1
|
Cocores AN, Smirnoff L, Greco G, Herrera R, Monteith TS. Update on Neuromodulation for Migraine and Other Primary Headache Disorders: Recent Advances and New Indications. Curr Pain Headache Rep 2025; 29:47. [PMID: 39954214 PMCID: PMC11829934 DOI: 10.1007/s11916-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 02/17/2025]
Abstract
PURPOSE OF REVIEW Neuromodulation techniques currently available for headache management are reviewed in this article, with a focus on recent advances in non-invasive devices for migraine and trigeminal autonomic cephalalgias. RECENT FINDINGS The currently available FDA-cleared non-invasive devices for migraine include transcutaneous supraorbital and supratrochlear nerve stimulation, single-pulse transcranial magnetic stimulation (sTMS), external concurrent occipital and trigeminal neurostimulation (eCOT-NS), remote electrical neuromodulation (REN), and non-invasive vagal nerve stimulation (nVNS) with indications for migraine and trigeminal autonomic cephalalgias. Emerging non-invasive techniques being explored for use in migraine include transcranial direct current stimulation (tDCS), kinetic oscillation stimulation (KOS), and auricular transcutaneous vagal nerve stimulation (at-VNS). In addition to primary headache, non-invasive neuromodulation is being investigated for comorbid conditions such as depression. Non-invasive neuromodulation devices remain a safe, well-tolerated, and effective therapy for patients with primarily migraine and trigeminal autonomic cephalalgias. Ongoing research is needed to determine efficacy in other headache disorders and comorbid conditions.
Collapse
Affiliation(s)
- Alexandra N Cocores
- Department of Neurology─Headache Division, University of Miami, Miller School of Medicine, 1120 NW 14Th Street, 13th floor, Miami, FL, 33136, USA
| | - Liza Smirnoff
- Department of Neurology─Headache Division, University of Miami, Miller School of Medicine, 1120 NW 14Th Street, 13th floor, Miami, FL, 33136, USA
| | - Guy Greco
- Department of Neurology─Headache Division, University of Miami, Miller School of Medicine, 1120 NW 14Th Street, 13th floor, Miami, FL, 33136, USA
| | - Ricardo Herrera
- Department of Neurology─Headache Division, University of Miami, Miller School of Medicine, 1120 NW 14Th Street, 13th floor, Miami, FL, 33136, USA
| | - Teshamae S Monteith
- Department of Neurology─Headache Division, University of Miami, Miller School of Medicine, 1120 NW 14Th Street, 13th floor, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Xiao S, Ebner NC, Manzouri A, Li TQ, Cortes DS, Månsson KNT, Fischer H. Age-dependent effects of oxytocin in brain regions enriched with oxytocin receptors. Psychoneuroendocrinology 2024; 160:106666. [PMID: 37951085 PMCID: PMC10841644 DOI: 10.1016/j.psyneuen.2023.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/03/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Although intranasal oxytocin administration to tap into central functions is the most commonly used non-invasive means for exploring oxytocin's role in human cognition and behavior, the way by which intranasal oxytocin acts on the brain is not yet fully understood. Recent research suggests that brain regions densely populated with oxytocin receptors may play a central role in intranasal oxytocin's action mechanisms in the brain. In particular, intranasal oxytocin may act directly on (subcortical) regions rich in oxytocin receptors via binding to these receptors while only indirectly affecting other (cortical) regions via their neural connections to oxytocin receptor-enriched regions. Aligned with this notion, the current study adopted a novel approach to test 1) whether the connections between oxytocin receptor-enriched regions (i.e., the thalamus, pallidum, caudate nucleus, putamen, and olfactory bulbs) and other regions in the brain were responsive to intranasal oxytocin administration, and 2) whether oxytocin-induced effects varied as a function of age. Forty-six young (24.96 ± 3.06 years) and 44 older (69.89 ± 2.99 years) participants were randomized, in a double-blind procedure, to self-administer either intranasal oxytocin or placebo before resting-state fMRI. Results supported age-dependency in the effects of intranasal oxytocin administration on connectivity between oxytocin receptor-enriched regions and other regions in the brain. Specifically, compared to placebo, oxytocin decreased both connectivity density and connectivity strength of the thalamus for young participants while it increased connectivity density and connectivity strength of the caudate for older participants. These findings inform the mechanisms underlying the effects of exogenous oxytocin on brain function and highlight the importance of age in these processes.
Collapse
Affiliation(s)
- Shanshan Xiao
- Department of Psychology, Stockholm University, Campus Albano hus 4, Albanovägen, SE-114 19 Stockholm, Sweden.
| | - Natalie C Ebner
- Department of Psychology, University of Florida, P.O. Box 112250, Gainesville, FL 32611-2250, USA; Cognitive Aging and Memory Program, Clinical Translational Research Program (CAM-CTRP), University of Florida, 2004 Mowry Road, Gainesville, FL 32611, USA; McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, FL 32610, USA.
| | - Amirhossein Manzouri
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Norra stationsgatan 69, SE-113 64 Stockholm, Sweden.
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Alfred Nobels Allé 8, SE-141 52 Huddinge, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| | - Diana S Cortes
- Department of Psychology, Stockholm University, Campus Albano hus 4, Albanovägen, SE-114 19 Stockholm, Sweden.
| | - Kristoffer N T Månsson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Norra stationsgatan 69, SE-113 64 Stockholm, Sweden.
| | - Håkan Fischer
- Department of Psychology, Stockholm University, Campus Albano hus 4, Albanovägen, SE-114 19 Stockholm, Sweden; Stockholm University Brain Imaging Center (SUBIC), SE-106 91 Stockholm, Sweden; Aging Research Center, Karolinska Institutet and Stockholm University, Tomtebodavägen 18 A, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
3
|
Persson H, Li TQ, Markovic G. CHANGES IN FUNCTIONAL CONNECTIVITY FOLLOWING INTENSIVE ATTENTION TRAINING IN PATIENTS WITH TRAUMATIC BRAIN INJURY. A PILOT STUDY. JOURNAL OF REHABILITATION MEDICINE. CLINICAL COMMUNICATIONS 2024; 7:12436. [PMID: 38264065 PMCID: PMC10802785 DOI: 10.2340/jrmcc.v7.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 12/21/2023] [Indexed: 01/25/2024]
Abstract
Objective To explore functional connectivity after intensive attention training in the chronic phase after traumatic brain injury as clinical evidence indicates that intensive attention training improves attention dysfunction in persons with traumatic brain injury. Design and subjects A case series study. Two young adults, 13- and 18-months post traumatic brain injury, with traumatic brain injury induced attention deficits were assigned to 20 h of intensive attention training and neuroimaging. Methods Functional magnetic resonance imaging during a psychomotor vigilance test was conducted pre- and post-intervention. Results The neuroimaging indicated both increased and decreased connectivity density in frontal, posterior and subcortical brain regions, for some regions with separate change patterns for left and right hemisphere respectively, and an overall reduction in variability in functional connectivity. Conclusion The changed and decreased variability of functional connectivity in various brain regions, captured by fMRI during a psychomotor vigilance test after direct attention training in a small sample of persons with traumatic brain injury, suggests further studies of functional connectivity changes in neural networks.
Collapse
Affiliation(s)
- Hanna Persson
- Division of Rehabilitation Medicine, Danderyd University Hospital
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet
- Department of Medical Radiation and Nuclear Medicine, Karolinska University Hospital
| | - Gabriela Markovic
- Division of Rehabilitation Medicine, Danderyd University Hospital
- Department of Clinical Sciences, Karolinska Institutet, Danderyd University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Rodriguez L, Pou C, Lakshmikanth T, Zhang J, Mugabo CH, Wang J, Mikes J, Olin A, Chen Y, Rorbach J, Juto JE, Li TQ, Julin P, Brodin P. Achieving symptom relief in patients with myalgic encephalomyelitis by targeting the neuro-immune interface and optimizing disease tolerance. OXFORD OPEN IMMUNOLOGY 2023; 4:iqad003. [PMID: 37255930 PMCID: PMC10148714 DOI: 10.1093/oxfimm/iqad003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/05/2023] [Accepted: 03/24/2023] [Indexed: 06/01/2023] Open
Abstract
Myalgic encephalomyelitis (ME) previously also known as chronic fatigue syndrome is a heterogeneous, debilitating syndrome of unknown etiology responsible for long-lasting disability in millions of patients worldwide. The most well-known symptom of ME is post-exertional malaise, but many patients also experience autonomic dysregulation, cranial nerve dysfunction and signs of immune system activation. Many patients also report a sudden onset of disease following an infection. The brainstem is a suspected focal point in ME pathogenesis and patients with structural impairment to the brainstem often show ME-like symptoms. The brainstem is also where the vagus nerve originates, a critical neuro-immune interface and mediator of the inflammatory reflex which regulate systemic inflammation. Here, we report the results of a randomized, placebo-controlled trial using intranasal mechanical stimulation targeting nerve endings in the nasal cavity, likely from the trigeminal nerve, possibly activating additional centers in the brainstem of ME patients and correlating with a ∼30% reduction in overall symptom scores after 8 weeks of treatment. By performing longitudinal, systems-level monitoring of the blood immune system in these patients, we uncover signs of chronic immune activation in ME, as well as immunological correlates of improvement that center around gut-homing immune cells and reduced inflammation. The mechanisms of symptom relief remain to be determined, but transcriptional analyses suggest an upregulation of disease tolerance mechanisms. We believe that these results are suggestive of ME as a condition explained by a maladaptive disease tolerance response following infection.
Collapse
Affiliation(s)
- Lucie Rodriguez
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | | | | | - Jingdian Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17176, Sweden
- Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet, Solna 17176, Sweden
| | | | - Jun Wang
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Jaromir Mikes
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Axel Olin
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Yang Chen
- Department of Women’s and Children’s Health, Karolinska Institutet, Solna 17121, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna 17176, Sweden
- Max Planck Institute Biology of Ageing—Karolinska Institutet Laboratory, Karolinska Institutet, Solna 17176, Sweden
| | - Jan-Erik Juto
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Solna 17177, Sweden
| | - Tie Qiang Li
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Solna 17177, Sweden
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna 17176, Sweden
| | - Per Julin
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna 17176, Sweden
- Neurological Rehabilitation Clinic, Stora Sköndal, Sköndal 12864, Sweden
| | | |
Collapse
|
5
|
Resting-state occipital alpha power is associated with treatment outcome in patients with chronic migraine. Pain 2022; 163:1324-1334. [PMID: 35708466 DOI: 10.1097/j.pain.0000000000002516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Preventive treatment is crucial for patients with chronic migraine (CM). This study explored the association between resting-state cortical oscillations and 3-month treatment outcome in patients with CM. Treatment-naïve patients with CM were recruited with their demographic data, psychosocial data, and headache profiles as well as the healthy controls (HCs). Resting-state cortical activities were recorded using an electroencephalogram and analysed using source-based and electrode-based spectral power method. The regions of interest were the bilateral primary somatosensory (S1) and visual (V1) cortices. After 3-month treatment with flunarizine, patients with CM were categorized into responders and nonresponders. Demographic, clinical, and electroencephalogram data from 72 patients with CM and 50 HCs were analysed. Elevated anxiety, depression, and stress were observed in patients with CM. Theta power in bilateral S1 and alpha and gamma powers in the right S1 increased in patients with CM. Nonresponders (n = 34) exhibited larger alpha powers in bilateral V1 than those in responders (n = 38). Alpha powers also exhibited significant correlations with changes of monthly headache days. Notably, in responders and nonresponders, occipital alpha powers did not differ at baseline and in the third month. In conclusion, patients with CM who were not responsive to preventive treatment were associated with augmented resting-state occipital alpha activity. Moreover, changes in migraine attack frequency were associated with baseline occipital alpha power. However, the prognostic feature of visual alpha oscillation seems to be inherent because it is not altered by flunarizine treatment. These findings may be useful for developing personalised migraine treatment plans.
Collapse
|
6
|
Vibration, a treatment for migraine, linked to calpain driven changes in actin cytoskeleton. PLoS One 2022; 17:e0262058. [PMID: 35482731 PMCID: PMC9049534 DOI: 10.1371/journal.pone.0262058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding how a human cell reacts to external physical stimuli is essential to understanding why vibration can elicit localized pain reduction. Stimulation of epithelial cells with external vibration forces has been shown to change cell shape, particularly in regards to structures involved in non-muscle cell motility. We hypothesized that epithelial cells respond to vibration transduction by altering proteins involved in remodeling cytoskeleton. Epithelial cells were exposed to vibration and assessed by microscopy, cytoskeletal staining, immunoblotting and quantitative RT-PCR. Here, we report that epithelial cell lines exposed to 15 minutes of vibration retract filopodia and concentrate actin at the periphery of the cell. In particular, we show an increased expression of the calcium-dependent, cysteine protease, calpain. The discovery that cell transitions are induced by limited exposure to natural forces, such as vibration, provides a foundation to explain how vibrational treatment helps migraine patients.
Collapse
|
7
|
Dataset of whole-brain resting-state fMRI of 227 young and elderly adults acquired at 3T. Data Brief 2021; 38:107333. [PMID: 34504919 PMCID: PMC8417222 DOI: 10.1016/j.dib.2021.107333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
To investigate the impact of adult age on the brain functional connectivity, whole-brain resting-state functional magnetic resonance imaging (R-fMRI) data were acquired on a 3T clinical MRI scanner in a cohort of 227, right-handed, native Swedish-speaking, healthy adult volunteers (N=227, aged 18-74 years old, male/female=99/128). The dataset is mainly consisted of a younger (18-30 years old n=124, males/females=51/73) and elderly adult (n=76, 60-76 years old, males/females=35/41) subgroups. The dataset was analyzed using a new data-driven analysis (QDA) framework. With QDA two types of threshold-free voxel-wise resting-state functional connectivity (RFC) metrics were derived: the connectivity strength index (CSI) and connectivity density index (CDI), which can be utilized to assess the brain changes in functional connectivity associated with adult age. The dataset can also be useful as a reference to identify abnormal changes in brain functional connectivity resulted from neurodegenerative or neuropsychiatric disorders.
Collapse
|
8
|
Evers S. Non-Invasive Neurostimulation Methods for Acute and Preventive Migraine Treatment-A Narrative Review. J Clin Med 2021; 10:3302. [PMID: 34362086 PMCID: PMC8347785 DOI: 10.3390/jcm10153302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Neurostimulation methods have now been studied for more than 20 years in migraine treatment. They can be divided into invasive and non-invasive methods. In this narrative review, the non-invasive methods are presented. The most commonly studied and used methods are vagal nerve stimulation, electric peripheral nerve stimulation, transcranial magnetic stimulation, and transcranial direct current stimulation. Other stimulation techniques, including mechanical stimulation, play only a minor role. Nearly all methods have been studied for acute attack treatment and for the prophylactic treatment of migraine. The evidence of efficacy is poor for most procedures, since no stimulation device is based on consistently positive, blinded, controlled trials with a sufficient number of patients. In addition, most studies on these devices enrolled patients who did not respond sufficiently to oral drug treatment, and so the role of neurostimulation in an average population of migraine patients is unknown. In the future, it is very important to conduct large, properly blinded and controlled trials performed by independent researchers. Otherwise, neurostimulation methods will only play a very minor role in the treatment of migraine.
Collapse
Affiliation(s)
- Stefan Evers
- Faculty of Medicine, University of Münster, 48153 Münster, Germany;
- Department of Neurology, Lindenbrunn Hospital, 31863 Coppenbrügge, Germany
| |
Collapse
|
9
|
Hilderman M, Bruchfeld A. The cholinergic anti-inflammatory pathway in chronic kidney disease-review and vagus nerve stimulation clinical pilot study. Nephrol Dial Transplant 2021; 35:1840-1852. [PMID: 33151338 PMCID: PMC7643692 DOI: 10.1093/ndt/gfaa200] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/17/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation and autonomic dysfunction are common findings in chronic and end-stage kidney disease and contribute to a markedly increased risk of mortality in this patient population. The cholinergic anti-inflammatory pathway (CAP) is a vagal neuro-immune circuit that upholds the homoeostatic balance of inflammatory activity in response to cell injury and pathogens. CAP models have been examined in preclinical studies to investigate its significance in a range of clinical inflammatory conditions and diseases. More recently, cervical vagus nerve stimulation (VNS) implants have been shown to be of potential benefit for patients with chronic autoimmune diseases such as rheumatoid arthritis and inflammatory bowel disease. We have previously shown that dialysis patients have a functional CAP ex vivo. Here we review the field and the potential role of the CAP in acute kidney injury and chronic kidney disease (CKD) as well as in hypertension. We also present a VNS pilot study in haemodialysis patients. Controlling inflammation by neuroimmune modulation may lead to new therapeutic modalities for improved treatment, outcome, prognosis and quality of life for patients with CKD.
Collapse
Affiliation(s)
- Marie Hilderman
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Annette Bruchfeld
- Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Health, Medicine and Caring Sciences, Division of Diagnostics and Specialist Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
10
|
Enhanced functional connectivity between insular subregions correlates with the efficacy of music and instruction-guided relaxation in depression. Neuroreport 2020; 31:1215-1224. [PMID: 33105441 DOI: 10.1097/wnr.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Music and instruction-guided relaxation (MIGR) is a complementary therapeutic tool used in the treatment of the major depressive disorder (MDD). However, the neural mechanism that underlies the effect of MIGR on MDD patients is not known. Twenty-three right-handed MDD patients and 23 age-, sex-, handedness-, and educational level-matched healthy controls were enrolled. Resting-state functional MRI data were acquired from patients before and after MIGR and from healthy controls. The relationships between insular subregion-based functional connectivity and Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale (HAM-A), Automatic Thoughts Questionnaire, and Ruminative Responses Scale scores were examined. One-way analysis of variance exhibited significant differences among the three groups in functional connectivity between the left dorsal anterior insula (dAI) and left superior medial frontal gyrus (SMFG), left dAI and left precuneus, left posterior insula and left gyrus rectus, right ventral anterior insula (vAI) and left posterior cingulate cortex (PCC), right vAI and right inferior frontal gyrus (R-IFG). Further comparisons in regions of interest showed that MDD patients before MIGR showed decreased functional connectivity between the left dAI and left SMFG, left dAI and left precuneus, left posterior insula, and left gyrus rectus, right vAI and left PCC, right vAI and R-IFG relative to those in healthy controls. The strength of functional connectivity between the right dAI and left putamen also exhibited a negative correlation with the HAM-A score in MDD cases before MIGR. MIGR may result in enhanced functional connectivity in insular subregions, thereby potentially increasing the regulatory influence of cognitive reappraisal.
Collapse
|
11
|
Coppola G, Parisi V, Di Renzo A, Pierelli F. Cortical pain processing in migraine. J Neural Transm (Vienna) 2019; 127:551-566. [DOI: 10.1007/s00702-019-02089-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022]
|
12
|
Wang Y, Berglund IS, Uppman M, Li TQ. Juvenile myoclonic epilepsy has hyper dynamic functional connectivity in the dorsolateral frontal cortex. Neuroimage Clin 2018; 21:101604. [PMID: 30527355 PMCID: PMC6412974 DOI: 10.1016/j.nicl.2018.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 08/20/2018] [Accepted: 11/18/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Characterize the static and dynamic functional connectivity for subjects with juvenile myoclonic epilepsy (JME) using a quantitative data-driven analysis approach. METHODS Whole-brain resting-state functional MRI data were acquired on a 3 T whole-body clinical MRI scanner from 18 subjects clinically diagnosed with JME and 25 healthy control subjects. 2-min sliding-window approach was incorporated in the quantitative data-driven data analysis framework to assess both the dynamic and static functional connectivity in the resting brains. Two-sample t-tests were performed voxel-wise to detect the differences in functional connectivity metrics based on connectivity strength and density. RESULTS The static functional connectivity metrics based on quantitative data-driven analysis of the entire 10-min acquisition window of resting-state functional MRI data revealed significantly enhanced functional connectivity in JME patients in bilateral dorsolateral prefrontal cortex, dorsal striatum, precentral and middle temporal gyri. The dynamic functional connectivity metrics derived by incorporating a 2-min sliding window into quantitative data-driven analysis demonstrated significant hyper dynamic functional connectivity in the dorsolateral prefrontal cortex, middle temporal gyrus and dorsal striatum. Connectivity strength metrics (both static and dynamic) can detect more extensive functional connectivity abnormalities in the resting-state functional networks (RFNs) and depict also larger overlap between static and dynamic functional connectivity results. CONCLUSION Incorporating a 2-min sliding window into quantitative data-driven analysis of resting-state functional MRI data can reveal additional information on the temporally fluctuating RFNs of the human brain, which indicate that RFNs involving dorsolateral prefrontal cortex have temporal varying hyper dynamic characteristics in JME patients. Assessing dynamic along with static functional connectivity may provide further insights into the abnormal function connectivity underlying the pathological brain functioning in JME.
Collapse
Affiliation(s)
- Yanlu Wang
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden.
| | - Ivanka Savic Berglund
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden; Department of Neurology, Karolinska University Hospital, Sweden; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Martin Uppman
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden
| | - Tie-Qiang Li
- Department of Clinical Science, Intervention, and Technology, Karolinska Institute, Stockholm, Sweden; Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Sweden
| |
Collapse
|
13
|
Juto A, Juto AJ, von Hofsten P, Jörgensen F. Kinetic oscillatory stimulation of nasal mucosa in non-allergic rhinitis: comparison of patient self-administration and caregiver administration regarding pain and treatment effect. A randomized clinical trial. Acta Otolaryngol 2017; 137:850-855. [PMID: 28498078 DOI: 10.1080/00016489.2017.1284342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CONCLUSION Patient self-administration of the Kinetic Oscillatory Stimulation (KOS)-catheter was a fully acceptable alternative to insertion of the catheter by physician with helmet fixation, in patients with non-allergic rhinitis (NAR). The approaches were equivalent regarding pain. The treatment effect in the patient self-administration group was not inferior. OBJECTIVES To evaluate whether self-administration of a KOS-catheter was different compared to insertion by a physician, assessed with patient reported pain on a visual analogue scale (VAS). Also, to evaluate the difference in nasal stuffiness with the Sino-Nasal Outcome Test (SNOT-22) and Peak Nasal Inspiratory Flow (PNIF). METHODS Patients with NAR were randomized to group 1, patient insertion of catheter and manual fixation, and group 2, catheter insertion by physician and fixation with a helmet. Patients were treated once, 10 min in each nasal cavity, and followed up 14 days later. RESULTS Twenty-nine patients were included (group 1, n = 14; group 2, n = 15). There was no statistical significant difference in patient reported pain between groups. There was a decrease in nasal stuffiness after treatment in the total study population (n = 26, p = 0.001). In group 1 nasal stuffiness was decreased and in group 2 there was no change (group 1, p = 0.004; group 2, p = 0.071). No statistical significant change in PNIF was observed.
Collapse
Affiliation(s)
- Alexander Juto
- FOUU Halland, Halmstad County Hospital, Halmstad, Sweden
| | | | - Per von Hofsten
- Ear, Nose and Throat Clinic, Halmstad County Hospital, Halmstad, Sweden
| | - Finn Jörgensen
- Ear, Nose and Throat Clinic, Halmstad County Hospital, Halmstad, Sweden
| |
Collapse
|
14
|
Jerling M, Cygankiewicz I, Al-Tawil N, Darpo B, Ljungström A, Zareba W. Effects of intranasal kinetic oscillation stimulation on heart rate variability. Ann Noninvasive Electrocardiol 2017; 23. [PMID: 28590043 PMCID: PMC6931765 DOI: 10.1111/anec.12474] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 04/13/2017] [Indexed: 01/12/2023] Open
Abstract
Background Kinetic oscillation stimulation in the nasal cavity (KOS) has been shown to have positive symptomatic effects in subjects with non‐allergic rhinitis and in patients with migraine. Methods To evaluate the effect of KOS on autonomic function, we assessed heart rate variability (HRV) in this small exploratory study in 12 healthy subjects. KOS treatment was performed using a minimally invasive system with a single‐use catheter inserted into the nasal cavity. During treatment, the tip was inflated and oscillated with a mean pressure of 95 millibar and amplitude of the oscillations of 100 millibar at a frequency of 68 Hz. Treatment was given for 15 minutes sequentially on each side. Heart rate variability was assessed during five 30‐minutes periods before, during and immediately after KOS treatment and 3.5 hours thereafter. KOS resulted in a substantial reduction of HRV. Results As compared to baseline recorded during 30 minutes preceding treatment, VLF was reduced by 65%, LF by 55%, the ratio LF/HF by 44%, with somewhat smaller observed effects in the time domain; SDNN and RMSDD were reduced by of 36% and 18%, respectively. Heart rate remained stable during treatment with minimal mean changes from 68 ± 7 bpm before to 68 ± 9 and 69 ± 9 bpm during and after treatment. Reduction of HRV parameters was consistently seen in all subjects, with rapid onset and return towards baseline values during post‐treatment observation periods. Conclusions KOS has an effect on the autonomic balance with pronounced heart‐rate independent reduction on HRV.
Collapse
Affiliation(s)
| | - Iwona Cygankiewicz
- Department of Electrocardiology, Medical University of Lodz, Lodz, Poland
| | - Nabil Al-Tawil
- Karolinska Trial Alliance Phase I Unit, Karolinska University Hospital, Huddinge, Sweden
| | - Borje Darpo
- iCardiac Technologies, Inc., Rochester, NY, USA.,Division of Cardiovascular Medicine, Department of Clinical Sciences, Danderyd's Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Wojciech Zareba
- Heart Research Follow Up Program, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|