1
|
Chen J, Yu K, Bi Y, Ji X, Zhang D. Strategic Integration: A Cross-Disciplinary Review of the fNIRS-EEG Dual-Modality Imaging System for Delivering Multimodal Neuroimaging to Applications. Brain Sci 2024; 14:1022. [PMID: 39452034 PMCID: PMC11506513 DOI: 10.3390/brainsci14101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Recent years have seen a surge of interest in dual-modality imaging systems that integrate functional near-infrared spectroscopy (fNIRS) and electroencephalography (EEG) to probe brain function. This review aims to explore the advancements and clinical applications of this technology, emphasizing the synergistic integration of fNIRS and EEG. Methods: The review begins with a detailed examination of the fundamental principles and distinctive features of fNIRS and EEG techniques. It includes critical technical specifications, data-processing methodologies, and analysis techniques, alongside an exhaustive evaluation of 30 seminal studies that highlight the strengths and weaknesses of the fNIRS-EEG bimodal system. Results: The paper presents multiple case studies across various clinical domains-such as attention-deficit hyperactivity disorder, infantile spasms, depth of anesthesia, intelligence quotient estimation, and epilepsy-demonstrating the fNIRS-EEG system's potential in uncovering disease mechanisms, evaluating treatment efficacy, and providing precise diagnostic options. Noteworthy research findings and pivotal breakthroughs further reinforce the developmental trajectory of this interdisciplinary field. Conclusions: The review addresses challenges and anticipates future directions for the fNIRS-EEG dual-modal imaging system, including improvements in hardware and software, enhanced system performance, cost reduction, real-time monitoring capabilities, and broader clinical applications. It offers researchers a comprehensive understanding of the field, highlighting the potential applications of fNIRS-EEG systems in neuroscience and clinical medicine.
Collapse
Affiliation(s)
| | | | | | | | - Dawei Zhang
- Research Center of Optical Instrument and System, Ministry of Education and Shanghai Key Lab of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China; (J.C.); (K.Y.); (Y.B.); (X.J.)
| |
Collapse
|
2
|
Katus L, Blasi A, McCann S, Mason L, Mbye E, Touray E, Ceesay M, de Haan M, Moore SE, Elwell CE, Lloyd-Fox S, Team TBS. Longitudinal fNIRS and EEG metrics of habituation and novelty detection are correlated in 1-18-month-old infants. Neuroimage 2023; 274:120153. [PMID: 37146782 DOI: 10.1016/j.neuroimage.2023.120153] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023] Open
Abstract
INTRODUCTION . Habituation and novelty detection are two fundamental and widely studied neurocognitive processes. Whilst neural responses to repetitive and novel sensory input have been well-documented across a range of neuroimaging modalities, it is not yet fully understood how well these different modalities are able to describe consistent neural response patterns. This is particularly true for infants and young children, as different assessment modalities might show differential sensitivity to underlying neural processes across age. Thus far, many neurodevelopmental studies are limited in either sample size, longitudinal scope or breadth of measures employed, impeding investigations of how well common developmental trends can be captured via different methods. METHOD . This study assessed habituation and novelty detection in N = 204 infants using EEG and fNIRS measured in two separate paradigms, but within the same study visit, at 1, 5 and 18 months of age in an infant cohort in rural Gambia. EEG was acquired during an auditory oddball paradigm during which infants were presented with Frequent, Infrequent and Trial Unique sounds. In the fNIRS paradigm, infants were familiarised to a sentence of infant-directed speech, novelty detection was assessed via a change in speaker. Indices for habituation and novelty detection were extracted for both EEG and NIRS RESULTS: . We found evidence for weak to medium positive correlations between responses on the fNIRS and the EEG paradigms for indices of both habituation and novelty detection at most age points. Habituation indices correlated across modalities at 1 month and 5 months but not 18 months of age, and novelty responses were significantly correlated at 5 months and 18 months, but not at 1 month. Infants who showed robust habituation responses also showed robust novelty responses across both assessment modalities. DISCUSSION . This study is the first to examine concurrent correlations across two neuroimaging modalities across several longitudinal age points. Examining habituation and novelty detection, we show that despite the use of two different testing modalities, stimuli and timescale, it is possible to extract common neural metrics across a wide age range in infants. We suggest that these positive correlations might be strongest at times of greatest developmental change.
Collapse
Affiliation(s)
- Laura Katus
- School of Human Sciences, University of Greenwich; Centre for Family Research, University of Cambridge.
| | - Anna Blasi
- Department of Medical Physics and Biomedical Engineering, University College London
| | - Sam McCann
- Department of Women and Children's Health, Kings College London
| | - Luke Mason
- Forensic and Neurodevelopmental Sciences, King's College London
| | - Ebrima Mbye
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine
| | - Ebou Touray
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine
| | - Muhammed Ceesay
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine
| | - Michelle de Haan
- Great Ormond Street Institute of Child Health, University College London; Great Ormond Street Hospital for Children NHS Foundation Trust, London
| | - Sophie E Moore
- Department of Women and Children's Health, Kings College London; MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine
| | - Clare E Elwell
- Department of Medical Physics and Biomedical Engineering, University College London
| | | | - The Bright Study Team
- The BRIGHT Study team are (in alphabetical order): Lena Acolatse, Chiara Bulgarelli, Maria-Magdalena Crespo Llado, Momodou K. Darboe, Saikou Drammeh, Tijan Fadera, Giulia Ghillia, Buba Jobarteh, Marta Perapoch Amado, Andrew M. Prentice, Maria Rozhko, Mariama Saidykhan
| |
Collapse
|
3
|
Gallagher A, Wallois F, Obrig H. Functional near-infrared spectroscopy in pediatric clinical research: Different pathophysiologies and promising clinical applications. NEUROPHOTONICS 2023; 10:023517. [PMID: 36873247 PMCID: PMC9982436 DOI: 10.1117/1.nph.10.2.023517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Over its 30 years of existence, functional near-infrared spectroscopy (fNIRS) has matured into a highly versatile tool to study brain function in infants and young children. Its advantages, amongst others, include its ease of application and portability, the option to combine it with electrophysiology, and its relatively good tolerance to movement. As shown by the impressive body of fNIRS literature in the field of cognitive developmental neuroscience, the method's strengths become even more relevant for (very) young individuals who suffer from neurological, behavioral, and/or cognitive impairment. Although a number of studies have been conducted with a clinical perspective, fNIRS cannot yet be considered as a truly clinical tool. The first step has been taken in this direction by studies exploring options in populations with well-defined clinical profiles. To foster further progress, here, we review several of these clinical approaches to identify the challenges and perspectives of fNIRS in the field of developmental disorders. We first outline the contributions of fNIRS in selected areas of pediatric clinical research: epilepsy, communicative and language disorders, and attention-deficit/hyperactivity disorder. We provide a scoping review as a framework to allow the highlighting of specific and general challenges of using fNIRS in pediatric research. We also discuss potential solutions and perspectives on the broader use of fNIRS in the clinical setting. This may be of use to future research, targeting clinical applications of fNIRS in children and adolescents.
Collapse
Affiliation(s)
- Anne Gallagher
- CHU Sainte-Justine University Hospital, Université de Montréal, LIONLab, Cerebrum, Department of Psychology, Montréal, Quebec, Canada
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, Amiens, France
| | - Hellmuth Obrig
- University Hospital and Faculty of Medicine Leipzig/Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Clinic for Cognitive Neurology, Leipzig, Germany
| |
Collapse
|
4
|
Nourhashemi M, Mahmoudzadeh M, Heberle C, Wallois F. Preictal neuronal and vascular activity precedes the onset of childhood absence seizure: direct current potential shifts and their correlation with hemodynamic activity. NEUROPHOTONICS 2023; 10:025005. [PMID: 37114185 PMCID: PMC10128878 DOI: 10.1117/1.nph.10.2.025005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
SIGNIFICANCE AIMS The neurovascular mechanisms underlying the initiation of absence seizures and their dynamics are still not well understood. The objective of this study was to better noninvasively characterize the dynamics of the neuronal and vascular network at the transition from the interictal state to the ictal state of absence seizures and back to the interictal state using a combined electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and diffuse correlation spectroscopy (DCS) approach. The second objective was to develop hypotheses about the neuronal and vascular mechanisms that propel the networks to the 3-Hz spikes and wave discharges (SWDs) observed during absence seizures. APPROACHES We evaluated the simultaneous changes in electrical (neuronal) and optical dynamics [hemodynamic, with changes in (Hb) and cerebral blood flow] of 8 pediatric patients experiencing 25 typical childhood absence seizures during the transition from the interictal state to the absence seizure by simultaneously performing EEG, fNIRS, and DCS. RESULTS Starting from ∼ 20 s before the onset of the SWD, we observed a transient direct current potential shift that correlated with alterations in functional fNIRS and DCS measurements of the cerebral hemodynamics detecting the preictal changes. DISCUSSION Our noninvasive multimodal approach highlights the dynamic interactions between the neuronal and vascular compartments that take place in the neuronal network near the time of the onset of absence seizures in a very specific cerebral hemodynamic environment. These noninvasive approaches contribute to a better understanding of the electrical hemodynamic environment prior to seizure onset. Whether this may ultimately be relevant for diagnostic and therapeutic approaches requires further evaluation.
Collapse
Affiliation(s)
- Mina Nourhashemi
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
| | - Mahdi Mahmoudzadeh
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| | - Claire Heberle
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| | - Fabrice Wallois
- Université de Picardie Jules Verne, Inserm U1105, GRAMFC, CURS, Amiens, France
- Amiens University Hospital, Pediatric Neurophysiology Unit, Amiens, France
| |
Collapse
|
5
|
Chegondi M, Lin WC, Naqvi S, Sendi P, Totapally BR. The Effect of Electroencephalography Abnormalities on Cerebral Autoregulation in Sedated Ventilated Children. Pediatr Rep 2022; 15:9-15. [PMID: 36649002 PMCID: PMC9844431 DOI: 10.3390/pediatric15010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose: To determine the effects of non-ictal electroencephalogram (EEG) changes on cerebrovascular autoregulation (AR) using the cerebral oximetry index (COx). Materials and Methods: Mean arterial blood pressure (MAP), cerebral tissue oxygenation (CrSO2), and EEG were acquired for 96 h. From all of the EEG recordings, 30 min recording segments were extracted using the endotracheal suction events as the guide. EEG recordings were classified as EEG normal and EEG abnormal groups. Each 30 min segment was further divided into six 5 min epochs. Continuous recordings of MAP and CrSO2 by near-infrared spectroscopy (NIRS) were extracted. The COx value was defined as the concordance (R) value of the Pearson correlation between MAP and CrSO2 in a 5 min epoch. Then, an Independent-Samples Mann-Whitney U test was used to analyze the number of epochs within the 30 min segments above various R cutoff values (0.2, 0.3, and 0.4) in normal and abnormal EEG groups. A p-value < 0.05 was considered significant, and all analyses were two-tailed. Results: Among 16 sedated, mechanically ventilated children, 382 EEG recordings of 30 min segments were analyzed. The proportions of epochs in each 30 min segment above the R cutoff values were similar between the EEG normal and EEG abnormal groups (p > 0.05). The median concordance values for CSrO2 and MAP in EEG normal and EEG abnormal groups were similar (0.26 (0.17−0.35) and 0.18 (0.12−0.31); p = 0.09). Conclusions: Abnormal EEG patterns without ictal changes do not affect cerebrovascular autoregulation in sedated and mechanically ventilated children.
Collapse
Affiliation(s)
- Madhuradhar Chegondi
- Division of Critical Care Medicine, Stead Family Children’s Hospital, Iowa City, IA 52242, USA
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tex.: +1-319-356-1615; Fax: +1-319-356-8443
| | - Wei-Chiang Lin
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Sayed Naqvi
- Department of Neurology, Nicklaus Children’s Hospital, Miami, FL 33155, USA
| | - Prithvi Sendi
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, Miami, FL 33155, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Balagangadhar R. Totapally
- Division of Critical Care Medicine, Nicklaus Children’s Hospital, Miami, FL 33155, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
de Souza Moura B, Hu XS, DosSantos MF, DaSilva AF. Study Protocol of tDCS Based Pain Modulation in Head and Neck Cancer Patients Under Chemoradiation Therapy Condition: An fNIRS-EEG Study. Front Mol Neurosci 2022; 15:859988. [PMID: 35721312 PMCID: PMC9200064 DOI: 10.3389/fnmol.2022.859988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Background Multiple therapeutic strategies have been adopted to reduce pain, odynophagia, and oral mucositis in head and neck cancer patients. Among them, transcranial direct current stimulation (tDCS) represents a unique analgesic modality. However, the details of tDCS mechanisms in pain treatment are still unclear. Aims (1) to study the analgesic effects of a protocol that encompassed supervised-remote and in-clinic tDCS sessions applied in head and neck patients undergoing chemoradiation therapy; (2) to explore the underlining brain mechanisms of such modulation process, using a novel protocol that combined functional near-infrared spectroscopy (fNIRS), and electroencephalograph (EEG), two distinct neuroimaging methods that bring information regarding changes in the hemodynamic as well as in the electrical activity of the brain, respectively. Methods This proof-of-concept study was performed on two subjects. The study protocol included a 7-week-long tDCS stimulation procedure, a pre-tDCS baseline session, and two post-tDCS follow-up sessions. Two types of tDCS devices were used. One was used in the clinical setting and the other remotely. Brain imaging was obtained in weeks 1, 2, 5, 7, 8, and after 1 month. Results The protocol implemented was safe and reliable. Preliminary results of the fNIRS analysis in weeks 2 and 7 showed a decrease in functional connections between the bilateral prefrontal cortex (PFC) and the primary sensory cortex (S1) (p < 0.05, FDR corrected). Changes in EEG power spectra were found in the PFC when comparing the seventh with the first week of tDCS. Conclusion The protocol combining remote and in-clinic administered tDCS and integrated fNIRS and EEG to evaluate the brain activity is feasible. The preliminary results suggest that the mechanisms of tDCS in reducing the pain of head and neck cancer patients may be related to its effects on the connections between the S1 and the PFC.
Collapse
Affiliation(s)
- Brenda de Souza Moura
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Xiao-Su Hu
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marcos F. DosSantos
- Laboratório de Propriedades Mecânicas e Biologia Celular (PropBio), Departamento de Prótese e Materiais Dentários, Faculdade de Odontologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alexandre F. DaSilva
- Headache & Orofacial Pain Effort (H.O.P.E.), Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
7
|
Broadband-NIRS System Identifies Epileptic Focus in a Child with Focal Cortical Dysplasia—A Case Study. Metabolites 2022; 12:metabo12030260. [PMID: 35323703 PMCID: PMC8951122 DOI: 10.3390/metabo12030260] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Epileptic seizures are transiently occurring symptoms due to abnormal excessive or synchronous neuronal activity in the brain. Previous functional near-infrared spectroscopy (fNIRS) studies during seizures have focused in only monitoring the brain oxygenation and haemodynamic changes. However, few tools are available to measure actual cellular metabolism during seizures, especially at the bedside. Here we use an in-house developed multichannel broadband NIRS (or bNIRS) system, that, alongside the changes in oxy-, deoxy- haemoglobin concentration (HbO2, HHb), also quantifies the changes in oxidised cytochrome-c-oxidase Δ(oxCCO), a marker of cellular oxygen metabolism, simultaneously over 16 different brain locations. We used bNIRS to measure metabolic activity alongside brain tissue haemodynamics/oxygenation during 17 epileptic seizures at the bedside of a 3-year-old girl with seizures due to an extensive malformation of cortical development in the left posterior quadrant. Simultaneously Video-EEG data was recorded from 12 channels. Whilst we did observe the expected increase in brain tissue oxygenation (HbD) during seizures, it was almost diminished in the area of the focal cortical dysplasia. Furthermore, in the area of seizure origination (epileptic focus) ΔoxCCO decreased significantly at the time of seizure generalization when compared to the mean change in all other channels. We hypothesize that this indicates an incapacity to sustain and increase brain tissue metabolism during seizures in the region of the epileptic focus.
Collapse
|
8
|
Dynamics of cortical oxygenation during immediate adaptation to extrauterine life. Sci Rep 2021; 11:22041. [PMID: 34764396 PMCID: PMC8586152 DOI: 10.1038/s41598-021-01674-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/02/2021] [Indexed: 11/09/2022] Open
Abstract
The neonatal transition involves physiological modifications as a consequence of the complexity of the perinatal period. Various strategies can be used to attain the same level of postnatal cerebral oxygenation, depending on the status of the infant at birth. We evaluated such strategies by recording 20 full-term newborns by near-infrared spectroscopy during the first 10 min of life. The acid–base status at birth revealed two clustered profiles of cerebral oxygenation dynamics. Lower pH and base excess and higher lactate levels were associated with more rapid attainment of the 95% maximal tissue oxygenation index value. These results suggest that metabolic mechanisms drive initial cerebral oxygenation dynamics during this critical period. These results confirm the capacity of newborns to develop multiple strategies to protect the brain.
Collapse
|
9
|
|
10
|
Arnal-Real C, Mahmoudzadeh M, Manoochehri M, Nourhashemi M, Wallois F. What Triggers the Interictal Epileptic Spike? A Multimodal Multiscale Analysis of the Dynamic of Synaptic and Non-synaptic Neuronal and Vascular Compartments Using Electrical and Optical Measurements. Front Neurol 2021; 12:596926. [PMID: 33643187 PMCID: PMC7907164 DOI: 10.3389/fneur.2021.596926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/21/2021] [Indexed: 11/20/2022] Open
Abstract
Interictal spikes (IISs) may result from a disturbance of the intimate functional balance between various neuronal (synaptic and non-synaptic), vascular, and metabolic compartments. To better characterize the complex interactions within these compartments at different scales we developed a simultaneous multimodal-multiscale approach and measure their activity around the time of the IIS. We performed such measurements in an epileptic rat model (n = 43). We thus evaluated (1) synaptic dynamics by combining electrocorticography and multiunit activity recording in the time and time-frequency domain, (2) non-synaptic dynamics by recording modifications in light scattering induced by changes in the membrane configuration related to cell activity using the fast optical signal, and (3) vascular dynamics using functional near-infrared spectroscopy and, independently but simultaneously to the electrocorticography, the changes in cerebral blood flow using diffuse correlation spectroscopy. The first observed alterations in the measured signals occurred in the hemodynamic compartments a few seconds before the peak of the IIS. These hemodynamic changes were followed by changes in coherence and then synchronization between the deep and superficial neural networks in the 1 s preceding the IIS peaks. Finally, changes in light scattering before the epileptic spikes suggest a change in membrane configuration before the IIS. Our multimodal, multiscale approach highlights the complexity of (1) interactions between the various neuronal, vascular, and extracellular compartments, (2) neural interactions between various layers, (3) the synaptic mechanisms (coherence and synchronization), and (4) non-synaptic mechanisms that take place in the neuronal network around the time of the IISs in a very specific cerebral hemodynamic environment.
Collapse
Affiliation(s)
- Cristian Arnal-Real
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mahdi Mahmoudzadeh
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mana Manoochehri
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Mina Nourhashemi
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| | - Fabrice Wallois
- Inserm U1105, GRAMFC, CURS, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
11
|
HU XINHUA, XIAO GANG, ZHU KEXIN, HU SHUYI, CHEN JIU, YU YUN. APPLICATION OF FUNCTIONAL NEAR-INFRARED SPECTROSCOPY IN NEUROLOGICAL DISEASES: EPILEPSY, STROKE AND PARKINSON. J MECH MED BIOL 2020. [DOI: 10.1142/s0219519420400230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The functional near-infrared spectroscopy (fNIRS) technology is an optical imaging technology that applies near-infrared light to measure the oxygenated and deoxygenated hemoglobin concentration alteration in cortical brain structures. It has the ability to directly measure changes in the blood oxygen level of the high temporal resolution associated with neural activation. Thus, it has been utilized in different neurological diseases, such as epilepsy, stroke, and Parkinson. The work of this paper will focus on the application of the fNIRS in the three neurological diseases and the principle of fNIRS. Moreover, the difficulties and challenges that the technology is currently experiencing have been discussed.
Collapse
Affiliation(s)
- XINHUA HU
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - GANG XIAO
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences and Department of Endocrinology, Fudan University, Shanghai, 200032, P. R. China
| | - KEXIN ZHU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - SHUYI HU
- The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - JIU CHEN
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| | - YUN YU
- Department of Medical Informatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China
| |
Collapse
|
12
|
Chang F, Li H, Zhang S, Chen C, Liu C, Cai W. Research progress of functional near-infrared spectroscopy in patients with psychiatric disorders. Forensic Sci Res 2020; 6:141-147. [PMID: 34377571 PMCID: PMC8330753 DOI: 10.1080/20961790.2020.1720901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a technique of detecting cerebral cortical function by using near-infrared light, which is a multifunctional neuroimaging technique and provides a convenient and efficient detection method in neuroscience. In consideration of acceptability, safety, high spatial and temporal resolutions compared with electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI), fNIRS is widely used to study different psychiatric disorders, most prominently affective disorders, schizophrenic illnesses, brain organic mental disorders and neurodevelopmental disorders, etc. The article focuses on the latest research progress and practical application of fNIRS in psychiatric disorders, especially traumatic brain, including studies on the characterization of phenomenology, treatment effects and descriptions of neuroimaging data.
Collapse
Affiliation(s)
- Fan Chang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haozhe Li
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Shengyu Zhang
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chen Chen
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Chao Liu
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China
| | - Weixiong Cai
- Shanghai Key Lab of Forensic Medicine, Key Lab of Forensic Science, Ministry of Justice, Shanghai Forensic Service Platform, Academy of Forensic Science, Shanghai, China.,School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Almajidy RK, Mankodiya K, Abtahi M, Hofmann UG. A Newcomer's Guide to Functional Near Infrared Spectroscopy Experiments. IEEE Rev Biomed Eng 2019; 13:292-308. [PMID: 31634142 DOI: 10.1109/rbme.2019.2944351] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review presents a practical primer for functional near-infrared spectroscopy (fNIRS) with respect to technology, experimentation, and analysis software. Its purpose is to jump-start interested practitioners considering utilizing a non-invasive, versatile, nevertheless challenging window into the brain using optical methods. We briefly recapitulate relevant anatomical and optical foundations and give a short historical overview. We describe competing types of illumination (trans-illumination, reflectance, and differential reflectance) and data collection methods (continuous wave, time domain and frequency domain). Basic components (light sources, detection, and recording components) of fNIRS systems are presented. Advantages and limitations of fNIRS techniques are offered, followed by a list of very practical recommendations for its use. A variety of experimental and clinical studies with fNIRS are sampled, shedding light on many brain-related ailments. Finally, we describe and discuss a number of freely available analysis and presentation packages suited for data analysis. In conclusion, we recommend fNIRS due to its ever-growing body of clinical applications, state-of-the-art neuroimaging technique and manageable hardware requirements. It can be safely concluded that fNIRS adds a new arrow to the quiver of neuro-medical examinations due to both its great versatility and limited costs.
Collapse
|
14
|
Nourhashemi M, Mahmoudzadeh M, Goudjil S, Kongolo G, Wallois F. Neurovascular coupling in the developing neonatal brain at rest. Hum Brain Mapp 2019; 41:503-519. [PMID: 31600024 PMCID: PMC7268021 DOI: 10.1002/hbm.24818] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/21/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
The neonatal brain is an extremely dynamic organization undergoing essential development in terms of connectivity and function. Several functional imaging investigations of the developing brain have found neurovascular coupling (NVC) patterns that contrast with those observed in adults. These discrepancies are partly due to that NVC is still developing in the neonatal brain. To characterize the vascular response to spontaneous neuronal activations, a multiscale multimodal noninvasive approach combining simultaneous electrical, hemodynamic, and metabolic recordings has been developed for preterm infants. Our results demonstrate that the immature vascular network does not adopt a unique strategy to respond to spontaneous cortical activations. NVC takes on different forms in the same preterm infant during the same recording session in response to very similar types of neural activation. This includes (a) positive stereotyped hemodynamic responses (increases in HbO, decreases in HbR together with increases in rCBF and rCMRO2), (b) negative hemodynamic responses (increases in HbR, decreases in HbO together with decreases in rCBF and rCMRO2), and (c) Increases and decreases in both HbO‐HbR and rCMRO2 together with no changes in rCBF. Age‐related NVC maturation is demonstrated in preterm infants, which can contribute to a better understanding/prevention of cerebral hemodynamic risks in these infants.
Collapse
Affiliation(s)
- Mina Nourhashemi
- INSERM U 1105, GRAMFC, Université de Picardie, CHU Sud, rue René Laennec, Amiens Cedex 1, France
| | - Mahdi Mahmoudzadeh
- INSERM U 1105, GRAMFC, Université de Picardie, CHU Sud, rue René Laennec, Amiens Cedex 1, France
| | - Sabrina Goudjil
- INSERM U 1105, GRAMFC, Université de Picardie, CHU Sud, rue René Laennec, Amiens Cedex 1, France
| | - Guy Kongolo
- INSERM U 1105, GRAMFC, Université de Picardie, CHU Sud, rue René Laennec, Amiens Cedex 1, France
| | - Fabrice Wallois
- INSERM U 1105, GRAMFC, Université de Picardie, CHU Sud, rue René Laennec, Amiens Cedex 1, France
| |
Collapse
|