1
|
Jao CW, Wu HM, Wang TY, Duan CA, Wang PS, Wu YT. Morphological changes of cerebral gray matter in spinocerebellar ataxia type 3 using fractal dimension analysis. PROGRESS IN BRAIN RESEARCH 2024; 290:1-21. [PMID: 39448107 DOI: 10.1016/bs.pbr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 10/26/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease, presents as a cerebellar cognitive affective syndrome (CCAS) and represents the predominant SCA genotype in Taiwan. Beyond cerebellar involvement, SCA3 patients exhibit cerebral atrophy. While prior neurodegenerative disease studies relied on voxel-based morphometry (VBM) for brain atrophy assessment, its qualitative nature limits individual and region-specific evaluations. To address this, we employed fractal dimension (FD) analysis to quantify cortical complexity changes in SCA3 patients. We examined 50 SCA3 patients and 50 age- and sex-matched healthy controls (HC), dividing MRI cerebral gray matter (GM) into 68 auto-anatomical subregions. Using three-dimensional FD analysis, we identified GM atrophy manifestations in SCA3 patients. Results revealed lateral atrophy symptoms in the left frontal, parietal, and occipital lobes, and fewer symptoms in the right hemisphere's parietal and occipital lobes. Focal areas of atrophy included regions previously identified in SCA3 studies, alongside additional regions with decreased FD values. Bilateral postcentral gyrus and inferior parietal gyrus exhibited pronounced atrophy, correlating with Scale for the Assessment and Rating of Ataxia (SARA) scores and disease duration. Notably, the most notable focal areas were the bilateral postcentral gyrus and the left superior temporal gyrus, serving as imaging biomarkers for SCA3. Our study enhances understanding of regional brain atrophy in SCA3, corroborating known clinical features while offering new insights into disease progression.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Tzu-Yun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Quanta Computer, Taipei, Taiwan
| | - Chien-An Duan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Guishan, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan.
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
2
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Chen Y, Jin Y, Hu Z, Qiu M, Li D, Cai Q, Tao C, Lou D, Qi L, Chen S, Yu H, Gao Z. Association Between Serum Neurofilament Light Chain and Neurochemistry Deficits in Patients with Spinocerebellar Ataxia Type 3. CEREBELLUM (LONDON, ENGLAND) 2024; 23:92-100. [PMID: 36598718 DOI: 10.1007/s12311-022-01507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Extensive evidence supports the claim that the serum neurofilament light chain (sNfL) can be used as a biomarker to monitor disease severity in patients with spinocerebellar ataxia type 3 (SCA3). However, little is known about the associations between sNfL levels and neurochemical alterations in SCA3 patients. In this study, we performed a cross-sectional study to analyze the association between sNfL and brain metabolic changes in SCA3 patients. The severity of ataxia was assessed by using the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). The sNfL levels and brain metabolic changes, represented by N-acetyl aspartate (NAA)/creatine (Cr) and choline complex (Cho)/Cr ratios, were measured by a single-molecule array and proton magnetic resonance spectroscopy, respectively. In this cohort, we observed consistently elevated sNfL levels and reduced brain metabolites in the cerebellar hemispheres, dentate nucleus, and cerebellar vermis. However, this correlation was further validated in the cerebellar cortex after analysis using pairwise comparisons and a Bonferroni correction. Taken together, our results further confirmed that sNfL levels were increased in SCA3 patients and were negatively correlated with metabolic changes in the cerebellar cortex. Our data also support the idea that sNfL levels are a promising potential complementary biomarker for patients with SCA3.
Collapse
Affiliation(s)
- Yuchao Chen
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yi Jin
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
| | - Zhouyao Hu
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
| | - Mengqiu Qiu
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
| | - Dan Li
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiusi Cai
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
| | - Chenjuan Tao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
| | - Danning Lou
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China
| | - Le Qi
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Sidan Chen
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hao Yu
- Department of Neurology and Department of Medical Genetics in Second Affiliated Hospital, and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhongming Gao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, 126 Wenzhou Rd, Hangzhou, China.
| |
Collapse
|
4
|
Davidson JM, Zhang L, Yue GH, Di Ieva A. Fractal Dimension Studies of the Brain Shape in Aging and Neurodegenerative Diseases. ADVANCES IN NEUROBIOLOGY 2024; 36:329-363. [PMID: 38468041 DOI: 10.1007/978-3-031-47606-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The fractal dimension is a morphometric measure that has been used to investigate the changes of brain shape complexity in aging and neurodegenerative diseases. This chapter reviews fractal dimension studies in aging and neurodegenerative disorders in the literature. Research has shown that the fractal dimension of the left cerebral hemisphere increases until adolescence and then decreases with aging, while the fractal dimension of the right hemisphere continues to increase until adulthood. Studies in neurodegenerative diseases demonstrated a decline in the fractal dimension of the gray matter and white matter in Alzheimer's disease, amyotrophic lateral sclerosis, and spinocerebellar ataxia. In multiple sclerosis, the white matter fractal dimension decreases, but conversely, the fractal dimension of the gray matter increases at specific stages of disease. There is also a decline in the gray matter fractal dimension in frontotemporal dementia and multiple system atrophy of the cerebellar type and in the white matter fractal dimension in epilepsy and stroke. Region-specific changes in fractal dimension have also been found in Huntington's disease and Parkinson's disease. Associations were found between the fractal dimension and clinical scores, showing the potential of the fractal dimension as a marker to monitor brain shape changes in normal or pathological processes and predict cognitive or motor function.
Collapse
Affiliation(s)
- Jennilee M Davidson
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Guang H Yue
- Center for Mobility and Rehabilitation Engineering Research, Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Antonio Di Ieva
- Computational Neurosurgery (CNS) Lab, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, NSW, Australia
| |
Collapse
|
5
|
Selvadurai LP, Perlman SL, Wilmot GR, Subramony SH, Gomez CM, Ashizawa T, Paulson HL, Onyike CU, Rosenthal LS, Sair HI, Kuo SH, Ratai EM, Zesiewicz TA, Bushara KO, Öz G, Dietiker C, Geschwind MD, Nelson AB, Opal P, Yacoubian TA, Nopoulos PC, Shakkottai VG, Figueroa KP, Pulst SM, Morrison PE, Schmahmann JD. The S-Factor, a New Measure of Disease Severity in Spinocerebellar Ataxia: Findings and Implications. CEREBELLUM (LONDON, ENGLAND) 2023; 22:790-809. [PMID: 35962273 PMCID: PMC10363993 DOI: 10.1007/s12311-022-01424-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Spinocerebellar ataxias (SCAs) are progressive neurodegenerative disorders, but there is no metric that predicts disease severity over time. We hypothesized that by developing a new metric, the Severity Factor (S-Factor) using immutable disease parameters, it would be possible to capture disease severity independent of clinical rating scales. Extracting data from the CRC-SCA and READISCA natural history studies, we calculated the S-Factor for 438 participants with symptomatic SCA1, SCA2, SCA3, or SCA6, as follows: ((length of CAG repeat expansion - maximum normal repeat length) /maximum normal repeat length) × (current age - age at disease onset) × 10). Within each SCA type, the S-Factor at the first Scale for the Assessment and Rating of Ataxia (SARA) visit (baseline) was correlated against scores on SARA and other motor and cognitive assessments. In 281 participants with longitudinal data, the slope of the S-Factor over time was correlated against slopes of scores on SARA and other motor rating scales. At baseline, the S-Factor showed moderate-to-strong correlations with SARA and other motor rating scales at the group level, but not with cognitive performance. Longitudinally the S-Factor slope showed no consistent association with the slope of performance on motor scales. Approximately 30% of SARA slopes reflected a trend of non-progression in motor symptoms. The S-Factor is an observer-independent metric of disease burden in SCAs. It may be useful at the group level to compare cohorts at baseline in clinical studies. Derivation and examination of the S-factor highlighted challenges in the use of clinical rating scales in this population.
Collapse
Affiliation(s)
- Louisa P Selvadurai
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan L Perlman
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - George R Wilmot
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Sub H Subramony
- Department of Neurology, University of Florida College of Medicine, McKnight Brain Institute, Gainesville, FL, USA
| | | | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Chiadi U Onyike
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haris I Sair
- Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
| | - Eva-Maria Ratai
- Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Theresa A Zesiewicz
- Department of Neurology, Ataxia Research Center, University of South Florida, Tampa, FL, USA
| | - Khalaf O Bushara
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Cameron Dietiker
- Department of Neurology, University of California, San Francisco, CA, USA
| | | | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Puneet Opal
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Talene A Yacoubian
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Peggy C Nopoulos
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Vikram G Shakkottai
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Karla P Figueroa
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
| | - Peter E Morrison
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeremy D Schmahmann
- Ataxia Center, Cognitive Behavioral Neurology Unit, Laboratory for Neuroanatomy and Cerebellar Neurobiology, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Yap KH, Abdul Manan H, Yahya N, Azmin S, Mohamed Mukari SA, Mohamed Ibrahim N. Magnetic Resonance Imaging and Its Clinical Correlation in Spinocerebellar Ataxia Type 3: A Systematic Review. Front Neurosci 2022; 16:859651. [PMID: 35757531 PMCID: PMC9226753 DOI: 10.3389/fnins.2022.859651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is a complex cerebrocerebellar disease primarily characterized by ataxia symptoms alongside motor and cognitive impairments. The heterogeneous clinical presentation of SCA3 necessitates correlations between magnetic resonance imaging (MRI) and clinical findings in reflecting progressive disease changes. At present, an attempt to systematically examine the brain-behavior relationship in SCA3, specifically, the correlation between MRI and clinical findings, is lacking. Objective We investigated the association strength between MRI abnormality and each clinical symptom to understand the brain-behavior relationship in SCA3. Methods We conducted a systematic review on Medline and Scopus to review studies evaluating the brain MRI profile of SCA3 using structural MRI (volumetric, voxel-based morphometry, surface analysis), magnetic resonance spectroscopy, and diffusion tensor imaging, including their correlations with clinical outcomes. Results Of 1,767 articles identified, 29 articles met the eligibility criteria. According to the National Institutes of Health quality assessment tool for case-control studies, all articles were of excellent quality. This systematic review found that SCA3 neuropathology contributes to widespread brain degeneration, affecting the cerebellum and brainstem. The disease gradually impedes the cerebral cortex and basal ganglia in the late stages of SCA3. Most findings reported moderate correlations (r = 0.30–0.49) between MRI features in several regions and clinical findings. Regardless of the MRI techniques, most studies focused on the brainstem and cerebellum. Conclusions Clinical findings suggest that rather than individual brain regions, the connectivity between different brain regions in distributed networks (i.e., cerebellar-cerebral network) may be responsible for motor and neurocognitive function in SCA3. This review highlights the importance of evaluating the progressive changes of the cerebellar-cerebral networks in SCA3 patients, specifically the functional connectivity. Given the relative lack of knowledge about functional connectivity on SCA3, future studies should investigate possible functional connectivity abnormalities in SCA3 using fMRI.
Collapse
Affiliation(s)
- Kah Hui Yap
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Hanani Abdul Manan
- Makmal Pemprosesan Imej Kefungsian, Department of Radiology, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia.,Department of Radiology and Intervency, Hospital Pakar Kanan-Kanak, Children Specialist Hospital, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Noorazrul Yahya
- School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, National University of Malaysia, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Shahizon Azura Mohamed Mukari
- Makmal Pemprosesan Imej Kefungsian, Department of Radiology, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Universiti Kebangsaan Malaysia (UKM) Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Fractal dimension of the brain in neurodegenerative disease and dementia: A systematic review. Ageing Res Rev 2022; 79:101651. [PMID: 35643264 DOI: 10.1016/j.arr.2022.101651] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 12/25/2022]
Abstract
Sensitive and specific antemortem biomarkers of neurodegenerative disease and dementia are crucial to the pursuit of effective treatments, required both to reliably identify disease and to track its progression. Atrophy is the structural magnetic resonance imaging (MRI) hallmark of neurodegeneration. However in most cases it likely indicates a relatively advanced stage of disease less susceptible to treatment as some disease processes begin decades prior to clinical onset. Among emerging metrics that characterise brain shape rather than volume, fractal dimension (FD) quantifies shape complexity. FD has been applied in diverse fields of science to measure subtle changes in elaborate structures. We review its application thus far to structural MRI of the brain in neurodegenerative disease and dementia. We identified studies involving subjects who met criteria for mild cognitive impairment, Alzheimer's Disease, Vascular Dementia, Lewy Body Dementia, Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, Parkinson's Disease, Huntington's Disease, Multiple Systems Atrophy, Spinocerebellar Ataxia and Multiple Sclerosis. The early literature suggests that neurodegenerative disease processes are usually associated with a decline in FD of the brain. The literature includes examples of disease-related change in FD occurring independently of atrophy, which if substantiated would represent a valuable advantage over other structural imaging metrics. However, it is likely to be non-specific and to exhibit complex spatial and temporal patterns. A more harmonious methodological approach across a larger number of studies as well as careful attention to technical factors associated with image processing and FD measurement will help to better elucidate the metric's utility.
Collapse
|
8
|
Chen H, Dai L, Zhang Y, Feng L, Jiang Z, Wang X, Xie D, Guo J, Chen H, Wang J, Liu C. Network Reconfiguration Among Cerebellar Visual, and Motor Regions Affects Movement Function in Spinocerebellar Ataxia Type 3. Front Aging Neurosci 2022; 14:773119. [PMID: 35478700 PMCID: PMC9036064 DOI: 10.3389/fnagi.2022.773119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/14/2022] [Indexed: 12/01/2022] Open
Abstract
Background Spinocerebellar ataxia type 3 (SCA3) is a rare movement disorder characterized with ataxia. Previous studies on movement disorders show that the whole-brain functional network tends to be more regular, and these reconfigurations correlate with genetic and clinical variables. Methods To test whether the brain network in patients with SCA3 follows a similar reconfiguration course to other movement disorders, we recruited 41 patients with SCA3 (mean age = 40.51 ± 12.13 years; 23 male) and 41 age and sex-matched healthy individuals (age = 40.10 ± 11.56 years; 24 male). In both groups, the whole-brain network topology of resting-state functional magnetic resonance imaging (rs-fMRI) was conducted using graph theory, and the relationships among network topologies, cytosine-adenine-guanine (CAG) repeats, clinical symptoms, and functional connectivity were explored in SCA3 patients using partial correlation analysis, controlling for age and sex. Results The brain networks tended to be more regular with a higher clustering coefficient, local efficiency, and modularity in patients with SCA3. Hubs in SCA3 patients were reorganized as the number of hubs increased in motor-related areas and decreased in cognitive areas. At the global level, small-worldness and normalized clustering coefficients were significantly positively correlated with clinical motor symptoms. At the nodal level, the clustering coefficient and local efficiency increased significantly in the visual (bilateral cuneus) and sensorimotor (right cerebellar lobules IV, V, VI) networks and decreased in the cognitive areas (right middle frontal gyrus). The clustering coefficient and local efficiency in the bilateral cuneus gyrus were negatively correlated with clinical motor symptoms. The functional connectivity between right caudate nucleus and bilateral calcarine gyrus were negatively correlated with disease duration, while connectivity between right posterior cingulum gyrus and left cerebellar lobule III, left inferior occipital gyrus and right cerebellar lobule IX was positively correlated. Conclusion Our results demonstrate that a more regular brain network occurred in SCA3 patients, with motor and visual-related regions, such as, cerebellar lobules and cuneus gyrus, both forayed neighbor nodes as “resource predators” to compensate for normal function, with motor and visual function having the higher priority comparing with other high-order functions. This study provides new information about the neurological mechanisms underlying SCA3 network topology impairments in the resting state, which give a potential guideline for future clinical treatments. Clinical Trial Registration [www.ClinicalTrials.gov], identifier [ChiCTR1800019901].
Collapse
Affiliation(s)
- Hui Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Limeng Dai
- Department of Medical Genetics, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yuhan Zhang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Liu Feng
- Department of Laboratory Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhenzhen Jiang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xingang Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dongjing Xie
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Guo
- Biomedical Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- *Correspondence: Huafu Chen,
| | - Jian Wang
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Jian Wang,
| | - Chen Liu
- Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- Chen Liu,
| |
Collapse
|
9
|
Meregalli V, Alberti F, Madan CR, Meneguzzo P, Miola A, Trevisan N, Sambataro F, Favaro A, Collantoni E. Cortical Complexity Estimation Using Fractal Dimension: A Systematic Review of the Literature on Clinical and Nonclinical Samples. Eur J Neurosci 2022; 55:1547-1583. [PMID: 35229388 PMCID: PMC9313853 DOI: 10.1111/ejn.15631] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/20/2022] [Indexed: 12/04/2022]
Abstract
Fractal geometry has recently been proposed as a useful tool for characterizing the complexity of the brain cortex, which is likely to derive from the recurrence of sulci–gyri convolution patterns. The index used to describe the cortical complexity is called fractal dimensional (FD) and was employed by different research exploring the neurobiological correlates of distinct pathological and nonpathological conditions. This review aims to describe the literature on the application of this index, summarize the heterogeneities between studies and inform future research on this topic. Sixty‐two studies were included in the systematic review. The main research lines concern neurodevelopment, aging and the neurobiology of specific psychiatric and neurological disorders. Overall, the included papers indicate that cortical complexity is likely to reduce during aging and in various pathological processes affecting the brain. Nevertheless, the high heterogeneity between studies strongly prevents the possibility of drawing conclusions. Further research considering this index besides other morphological values is needed to better clarify the role of FD in characterizing the cortical structure. Fractal dimension (FD) is a useful tool for the assessment of cortical complexity. In healthy controls, FD is associated with development, aging and cognition. Alterations in FD have been observed in different neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Valentina Meregalli
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | | | | - Paolo Meneguzzo
- Department of Neurosciences, University of Padua, Padova, Italy
| | - Alessandro Miola
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Nicolò Trevisan
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Fabio Sambataro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | - Angela Favaro
- Department of Neurosciences, University of Padua, Padova, Italy.,Padua Neuroscience Center, University of Padua, Padova, Italy
| | | |
Collapse
|
10
|
Li M, Chen X, Xu HL, Huang Z, Chen N, Tu Y, Gan S, Hu J. Brain structural abnormalities in the preclinical stage of Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3): evaluation by MRI morphometry, diffusion tensor imaging and neurite orientation dispersion and density imaging. J Neurol 2021; 269:2989-2998. [PMID: 34783886 DOI: 10.1007/s00415-021-10890-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate whether neurite orientation dispersion and density imaging (NODDI) could provide the added value for detecting brain microstructural alterations in the preclinical stage of Machado-Joseph disease/spinocerebellar ataxia type 3 (MJD/SCA3) compared with MRI morphometry and diffusion tensor imaging (DTI). METHODS Twenty preclinical MJD/SCA3 patients and 21 healthy controls were enrolled. Three b values DWI and 3D T1-weighted images were acquired at 3.0 T. Tract-based spatial statistics (TBSS) approach was used to investigate the white matter (WM) alterations in the DTI metrics and NODDI metrics. Gray matter-based spatial statistics (GBSS) approach was used to investigate the grey matter (GM) alterations in the NODDI metrics. Voxel-based morphometry (VBM) approach was performed on the 3D T1-weighted images. The relationship between the cytosine-adenine-guanine (CAG) repeat length and brain microstructural alterations of preclinical MJD/SCA3 was identified. RESULTS Compared with healthy controls, the preclinical MJD/SCA3 patients showed decreased FA and NDI as well as increased MD, AD, and RD in the WM of cerebellum and brainstem (corrected P < 0.05), and decreased NDI in the GM of cerebellar vermis (corrected P < 0.05). The CAG repeat length in preclinical MJD/SCA3 patients was negatively correlated with the reduced FA and NDI of the infratentorial WM and the reduced NDI of the cerebellum, and positively with the increased MD and RD of the infratentorial WM. CONCLUSIONS NOODI can provide novel quantitative microstructural changes in MJD/SCA3 carriers, expanding our understanding of the gray and white matter (axons and dendrites) degeneration in this frequent ataxia syndrome.
Collapse
Affiliation(s)
- Mengcheng Li
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Xinyuan Chen
- Department of Rehabilitation, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, People's Republic of China
| | - Hao-Ling Xu
- Department of Neurology, 900th Hospital of Joint Logistics Support Force, Fuzhou, China
| | - Ziqiang Huang
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Naping Chen
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Yuqing Tu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China
| | - Shirui Gan
- Department of Neurology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China. .,Fujian Institute of Neurology, The First Affiliated Hospital, Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China.
| | - Jianping Hu
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, 20 ChaZhong Rd, Fuzhou, 350005, Fujian, People's Republic of China.
| |
Collapse
|
11
|
Chen ML, Lin CC, Rosenthal LS, Opal P, Kuo SH. Rating scales and biomarkers for CAG-repeat spinocerebellar ataxias: Implications for therapy development. J Neurol Sci 2021; 424:117417. [PMID: 33836316 DOI: 10.1016/j.jns.2021.117417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 03/23/2021] [Indexed: 01/18/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a group of dominantly-inherited cerebellar ataxias, among which CAG expansion-related SCAs are most common. These diseases have very high penetrance with defined disease progression, and emerging therapies are being developed to provide either symptomatic or disease-modifying benefits. In clinical trial design, it is crucial to incorporate biomarkers to test target engagement or track disease progression in response to therapies, especially in rare diseases such as SCAs. In this article, we review the available rating scales and recent advances of biomarkers in CAG-repeat SCAs. We divided biomarkers into neuroimaging, body fluid, and physiological studies. Understanding the utility of each biomarker will facilitate the design of robust clinical trials to advance therapies for SCAs.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Liana S Rosenthal
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Puneet Opal
- Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Cellular and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA; Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Wan N, Chen Z, Wan L, Tang B, Jiang H. MR Imaging of SCA3/MJD. Front Neurosci 2020; 14:749. [PMID: 32848545 PMCID: PMC7417615 DOI: 10.3389/fnins.2020.00749] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive autosomal dominantly inherited cerebellar ataxia characterized by the aggregation of polyglutamine-expanded protein within neuronal nuclei in the brain, which can lead to brain damage that precedes the onset of clinical manifestations. Magnetic resonance imaging (MRI) techniques such as morphometric MRI, diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI), and magnetic resonance spectroscopy (MRS) have gained increasing attention as non-invasive and quantitative methods for the assessment of structural and functional alterations in clinical SCA3/MJD patients as well as preclinical carriers. Morphometric MRI has demonstrated typical patterns of atrophy or volume loss in the cerebellum and brainstem with extensive lesions in some supratentorial areas. DTI has detected widespread microstructural alterations in brain white matter, which indicate disrupted brain anatomical connectivity. Task-related fMRI has presented unusual brain activation patterns within the cerebellum and some extracerebellar tissue, reflecting the decreased functional connectivity of these brain regions in SCA3/MJD subjects. MRS has revealed abnormal neurochemical profiles, such as the levels or ratios of N-acetyl aspartate, choline, and creatine, in both clinical cases and preclinical cases before the alterations in brain anatomical structure. Moreover, a number of studies have reported correlations of MR imaging alterations with clinical and genetic features. The utility of these MR imaging techniques can help to identify preclinical SCA3/MJD carriers, monitor disease progression, evaluate response to therapeutic interventions, and illustrate the pathophysiological mechanisms underlying the occurrence, development, and prognosis of SCA3/MJD.
Collapse
Affiliation(s)
- Na Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Linlin Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
13
|
Nakata Y, Sakamoto A, Kawata A. Neuromelanin imaging analyses of the substantia nigra in patients with Machado-Joseph disease. Neuroradiology 2020; 62:1433-1439. [DOI: 10.1007/s00234-020-02479-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/11/2020] [Indexed: 12/31/2022]
|
14
|
Flower M, Lomeikaite V, Holmans P, Jones L, Tabrizi SJ, Monckton DG. Reply: The repeat variant in MSH3 is not a genetic modifier for spinocerebellar ataxia type 3 and Friedreich's ataxia. Brain 2020; 143:e26. [PMID: 32154840 DOI: 10.1093/brain/awaa044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Michael Flower
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Vilija Lomeikaite
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease and Dementia Research Institute, UCL, UK
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, UK
| |
Collapse
|
15
|
Neurochemical profiles in hereditary ataxias: A meta-analysis of Magnetic Resonance Spectroscopy studies. Neurosci Biobehav Rev 2019; 108:854-865. [PMID: 31838195 DOI: 10.1016/j.neubiorev.2019.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is applied to investigate the neurochemical profiles of degenerative hereditary ataxias. This meta-analysis provides a quantitative review and reappraisal of MRS findings in spinocerebellar ataxias (SCA) and Friedreich ataxia (FA) available to date. From each study, changes in N-acetyl aspartate (NAA), choline-containing compounds (Cho) and myo-Inositol (mI) ratios to total creatine (Cr) were calculated for groups of patients (1499 patients in total: SCA1 = 223, SCA2 = 298, SCA3 = 711, SCA6 = 165, and FA = 102) relative to their own control group, mostly in cerebellum and pons. SCA1, 2, 3, 6, and FA patients showed overall decreased NAA/Cr compared to controls. Decreased Cho/Cr was visible in SCA1, 2, and 3 and elevated mI/Cr in SCA2 patients in cerebellum. In SCA6 and FA Cho/Cr and mI/Cr did not differ with respect to controls but SCA6 patients indicated higher Cho/Cr compared to SCA1 patients in cerebellum. SCA2 subjects showed the lowest NAA/Cr and Cho/Cr in cerebellum and the highest mI/Cr compared to controls and other genotypes, and therefore the most promising results for a potential biomarker.
Collapse
|
16
|
Jao CW, Soong BW, Huang CW, Duan CA, Wu CC, Wu YT, Wang PS. Diffusion Tensor Magnetic Resonance Imaging for Differentiating Multiple System Atrophy Cerebellar Type and Spinocerebellar Ataxia Type 3. Brain Sci 2019; 9:E354. [PMID: 31817016 PMCID: PMC6956111 DOI: 10.3390/brainsci9120354] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022] Open
Abstract
Multiple system atrophy cerebellar type (MSA-C) and spinocerebellar ataxia type 3 (SCA3) demonstrate similar manifestations, including ataxia, pyramidal and extrapyramidal signs, as well as atrophy and signal intensity changes in the cerebellum and brainstem. MSA-C and SCA3 cannot be clinically differentiated through T1-weighted magnetic resonance imaging (MRI) alone; therefore, clinical consensus criteria and genetic testing are also required. Here, we used diffusion tensor imaging (DTI) to measure water molecular diffusion of white matter and investigate the difference between MSA-C and SCA3. Four measurements were calculated from DTI images, including fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD). Fifteen patients with MSA-C, 15 patients with SCA3, and 30 healthy individuals participated in this study. Both patient groups demonstrated a significantly decreased FA but a significantly increased AD, RD, and MD in the cerebello-ponto-cerebral tracts. Moreover, patients with SCA3 demonstrated a significant decrease in FA but more significant increases in AD, RD, and MD in the cerebello-cerebral tracts than patients with MSAC. Our results may suggest that FA and MD can be effectively used for differentiating SCA3 and MSA-C, both of which are cerebellar ataxias and have many common atrophied regions in the cerebral and cerebellar cortex.
Collapse
Affiliation(s)
- Chi-Wen Jao
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Neurology, Shin-Kong Wu Ho Su Memorial Hospital, Taipei 11101, Taiwan
| | - Bing-Wen Soong
- Taipei Neuroscience Institute, Taipei Medical University, Taipei 11041, Taiwan;
- Department of Neurology, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Chao-Wen Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
| | - Chien-An Duan
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
| | - Chih-Chun Wu
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei 11221, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics, National Yang-Ming University, Taipei 11221, Taiwan; (C.-W.J.); (C.-W.H.); (C.-A.D.)
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
- The Neurological Institute, Taipei Municipal Gan-Dau Hospital, Taipei 11261, Taiwan
| |
Collapse
|
17
|
Meira AT, Arruda WO, Ono SE, Neto ADC, Raskin S, Camargo CHF, Teive HAG. Neuroradiological Findings in the Spinocerebellar Ataxias. TREMOR AND OTHER HYPERKINETIC MOVEMENTS (NEW YORK, N.Y.) 2019; 9:tre-09-682. [PMID: 31632837 PMCID: PMC6765228 DOI: 10.7916/tohm.v0.682] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/02/2019] [Indexed: 01/19/2023]
Abstract
Background The spinocerebellar ataxias (SCAs) are a group of autosomal dominant degenerative diseases characterized by cerebellar ataxia. Classified according to gene discovery, specific features of the SCAs – clinical, laboratorial, and neuroradiological (NR) – can facilitate establishing the diagnosis. The purpose of this study was to review the particular NR abnormalities in the main SCAs. Methods We conducted a literature search on this topic. Results The main NR characteristics of brain imaging (magnetic resonance imaging or computerized tomography) in SCAs were: (1) pure cerebellar atrophy; (2) cerebellar atrophy with other findings (e.g., pontine, olivopontocerebellar, spinal, cortical, or subcortical atrophy; “hot cross bun sign”, and demyelinating lesions); (3) selective cerebellar atrophy; (4) no cerebellar atrophy. Discussion The main NR abnormalities in the commonest SCAs, are not pathognomonic of any specific genotype, but can be helpful in limiting the diagnostic options. We are progressing to a better understanding of the SCAs, not only genetically, but also pathologically; NR is helpful in the challenge of diagnosing the specific genotype of SCA.
Collapse
Affiliation(s)
- Alex Tiburtino Meira
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | - Walter Oleschko Arruda
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | | | - Arnolfo de Carvalho Neto
- DAPI, Diagnóstico Avançado por Imagem, Curitiba, BR.,Neurological Diseases Group, Graduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | - Salmo Raskin
- Genetika - Centro de aconselhamento e laboratório de genética, Curitiba, BR
| | - Carlos Henrique F Camargo
- Neurological Diseases Group, Graduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| | - Hélio Afonso G Teive
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR.,Neurological Diseases Group, Graduate Program of Internal Medicine, Hospital de Clínicas, Federal University of Paraná, Curitiba, BR
| |
Collapse
|
18
|
Wu YT, Huang SR, Jao CW, Soong BW, Lirng JF, Wu HM, Wang PS. Impaired Efficiency and Resilience of Structural Network in Spinocerebellar Ataxia Type 3. Front Neurosci 2019; 12:935. [PMID: 30618564 PMCID: PMC6304428 DOI: 10.3389/fnins.2018.00935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/27/2018] [Indexed: 12/25/2022] Open
Abstract
Background: Recent studies have shown that the patients with spinocerebellar ataxia type 3 (SCA3) may not only have disease involvement in the cerebellum and brainstem but also in the cerebral regions. However, the relations between the widespread degenerated brain regions remains incompletely explored. Methods: In the present study, we investigate the topological properties of the brain networks of SCA3 patients (n = 40) constructed based on the correlation of three-dimensional fractal dimension values. Random and targeted attacks were applied to measure the network resilience of normal and SCA3 groups. Results: The SCA3 networks had significantly smaller clustering coefficients (P < 0.05) and global efficiency (P < 0.05) but larger characteristic path length (P < 0.05) than the normal controls networks, implying loss of small-world features. Furthermore, the SCA3 patients were associated with reduced nodal betweenness (P < 0.001) in the left supplementary motor area, bilateral paracentral lobules, and right thalamus, indicating that the motor control circuit might be compromised. Conclusions: The SCA3 networks were more vulnerable to targeted attacks than the normal controls networks because of the effects of pathological topological organization. The SCA3 revealed a more sparsity and disrupted structural network with decreased values in the largest component size, mean degree, mean density, clustering coefficient, and global efficiency and increased value in characteristic path length. The cortico-cerebral circuits in SCA3 were disrupted and segregated into occipital-parietal (visual-spatial cognition) and frontal-pre-frontal (motor control) clusters. The cerebellum of SCA3 were segregated from cerebellum-temporal-frontal circuits and clustered into a frontal-temporal cluster (cognitive control). Therefore, the disrupted structural network presented in this study might reflect the clinical characteristics of SCA3.
Collapse
Affiliation(s)
- Yu-Te Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Biophotonics and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Shang-Ran Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chi-Wen Jao
- Institute of Biophotonics and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Bing-Wen Soong
- Department of Neurology, Shuang Ho Hospital and Taipei Neuroscience Institute, Taipei Medical University, Taipei, Taiwan.,Department of Neurology, Taipei Veterans General Hospital and Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Jiing-Feng Lirng
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Hsiu-Mei Wu
- Department of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Po-Shan Wang
- Institute of Biophotonics and Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Neurology, Taipei Municipal Gan-Dau Hospital, Taipei, Taiwan
| |
Collapse
|
19
|
Mascalchi M, Vella A. Neuroimaging Applications in Chronic Ataxias. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 143:109-162. [PMID: 30473193 DOI: 10.1016/bs.irn.2018.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET) are the main instruments for neuroimaging investigation of patients with chronic ataxia. MRI has a predominant diagnostic role in the single patient, based on the visual detection of three patterns of atrophy, namely, spinal atrophy, cortical cerebellar atrophy and olivopontocerebellar atrophy, which correlate with the aetiologies of inherited or sporadic ataxia. In fact spinal atrophy is observed in Friedreich ataxia, cortical cerebellar atrophy in Ataxia Telangectasia, gluten ataxia and Sporadic Adult Onset Ataxia and olivopontocerebellar atrophy in Multiple System Atrophy cerebellar type. The 39 types of dominantly inherited spinocerebellar ataxias show either cortical cerebellar atrophy or olivopontocerebellar atrophy. T2 or T2* weighted MR images can contribute to the diagnosis by revealing abnormally increased or decreased signal with a characteristic distribution. These include symmetric T2 hyperintensity of the posterior and lateral columns of the cervical spinal cord in Friedreich ataxia, diffuse and symmetric hyperintensity of the cerebellar cortex in Infantile Neuro-Axonal Dystrophy, symmetric hyperintensity of the peridentate white matter in Cerebrotendineous Xanthomatosis, and symmetric hyperintensity of the middle cerebellar peduncles and peridentate white matter, cerebral white matter and corpus callosum in Fragile X Tremor Ataxia Syndrome. Abnormally decreased T2 or T2* signal can be observed with a multifocal distribution in Ataxia Telangectasia and with a symmetric distribution in the basal ganglia in Multiple System Atrophy. T2 signal hypointensity lining diffusely the outer surfaces of the brainstem, cerebellum and cerebrum enables diagnosis of superficial siderosis of the central nervous system. The diagnostic role of nuclear medicine techniques is smaller. SPECT and PET show decreased uptake of radiotracers investigating the nigrostriatal system in Multiple System Atrophy and in patients with Fragile X Tremor Ataxia Syndrome. Semiquantitative or quantitative MRI, SPECT and PET data describing structural, microstructural and functional changes of the cerebellum, brainstem, and spinal cord have been widely applied to investigate physiopathological changes in patients with chronic ataxias. Moreover they can track diseases progression with a greater sensitivity than clinical scales. So far, a few small-size and single center studies employed neuroimaging techniques as surrogate markers of treatment effects in chronic ataxias.
Collapse
Affiliation(s)
- Mario Mascalchi
- Meyer Children Hospital, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | | |
Collapse
|
20
|
Marzi C, Ciulli S, Giannelli M, Ginestroni A, Tessa C, Mascalchi M, Diciotti S. Structural Complexity of the Cerebellum and Cerebral Cortex is Reduced in Spinocerebellar Ataxia Type 2. J Neuroimaging 2018; 28:688-693. [PMID: 29975004 DOI: 10.1111/jon.12534] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/18/2018] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Fractal dimension (FD) is an index of structural complexity of cortical gray matter (GM) and white matter (WM). Application of FD to pontocerebellar degeneration has revealed cerebellar changes. However, so far, possible concurrent cerebral changes and progression of changes in brain complexity have not been investigated. METHODS We computed FD of cerebellar and cerebral cortex and WM derived from longitudinal brain MRI of patients with spinocerebellar ataxia type 2 (SCA2), which is an inherited cause of pontocerebellar degeneration. Nine SCA2 patients and 16 age-matched healthy controls were examined twice (3.6 ± .7 and 3.3 ± 1.0 years apart, respectively) on the same 1.5T MR scanner with T1-weighted imaging. Cortical GM and WM of the cerebrum and cerebellum were segmented using FreeSurfer and FD of these segmentations were computed. RESULTS At baseline, FD values of cerebellar GM and WM were significantly (P < .001) lower in SCA2 patients (2.48 ± .04 for GM and 1.74 ± .09 for WM) than in controls (2.56 ± .02 for GM and 2.22 ± .19 for WM). Also, FD values of cerebral GM were significantly (P < .05) lower in SCA2 patients (2.39 ± .03) than in controls (2.43 ± .02). No significant differences were observed for FD of the cerebral WM. The rate of change of FD values was not significantly different between SCA2 patients and controls. CONCLUSIONS The structural complexity of the cerebellum and cerebral cortex is reduced in SCA2 patients. Fractal analysis seems not to be able to demonstrate progression of changes associated with degeneration in SCA2.
Collapse
Affiliation(s)
- Chiara Marzi
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| | - Stefano Ciulli
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Andrea Ginestroni
- Neuroradiology Unit, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Carlo Tessa
- Department of Radiology and Nuclear Medicine, Versilia Hospital, Lido di Camaiore (Lu), Italy
| | - Mario Mascalchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Bologna, Italy
| |
Collapse
|