocenter, Luzerner Kantonsspital, Luzern, Switzerland
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering, University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Griffis JC, Metcalf NV, Corbetta M, Shulman GL. Structural Disconnections Explain Brain Network Dysfunction after Stroke. Cell Rep 2020; 28:2527-2540.e9. [PMID: 31484066 DOI: 10.1016/j.celrep.2019.07.100] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022] Open
Abstract
Stroke causes focal brain lesions that disrupt functional connectivity (FC), a measure of activity synchronization, throughout distributed brain networks. It is often assumed that FC disruptions reflect damage to specific cortical regions. However, an alternative explanation is that they reflect the structural disconnection (SDC) of white matter pathways. Here, we compare these explanations using data from 114 stroke patients. Across multiple analyses, we find that SDC measures outperform focal damage measures, including damage to putative critical cortical regions, for explaining FC disruptions associated with stroke. We also identify a core mode of structure-function covariation that links the severity of interhemispheric SDCs to widespread FC disruptions across patients and that correlates with deficits in multiple behavioral domains. We conclude that a lesion's impact on the structural connectome is what determines its impact on FC and that interhemispheric SDCs may play a particularly important role in mediating FC disruptions after stroke.
Collapse
Affiliation(s)
- Joseph C Griffis
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas V Metcalf
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Maurizio Corbetta
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Bioengineering, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, University of Padua, Padua, Italy; Padua Neuroscience Center, Padua, Italy
| | - Gordon L Shulman
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
The anatomo-clinical picture of the pathological embodiment over someone else's body part after stroke. Cortex 2020; 130:203-219. [DOI: 10.1016/j.cortex.2020.05.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
|
15
|
Barahona-Corrêa JB, Cotovio G, Costa RM, Ribeiro R, Velosa A, Silva VCE, Sperber C, Karnath HO, Senova S, Oliveira-Maia AJ. Right-sided brain lesions predominate among patients with lesional mania: evidence from a systematic review and pooled lesion analysis. Transl Psychiatry 2020; 10:139. [PMID: 32398699 PMCID: PMC7217919 DOI: 10.1038/s41398-020-0811-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/28/2022] Open
Abstract
Despite claims that lesional mania is associated with right-hemisphere lesions, supporting evidence is scarce, and association with specific brain areas has not been demonstrated. Here, we aimed to test whether focal brain lesions in lesional mania are more often right- than left-sided, and if lesions converge on areas relevant to mood regulation. We thus performed a systematic literature search (PROSPERO registration CRD42016053675) on PubMed and Web-Of-Science, using terms that reflect diagnoses and structures of interest, as well as lesional mechanisms. Two researchers reviewed the articles separately according to PRISMA Guidelines, selecting reports of adult-onset hypomania, mania or mixed state following a focal brain lesion, for pooled-analyses of individual patient data. Eligible lesion images were manually traced onto the corresponding MNI space slices, and lesion topography analyzed using standard brain atlases. Using this approach, data from 211 lesional mania patients was extracted from 114 reports. Among 201 cases with focal lesions, more patients had lesions involving exclusively the right (60.7%) than exclusively the left (11.4%) hemisphere. In further analyses of 56 eligible lesion images, while findings should be considered cautiously given the potential for selection bias of published lesion images, right-sided predominance of lesions was confirmed across multiple brain regions, including the temporal lobe, fusiform gyrus and thalamus. These, and several frontal lobe areas, were also identified as preferential lesion sites in comparisons with control lesions. Such pooled-analyses, based on the most comprehensive dataset of lesional mania available to date, confirm a preferential association with right-hemisphere lesions, while suggesting that several brain areas/circuits, relevant to mood regulation, are most frequently affected.
Collapse
Affiliation(s)
- J Bernardo Barahona-Corrêa
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Gonçalo Cotovio
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
| | - Rui M Costa
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, 10027, USA
| | - Ricardo Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
| | - Ana Velosa
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
| | - Vera Cruz E Silva
- Department of Neuroradiology, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal
- Department of Neuroradiology, Hospital de Braga, Sete Fontes - São Victor, 4710-243, Braga, Portugal
| | - Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Department of Psychology, University of South Carolina, Columbia, SC, USA
| | - Suhan Senova
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal
- Neurosurgery and PePsy Departments, Assistance Publique-Hôpitaux de Paris (APHP), Groupe Henri-Mondor Albert-Chenevier, Créteil, France
- Equipe 14, U955 INSERM, Institut Mondor de Recherche Biomedicale and Faculté de Médecine, Université Paris Est, Créteil, France
| | - Albino J Oliveira-Maia
- Champalimaud Clinical Centre, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal.
- Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasilia, 1400-038, Lisboa, Portugal.
- Department of Psychiatry and Mental Health, Centro Hospitalar de Lisboa Ocidental, Rua da Junqueira 126, 1340-019, Lisboa, Portugal.
- NOVA Medical School | Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Campo Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
16
|
Grange S, Grange R, Garnier P, Varvat J, Marinescu D, Barral FG, Boutet C, Schneider FC. Boundary and vulnerability estimation of the internal borderzone using ischemic stroke lesion mapping. Sci Rep 2020; 10:1662. [PMID: 32015357 PMCID: PMC6997399 DOI: 10.1038/s41598-020-58480-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
Distinction between deep and superficial middle cerebral artery (MCA) territories and their junctional vascular area (the internal borderzone or IBZ) constitutes a predictor of stroke patient outcome. However, the IBZ boundaries are not well-defined because of substantial anatomical variance. Here, we built a statistical estimate of the IBZ and tested its vulnerability to ischemia using an independent sample. First, we used delineated lesions of 122 patients suffering of chronic ischemic stroke grouped in deep, superficial and territorial topographies and statistical comparisons to generate a probabilistic estimate of the IBZ. The IBZ extended from the insular cortex to the internal capsule and the anterior part of the caudate nucleus head. The IBZ showed the highest lesion frequencies (~30% on average across IBZ voxels) in our chronic stroke patients but also in an independent sample of 87 acute patients. Additionally, the most important apparent diffusion coefficient reductions (−6%), which reflect stroke severity, were situated within our IBZ estimate. The IBZ was most severely injured in case of a territorial infarction. Then, our results are in favour of an increased IBZ vulnerability to ischemia. Moreover, our probabilistic estimates of deep, superficial and IBZ regions can help the everyday spatial classification of lesions.
Collapse
Affiliation(s)
- Sylvain Grange
- Department of Radiology, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Rémi Grange
- Department of Radiology, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Pierre Garnier
- Stroke Unit, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Jérôme Varvat
- Stroke Unit, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Doina Marinescu
- Stroke Unit, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Fabrice-Guy Barral
- Department of Radiology, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France.,TAPE EA7423, University of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Claire Boutet
- Department of Radiology, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France
| | - Fabien C Schneider
- Department of Radiology, University Hospital of Saint Etienne, Saint-Priest-en-Jarez, France.
| |
Collapse
|
17
|
Human-sized magnetic particle imaging for brain applications. Nat Commun 2019; 10:1936. [PMID: 31028253 PMCID: PMC6486595 DOI: 10.1038/s41467-019-09704-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023] Open
Abstract
Determining the brain perfusion is an important task for diagnosis of vascular diseases such as occlusions and intracerebral haemorrhage. Even after successful diagnosis, there is a high risk of restenosis or rebleeding such that patients need intense attention in the days after treatment. Within this work, we present a diagnostic tomographic imager that allows access to brain perfusion quantitatively in short intervals. The device is based on the magnetic particle imaging technology and is designed for human scale. It is highly sensitive and allows the detection of an iron concentration of 263 pmolFe ml-1, which is one of the lowest iron concentrations imaged by MPI so far. The imager is self-shielded and can be used in unshielded environments such as intensive care units. In combination with the low technical requirements this opens up a variety of medical applications and would allow monitoring of stroke on intensive care units.
Collapse
|
18
|
Sperber C, Wiesen D, Karnath H. An empirical evaluation of multivariate lesion behaviour mapping using support vector regression. Hum Brain Mapp 2019; 40:1381-1390. [PMID: 30549154 PMCID: PMC6865618 DOI: 10.1002/hbm.24476] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/28/2018] [Accepted: 11/02/2018] [Indexed: 01/14/2023] Open
Abstract
Multivariate lesion behaviour mapping based on machine learning algorithms has recently been suggested to complement the methods of anatomo-behavioural approaches in cognitive neuroscience. Several studies applied and validated support vector regression-based lesion symptom mapping (SVR-LSM) to map anatomo-behavioural relations. However, this promising method, as well as the multivariate approach per se, still bears many open questions. By using large lesion samples in three simulation experiments, the present study empirically tested the validity of several methodological aspects. We found that (i) correction for multiple comparisons is required in the current implementation of SVR-LSM, (ii) that sample sizes of at least 100-120 subjects are required to optimally model voxel-wise lesion location in SVR-LSM, and (iii) that SVR-LSM is susceptible to misplacement of statistical topographies along the brain's vasculature to a similar extent as mass-univariate analyses.
Collapse
Affiliation(s)
- Christoph Sperber
- Centre of Neurology, Division of Neuropsychology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Daniel Wiesen
- Centre of Neurology, Division of Neuropsychology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Hans‐Otto Karnath
- Centre of Neurology, Division of Neuropsychology, Hertie‐Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Department of PsychologyUniversity of South CarolinaColumbiaSouth Carolina
| |
Collapse
|
19
|
Ramirez-Garcia G, Harrison KA, Fernandez-Ruiz J, Nashed JY, Cook DJ. Stroke Longitudinal Volumetric Measures Correlate with the Behavioral Score in Non-Human Primates. Neuroscience 2018; 397:41-55. [PMID: 30481566 DOI: 10.1016/j.neuroscience.2018.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
Stroke is the second leading cause of death worldwide. Brain imaging data from experimental rodent stroke models suggest that size and location of the ischemic lesion relate to behavioral outcome. However, such a relationship between these two variables has not been established in Non-Human Primate (NHP) models. Thus, we aimed to evaluate whether size, location, and severity of stroke following controlled Middle Cerebral Artery Occlusion (MCAO) in NHP model correlated to neurological outcome. Forty cynomolgus macaques underwent MCAO, after four mortalities, thirty-six subjects were followed up during the longitudinal study. Structural T2 scans were obtained by magnetic resonance imaging (MRI) prior to, 48 h, and 30 days post-MCAO. Neurological function was assessed with the Non-human Primate Stroke Scale (NHPSS). T2 whole lesion volume was calculated per subject. At chronic stages, remaining brain volume was computed, and the affected hemisphere parceled into 50 regions of interest (ROIs). Whole and parceled volumetric measures were analyzed in relation to the NHPSS score. The longitudinal lesion volume evaluation showed a positive correlation with the NHPSS score, whereas the remaining brain volume negatively correlated with the NHPSS. Following ROI parcellation, NHPSS outcome correlated with frontal, temporal, occipital, and middle white matter, as well as the internal capsule, and the superior temporal and middle temporal gyri, and the caudate nucleus. These results represent an important step in stroke translational research by demonstrating close similarities between the NHP stroke model and the clinical characteristics following a human stroke and illustrating significant areas that could represent targets for novel neuroprotective strategies.
Collapse
Affiliation(s)
- Gabriel Ramirez-Garcia
- Unidad Periférica de Neurociencias, Facultad de Medicina, Universidad Nacional Autónoma de México en Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez", Ciudad de México, Mexico
| | | | - Juan Fernandez-Ruiz
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Joseph Y Nashed
- Centre for Neuroscience studies, Queen's University, Kingston, Canada
| | - Douglas J Cook
- Centre for Neuroscience studies, Queen's University, Kingston, Canada; Translational Stroke Research Lab, Department of Surgery, Faculty of Health Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
20
|
Findlater SE, Hawe RL, Semrau JA, Kenzie JM, Yu AY, Scott SH, Dukelow SP. Lesion locations associated with persistent proprioceptive impairment in the upper limbs after stroke. Neuroimage Clin 2018; 20:955-971. [PMID: 30312939 PMCID: PMC6180343 DOI: 10.1016/j.nicl.2018.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 01/10/2023]
Abstract
Proprioceptive deficits are common after stroke and have been associated with poorer recovery. Relatively little is known about the brain regions beyond primary somatosensory cortex that contribute to the percept of proprioception in humans. We examined a large sample (n = 153) of stroke survivors longitudinally to determine which brain regions were associated with persistent post-stroke proprioceptive deficits. A robotic exoskeleton quantified two components of proprioception, position sense and kinesthesia (movement sense), at 2 weeks and again at 6 months post-stroke. A statistical region of interest (sROI) analysis compared the lesion-behaviour relationships of those subjects with cortical and subcortical stroke (n = 136). The impact of damage to brainstem and cerebellum (n = 17) was examined separately. Results indicate that damage to the supramarginal gyrus, the arcuate fasciculus, and Heschl's gyrus are associated with deficits in position sense and kinesthesia at 6 months post-stroke. These results suggest that regions beyond the primary somatosensory cortex contribute to our sense of limb position and movement. This information extends our understanding of proprioceptive processing and may inform personalized interventions such as non-invasive brain stimulation where specific brain regions can be targeted to potentially improve stroke recovery.
Collapse
Affiliation(s)
- Sonja E Findlater
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Rachel L Hawe
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Jennifer A Semrau
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Jeffrey M Kenzie
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
| | - Amy Y Yu
- Calgary Stroke Program, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada
| | - Stephen H Scott
- Department of Anatomy and Cell Biology, Queen's University, Botterell Hall, Room 219, Kingston, ON K7L 3N6, Canada; Providence Care, St. Mary's of the Lake Hospital, 340 Union St, Kingston, ON, Canada, K7L 5A2
| | - Sean P Dukelow
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada; Calgary Stroke Program, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 2500 University Dr. NW, Calgary T2N 1N4, AB, Canada.
| |
Collapse
|
21
|
Zhao L, Biesbroek JM, Shi L, Liu W, Kuijf HJ, Chu WW, Abrigo JM, Lee RK, Leung TW, Lau AY, Biessels GJ, Mok V, Wong A. Strategic infarct location for post-stroke cognitive impairment: A multivariate lesion-symptom mapping study. J Cereb Blood Flow Metab 2018; 38:1299-1311. [PMID: 28895445 PMCID: PMC6092771 DOI: 10.1177/0271678x17728162] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lesion location is an important determinant for post-stroke cognitive impairment. Although several 'strategic' brain regions have previously been identified, a comprehensive map of strategic brain regions for post-stroke cognitive impairment is lacking due to limitations in sample size and methodology. We aimed to determine strategic brain regions for post-stroke cognitive impairment by applying multivariate lesion-symptom mapping in a large cohort of 410 acute ischemic stroke patients. Montreal Cognitive Assessment at three to six months after stroke was used to assess global cognitive functioning and cognitive domains (memory, language, attention, executive and visuospatial function). The relation between infarct location and cognition was assessed in multivariate analyses at the voxel-level and the level of regions of interest using support vector regression. These two assumption-free analyses consistently identified the left angular gyrus, left basal ganglia structures and the white matter around the left basal ganglia as strategic structures for global cognitive impairment after stroke. A strategic network involving several overlapping and domain-specific cortical and subcortical structures was identified for each of the cognitive domains. Future studies should aim to develop even more comprehensive infarct location-based models for post-stroke cognitive impairment through multicenter studies including thousands of patients.
Collapse
Affiliation(s)
- Lei Zhao
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - J Matthijs Biesbroek
- 2 Department of Neurology, Utrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lin Shi
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.,3 Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenyan Liu
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hugo J Kuijf
- 5 Image Sciences Institute, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Winnie Wc Chu
- 6 Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jill M Abrigo
- 6 Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Ryan Kl Lee
- 6 Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Thomas Wh Leung
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Alexander Yl Lau
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Geert J Biessels
- 2 Department of Neurology, Utrecht Stroke Center, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Vincent Mok
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.,3 Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,4 Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China.,7 Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Adrian Wong
- 1 Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.,4 Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Ghai S. Effects of Real-Time (Sonification) and Rhythmic Auditory Stimuli on Recovering Arm Function Post Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2018; 9:488. [PMID: 30057563 PMCID: PMC6053522 DOI: 10.3389/fneur.2018.00488] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/15/2023] Open
Abstract
Background: External auditory stimuli have been widely used for recovering arm function post-stroke. Rhythmic and real-time auditory stimuli have been reported to enhance motor recovery by facilitating perceptuomotor representation, cross-modal processing, and neural plasticity. However, a consensus as to their influence for recovering arm function post-stroke is still warranted because of high variability noted in research methods. Objective: A systematic review and meta-analysis was carried out to analyze the effects of rhythmic and real-time auditory stimuli on arm recovery post stroke. Method: Systematic identification of published literature was performed according to PRISMA guidelines, from inception until December 2017, on online databases: Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE, and PROQUEST. Studies were critically appraised using PEDro scale. Results: Of 1,889 records, 23 studies which involved 585 (226 females/359 males) patients met our inclusion criteria. The meta-analysis revealed beneficial effects of training with both types of auditory inputs for Fugl-Meyer assessment (Hedge's g: 0.79), Stroke impact scale (0.95), elbow range of motion (0.37), and reduction in wolf motor function time test (-0.55). Upon further comparison, a beneficial effect of real-time auditory feedback was found over rhythmic auditory cueing for Fugl-meyer assessment (1.3 as compared to 0.6). Moreover, the findings suggest a training dosage of 30 min to 1 h for at least 3-5 sessions per week with either of the auditory stimuli. Conclusion: This review suggests the application of external auditory stimuli for recovering arm functioning post-stroke.
Collapse
Affiliation(s)
- Shashank Ghai
- Institute for Sports Science, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
23
|
Zhao L, Wong A, Luo Y, Liu W, Chu WWC, Abrigo JM, Lee RKL, Mok V, Shi L. The Additional Contribution of White Matter Hyperintensity Location to Post-stroke Cognitive Impairment: Insights From a Multiple-Lesion Symptom Mapping Study. Front Neurosci 2018; 12:290. [PMID: 29765301 PMCID: PMC5938410 DOI: 10.3389/fnins.2018.00290] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
White matter hyperintensities (WMH) are common in acute ischemic stroke patients. Although WMH volume has been reported to influence post-stroke cognition, it is still not clear whether WMH location, independent of acute ischemic lesion (AIL) volume and location, contributes to cognitive impairment after stroke. Here, we proposed a multiple-lesion symptom mapping model that considers both the presence of WMH and AIL to measure the additional contribution of WMH locations to post-stroke cognitive impairment. Seventy-six first-ever stroke patients with AILs in the left hemisphere were examined by Montreal Cognitive Assessment (MoCA) at baseline and 1 year after stroke. The association between the location of AIL and WMH and global cognition was investigated by a multiple-lesion symptom mapping (MLSM) model based on support vector regression (SVR). To explore the relative merits of MLSM over the existing lesion-symptom mapping approaches with only AIL considered (mass-univariate VLSM and SVR-LSM), we measured the contribution of the significant AIL and/or WMH clusters from these models to post-stroke cognitive impairment. In addition, we compared the significant WMH locations identified by the optimal SVR-MLSM model for cognitive impairment at baseline and 1 year post stroke. The identified strategic locations of WMH significantly contributed to the prediction of MoCA at baseline (short-term) and 1 year (long-term) after stroke independent of the strategic locations of AIL. The significant clusters of WMH for short-term and long-term post-stroke cognitive impairment were mainly in the corpus callosum, corona radiata, and posterior thalamic radiation. We noted that in some regions, the AIL clusters that were significant for short-term outcome were no longer significant for long-term outcome, and interestingly more WMH clusters in these regions became significant for long-term outcome compared to short-term outcome. This indicated that there are some regions where local WMH burden has larger impact than AIL burden on the long-term post-stroke cognitive impairment. In consequence, SVR-MLSM was effective in identifying the WMH locations that have additional impact on post-stroke cognition on top of AIL locations. Such a method can also be applied to other lesion-behavior studies where multiple types of lesions may have potential contributions to a specific behavior.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Adrian Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yishan Luo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenyan Liu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Winnie W C Chu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jill M Abrigo
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ryan K L Lee
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Vincent Mok
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,Therese Pei Fong Chow Research Centre for Prevention of Dementia, The Chinese University of Hong Kong, Shatin, Hong Kong.,Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, Hong Kong.,Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.,BrainNow Medical Technology Limited, Hong Kong Science and Technology Park, Shatin, Hong Kong
| |
Collapse
|
24
|
A hitchhiker's guide to lesion-behaviour mapping. Neuropsychologia 2017; 115:5-16. [PMID: 29066325 DOI: 10.1016/j.neuropsychologia.2017.10.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023]
Abstract
Lesion-behaviour mapping is an influential and popular approach to anatomically localise cognitive brain functions in the human brain. Multiple considerations, ranging from patient selection, assessment of lesion location and patient behaviour, spatial normalisation, statistical testing, to the anatomical interpretation of obtained results, are necessary to optimize a lesion-behaviour mapping study and arrive at meaningful conclusions. Here, we provide a hitchhiker's guide, giving practical guidelines and references for each step of the typical lesion-behaviour mapping study pipeline.
Collapse
|
25
|
Sperber C, Karnath HO. On the validity of lesion-behaviour mapping methods. Neuropsychologia 2017; 115:17-24. [PMID: 28782546 DOI: 10.1016/j.neuropsychologia.2017.07.035] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/11/2017] [Accepted: 07/30/2017] [Indexed: 01/13/2023]
Abstract
Brain lesion studies have been criticised for producing partly heterogeneous results; especially the validity of statistical voxel-based lesion-behaviour mapping has been discussed. In fact, planning a lesion-behaviour mapping study is associated with many methodological degrees of freedom. In the present review, we argue that not the lesion-behaviour mapping method itself produces heterogeneous results, but rather its heterogeneous or even erroneous application. We outline which methodological pitfalls and trade-offs can affect the results of lesion analyses, addressing behavioural assessment, recruitment of patients, statistical analysis, neuroimaging, and interpretation with brain atlases. Further, we discuss several methods to actually test the validity of lesion-behaviour mapping. Each of these approaches has specific advantages and disadvantages. In combination, they provide valuable tools to answer most empirical questions related to the validity of lesion-behaviour mapping.
Collapse
Affiliation(s)
- Christoph Sperber
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Center of Neurology, Division of Neuropsychology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Department of Psychology, University of South Carolina, Columbia, USA.
| |
Collapse
|
26
|
Fan AP, Guo J, Khalighi MM, Gulaka PK, Shen B, Park JH, Gandhi H, Holley D, Rutledge O, Singh P, Haywood T, Steinberg GK, Chin FT, Zaharchuk G. Long-Delay Arterial Spin Labeling Provides More Accurate Cerebral Blood Flow Measurements in Moyamoya Patients: A Simultaneous Positron Emission Tomography/MRI Study. Stroke 2017; 48:2441-2449. [PMID: 28765286 DOI: 10.1161/strokeaha.117.017773] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/05/2017] [Accepted: 06/21/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND PURPOSE Arterial spin labeling (ASL) MRI is a promising, noninvasive technique to image cerebral blood flow (CBF) but is difficult to use in cerebrovascular patients with abnormal, long arterial transit times through collateral pathways. To be clinically adopted, ASL must first be optimized and validated against a reference standard in these challenging patient cases. METHODS We compared standard-delay ASL (post-label delay=2.025 seconds), multidelay ASL (post-label delay=0.7-3.0 seconds), and long-label long-delay ASL acquisitions (post-label delay=4.0 seconds) against simultaneous [15O]-positron emission tomography (PET) CBF maps in 15 Moyamoya patients on a hybrid PET/MRI scanner. Dynamic susceptibility contrast was performed in each patient to identify areas of mild, moderate, and severe time-to-maximum (Tmax) delays. Relative CBF measurements by each ASL scan in 20 cortical regions were compared with the PET reference standard, and correlations were calculated for areas with moderate and severe Tmax delays. RESULTS Standard-delay ASL underestimated relative CBF by 20% in areas of severe Tmax delays, particularly in anterior and middle territories commonly affected by Moyamoya disease (P<0.001). Arterial transit times correction by multidelay acquisitions led to improved consistency with PET, but still underestimated CBF in the presence of long transit delays (P=0.02). Long-label long-delay ASL scans showed the strongest correlation relative to PET, and there was no difference in mean relative CBF between the modalities, even in areas of severe delays. CONCLUSIONS Post-label delay times of ≥4 seconds are needed and may be combined with multidelay strategies for robust ASL assessment of CBF in Moyamoya disease.
Collapse
Affiliation(s)
- Audrey P Fan
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.).
| | - Jia Guo
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Mohammad M Khalighi
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Praveen K Gulaka
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Bin Shen
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Jun Hyung Park
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Harsh Gandhi
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Dawn Holley
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Omar Rutledge
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Prachi Singh
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Tom Haywood
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Gary K Steinberg
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Frederick T Chin
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| | - Greg Zaharchuk
- From the Departments of Radiology (A.P.F., J.G., P.K.G., B.S., J.H.P., H.G., D.H., O.R., P.S., T.H., F.T.C., G.Z.) and Neurosurgery (G.K.S.), Stanford University, CA; and Global Applied Science Lab, GE Healthcare, Menlo Park, CA (M.M.K.)
| |
Collapse
|
27
|
Sperber C, Karnath HO. Impact of correction factors in human brain lesion-behavior inference. Hum Brain Mapp 2017; 38:1692-1701. [PMID: 28045225 DOI: 10.1002/hbm.23490] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/08/2022] Open
Abstract
Statistical voxel-based lesion-behavior mapping (VLBM) in neurological patients with brain lesions is frequently used to examine the relationship between structure and function of the healthy human brain. Only recently, two simulation studies noted reduced anatomical validity of this method, observing the results of VLBM to be systematically misplaced by about 16 mm. However, both simulation studies differed from VLBM analyses of real data in that they lacked the proper use of two correction factors: lesion size and "sufficient lesion affection." In simulation experiments on a sample of 274 real stroke patients, we found that the use of these two correction factors reduced misplacement markedly compared to uncorrected VLBM. Apparently, the misplacement is due to physiological effects of brain lesion anatomy. Voxel-wise topographies of collateral damage in the real data were generated and used to compute a metric for the inter-voxel relation of brain damage. "Anatomical bias" vectors that were solely calculated from these inter-voxel relations in the patients' real anatomical data, successfully predicted the VLBM misplacement. The latter has the potential to help in the development of new VLBM methods that provide even higher anatomical validity than currently available by the proper use of correction factors. Hum Brain Mapp 38:1692-1701, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christoph Sperber
- Division of Neuropsychology, Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Hans-Otto Karnath
- Division of Neuropsychology, Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychology, University of South Carolina, South Carolina, Columbia
| |
Collapse
|
28
|
Kenzie JM, Semrau JA, Findlater SE, Yu AY, Desai JA, Herter TM, Hill MD, Scott SH, Dukelow SP. Localization of Impaired Kinesthetic Processing Post-stroke. Front Hum Neurosci 2016; 10:505. [PMID: 27799902 PMCID: PMC5065994 DOI: 10.3389/fnhum.2016.00505] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/26/2016] [Indexed: 11/13/2022] Open
Abstract
Kinesthesia is our sense of limb motion, and allows us to gauge the speed, direction, and amplitude of our movements. Over half of stroke survivors have significant impairments in kinesthesia, which leads to greatly reduced recovery and function in everyday activities. Despite the high reported incidence of kinesthetic deficits after stroke, very little is known about how damage beyond just primary somatosensory areas affects kinesthesia. Stroke provides an ideal model to examine structure-function relationships specific to kinesthetic processing, by comparing lesion location with behavioral impairment. To examine this relationship, we performed voxel-based lesion-symptom mapping and statistical region of interest analyses on a large sample of sub-acute stroke subjects (N = 142) and compared kinesthetic performance with stroke lesion location. Subjects with first unilateral, ischemic stroke underwent neuroimaging and a comprehensive robotic kinesthetic assessment (~9 days post-stroke). The robotic exoskeleton measured subjects' ability to perform a kinesthetic mirror-matching task of the upper limbs without vision. The robot moved the stroke-affected arm and subjects' mirror-matched the movement with the unaffected arm. We found that lesions both within and outside primary somatosensory cortex were associated with significant kinesthetic impairments. Further, sub-components of kinesthesia were associated with different lesion locations. Impairments in speed perception were primarily associated with lesions to the right post-central and supramarginal gyri whereas impairments in amplitude of movement perception were primarily associated with lesions in the right pre-central gyrus, anterior insula, and superior temporal gyrus. Impairments in perception of movement direction were associated with lesions to bilateral post-central and supramarginal gyri, right superior temporal gyrus and parietal operculum. All measures of impairment shared a common association with damage to the right supramarginal gyrus. These results suggest that processing of kinesthetic information occurs beyond traditional sensorimotor areas. Additionally, this dissociation between kinesthetic sub-components may indicate specialized processing in these brain areas that form a larger distributed network.
Collapse
Affiliation(s)
- Jeffrey M Kenzie
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Jennifer A Semrau
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Sonja E Findlater
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada
| | - Amy Y Yu
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary AB, Canada
| | - Jamsheed A Desai
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary AB, Canada
| | - Troy M Herter
- Department of Exercise Science, University of South Carolina Columbia, SC, USA
| | - Michael D Hill
- Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary AB, Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Sean P Dukelow
- Division of Physical Medicine and Rehabilitation, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of CalgaryCalgary, AB, Canada; Calgary Stroke Program, Department of Clinical Neurosciences, University of CalgaryAB, Canada
| |
Collapse
|