1
|
Anderson KG, Lazarus MF, Bruckert L, Poblaciones RV, Scala M, Marchman VA, Feldman HM, Travis KE. Neonatal inflammation and near-term white matter microstructure in infants born very preterm. NEUROIMAGE. REPORTS 2024; 4:100226. [PMID: 39822573 PMCID: PMC11737600 DOI: 10.1016/j.ynirp.2024.100226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Background Severe neonatal inflammatory conditions in very preterm infants (VPT: <32 weeks gestational age, GA) are linked to adverse neurodevelopmental outcomes. Differences in white matter (WM) microstructure of the corpus callosum (CC) have been observed at age 6 in VPT children with a history of severe neonatal inflammation. The goal of this study was to determine whether these CC differences can be detected at term-equivalent age using diffusion MRI (dMRI), and whether neonatal inflammation is associated with altered WM in additional tracts implicated in the encephalopathy of prematurity. Methods We conducted a retrospective study of VPT infants (n = 152) born at 22-32 weeks GA, classified based on the presence (I+, n = 80) or absence (I-, n = 72) of severe neonatal inflammatory conditions (bronchopulmonary dysplasia, necrotizing enterocolitis, or culture-positive sepsis). Analysis of covariance (ANCOVA) assessed group differences in near-term dMRI mean fractional anisotropy (FA) and mean diffusivity (MD) across seven segments of the CC and the anterior thalamic radiation, arcuate fasciculus, cingulum, corticospinal tract, inferior longitudinal fasciculus, superior cerebellar peduncle, and uncinate fasciculus. Due to imbalance of GA in the full sample, secondary ANCOVA analyses were performed in a GA-matched subset (n = 42) to further isolate the effect of inflammation. Results FA was significantly lower in the I+ group compared to the I- group in the anterior frontal, posterior parietal, temporal, and occipital segments of the CC, and in the cingulum, inferior longitudinal fasciculus, and superior cerebellar peduncle. This general pattern persisted in the GA-matched subset, with significant differences in the anterior frontal and temporal CC segments. Conclusions VPT infants with severe neonatal inflammation had lower FA in multiple white matter tracts, suggesting that inflammation-related alterations in WM development begin in the neonatal period. The observed differences detected using dMRI at term-equivalent age corroborate prior findings and may provide a window of opportunity for early identification of VPT infants at increased risk of poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
| | - Molly F. Lazarus
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
- Burke-Cornell Medical Research Institute at Weill Cornell Medicine and Department of Pediatrics, Weill Medical College, Cornell University, New York, NY, USA
| | - Lisa Bruckert
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Rocio V. Poblaciones
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Melissa Scala
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | - Virginia A. Marchman
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Heidi M. Feldman
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine E. Travis
- Department of Pediatrics, Division of Developmental-Behavioral Pediatrics, Stanford University, Stanford, CA, USA
- Burke-Cornell Medical Research Institute at Weill Cornell Medicine and Department of Pediatrics, Weill Medical College, Cornell University, New York, NY, USA
| |
Collapse
|
2
|
Deferm W, Tang T, Moerkerke M, Daniels N, Steyaert J, Alaerts K, Ortibus E, Naulaers G, Boets B. Subtle microstructural alterations in white matter tracts involved in socio-emotional processing after very preterm birth. Neuroimage Clin 2024; 41:103580. [PMID: 38401459 PMCID: PMC10944182 DOI: 10.1016/j.nicl.2024.103580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/10/2024] [Accepted: 02/10/2024] [Indexed: 02/26/2024]
Abstract
Children born very preterm (VPT, < 32 weeks of gestation) have an increased risk of developing socio-emotional difficulties. Possible neural substrates for these socio-emotional difficulties are alterations in the structural connectivity of the social brain due to premature birth. The objective of the current study was to study microstructural white matter integrity in VPT versus full-term (FT) born school-aged children along twelve white matter tracts involved in socio-emotional processing. Diffusion MRI scans were obtained from a sample of 35 VPT and 38 FT 8-to-12-year-old children. Tractography was performed using TractSeg, a state-of-the-art neural network-based approach, which offers investigation of detailed tract profiles of fractional anisotropy (FA). Group differences in FA along the tracts were investigated using both a traditional and complementary functional data analysis approach. Exploratory correlations were performed between the Social Responsiveness Scale (SRS-2), a parent-report questionnaire assessing difficulties in social functioning, and FA along the tract. Both analyses showed significant reductions in FA for the VPT group along the middle portion of the right SLF I and an anterior portion of the left SLF II. These group differences possibly indicate altered white matter maturation due to premature birth and may contribute to altered functional connectivity in the Theory of Mind network which has been documented in earlier work with VPT samples. Apart from reduced social motivation in the VPT group, there were no significant group differences in reported social functioning, as assessed by SRS-2. We found that in the VPT group higher FA values in segments of the left SLF I and right SLF II were associated with better social functioning. Surprisingly, the opposite was found for segments in the right IFO, where higher FA values were associated with worse reported social functioning. Since no significant correlations were found for the FT group, this relationship may be specific for VPT children. The current study overcomes methodological limitations of previous studies by more accurately segmenting white matter tracts using constrained spherical deconvolution based tractography, by applying complementary tractometry analysis approaches to estimate changes in FA more accurately, and by investigating the FA profile along the three components of the SLF.
Collapse
Affiliation(s)
- Ward Deferm
- Center for Developmental Psychiatry, KU Leuven, Belgium.
| | - Tiffany Tang
- Center for Developmental Psychiatry, KU Leuven, Belgium
| | | | - Nicky Daniels
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | - Jean Steyaert
- Center for Developmental Psychiatry, KU Leuven, Belgium; Child Psychiatry, UZ Leuven, Belgium
| | - Kaat Alaerts
- Neuromotor Rehabilitation Research Group, KU Leuven, Belgium
| | | | - Gunnar Naulaers
- Neonatal Intensive Care Unit - Neonatology, UZ Leuven, Belgium; UZ Leuven & Center for Developmental Disorders, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, Belgium
| |
Collapse
|
3
|
Retzler C, Hallam G, Johnson S, Retzler J. Person-centred Approaches to Psychopathology in the ABCD Study: Phenotypes and Neurocognitive Correlates. Res Child Adolesc Psychopathol 2023:10.1007/s10802-023-01065-w. [PMID: 37119331 PMCID: PMC10368562 DOI: 10.1007/s10802-023-01065-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Issues with classifying psychopathology using narrow diagnostic categories have prompted calls for the use of dimensional approaches. Yet questions remain about how closely dimensional approaches reflect the way symptoms cluster in individuals, whether known risk factors (e.g. preterm birth) produce distinct symptom phenotypes, and whether profiles reflecting symptom clusters are associated with neurocognitive factors. To identify distinct profiles of psychopathology, latent class analysis was applied to the syndrome scales of the parent-reported Child Behaviour Checklist for 11,381 9- and 10- year-olds from the Adolescent Brain Cognitive Development study. Four classes were identified, reflecting different profiles, to which children were assigned probabilistically; Class 1 (88.6%) reflected optimal functioning; Class 2 (7.1%), predominantly internalising; Class 3 (2.4%), predominantly externalising; and Class 4 (1.9%), universal difficulties. To investigate the presence of a possible preterm behavioural phenotype, the proportion of participants allocated to each class was cross-tabulated with gestational age category. No profile was specific to preterm birth. Finally, to assess the neurocognitive factors associated with class membership, elastic net regressions were conducted revealing a relatively distinct set of neurocognitive factors associated with each class. Findings support the use of large datasets to identify psychopathological profiles, explore phenotypes, and identify associated neurocognitive factors.
Collapse
Affiliation(s)
- Chris Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK.
| | - Glyn Hallam
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Samantha Johnson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Jenny Retzler
- Department of Psychology, School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| |
Collapse
|
4
|
Hoberg K, Häusler M, Orlikowsky T, Lidzba K. Enhancing the Follow-up Assessment of Very Preterm Children with Regard to 5-Year IQ Considering Socioeconomic Status. Z Geburtshilfe Neonatol 2022; 226:405-415. [PMID: 35981549 DOI: 10.1055/a-1864-9895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Specifying peri- and postnatal factors in children born very preterm (VPT) that affect later outcome helps to improve long-term treatment. AIM To enhance the predictability of 5-year cognitive outcome by perinatal, 2-year developmental and socio-economic data. SUBJECTS AND OUTCOME MEASURES 92 VPT infants, born 2007-2009, gestational age<32 weeks and/or birthweight of 1500 g, were assessed longitudinally including basic neonatal, socio-economic (SES), 2-year Mental Developmental Index (MDI, Bayley Scales II), 5-year Mental Processing Composite (MPC, Kaufman-Assessment Battery for Children), and Language Screening for Preschoolers data. 5-year infants born VPT were compared to 34 term controls. RESULTS The IQ of 5-year infants born VPT was 10 points lower than that of term controls and influenced independently by preterm birth and SES. MDI, SES, birth weight and birth complications explained 48% of the variance of the MPC. The MDI proved highly predictive (r=0.6, R2=36%) for MPC but tended to underestimate the cognitive outcome. A total of 61% of the 2-year infants born VPT were already correctly classified (specificity of .93, sensitivity of .54). CHAID decision tree technique identified SES as decisive for the outcome for infants born VPT with medium MDI results (76-91): They benefit from effects associated to a higher SES, while those with a poor MDI outcome and a birth weight≤890 g do not. CONCLUSION Developmental follow-up of preterm children enhances the quality of prognosis and later outcome when differentially considering perinatal risks and SES.
Collapse
Affiliation(s)
- Kathrin Hoberg
- Department of Paediatrics, Social Paediatric Centre, Division of Neuropaediatrics and Social Paediatrics; University Hospital RWTH Aachen, RWTH Aachen University, Aachen, Germany
| | - Martin Häusler
- Department of Paediatrics, Division of Neuropediatrics and Social Pediatrics; University Hospital RWTH Aachen, RWTH Aachen University, Aachen, Germany
| | - Thorsten Orlikowsky
- Department of Paediatrics, Division of Neonatology; University Hospital RWTH Aachen, RWTH Aachen University, Aachen, Germany
| | - Karen Lidzba
- Division of Child Neurology, Department of Pediatrics, Pediatric Neurology, Inselspital University Hospital Bern, Bern, Switzerland
| |
Collapse
|
5
|
Vulnerability of the Neonatal Connectome following Postnatal Stress. J Neurosci 2022; 42:8948-8959. [PMID: 36376077 PMCID: PMC9732827 DOI: 10.1523/jneurosci.0176-22.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Stress following preterm birth can disrupt the emerging foundation of the neonatal brain. The current study examined how structural brain development is affected by a stressful early environment and whether changes in topological architecture at term-equivalent age could explain the increased vulnerability for behavioral symptoms during early childhood. Longitudinal changes in structural brain connectivity were quantified using diffusion-weighted imaging (DWI) and tractography in preterm born infants (gestational age <28 weeks), imaged at 30 and/or 40 weeks of gestation (N = 145, 43.5% female). A global index of postnatal stress was determined based on the number of invasive procedures during hospitalization (e.g., heel lance). Higher stress levels impaired structural connectivity growth in a subnetwork of 48 connections (p = 0.003), including the amygdala, insula, hippocampus, and posterior cingulate cortex. Findings were replicated in an independent validation sample (N = 123, 39.8% female, n = 91 with follow-up). Classifying infants into vulnerable and resilient based on having more or less internalizing symptoms at two to five years of age (n = 71) revealed lower connectivity in the hippocampus and amygdala for vulnerable relative to resilient infants (p < 0.001). Our findings suggest that higher stress exposure during hospital admission is associated with slower growth of structural connectivity. The preservation of global connectivity of the amygdala and hippocampus might reflect a stress-buffering or resilience-enhancing factor against a stressful early environment and early-childhood internalizing symptoms.SIGNIFICANCE STATEMENT The preterm brain is exposed to various external stimuli following birth. The effects of early chronic stress on neonatal brain networks and the remarkable degree of resilience are not well understood. The current study aims to provide an increased understanding of the impact of postnatal stress on third-trimester brain development and describe the topological architecture of a resilient brain. We observed a sparser neonatal brain network in infants exposed to higher postnatal stress. Limbic regulatory regions, including the hippocampus and amygdala, may play a key role as crucial convergence sites of protective factors. Understanding how stress-induced alterations in early brain development might lead to brain (re)organization may provide essential insights into resilient functioning.
Collapse
|
6
|
Vo Van P, Alison M, Morel B, Beck J, Bednarek N, Hertz-Pannier L, Loron G. Advanced Brain Imaging in Preterm Infants: A Narrative Review of Microstructural and Connectomic Disruption. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9030356. [PMID: 35327728 PMCID: PMC8947160 DOI: 10.3390/children9030356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 11/16/2022]
Abstract
Preterm birth disrupts the in utero environment, preventing the brain from fully developing, thereby causing later cognitive and behavioral disorders. Such cerebral alteration occurs beneath an anatomical scale, and is therefore undetectable by conventional imagery. Prematurity impairs the microstructure and thus the histological process responsible for the maturation, including the myelination. Cerebral MRI diffusion tensor imaging sequences, based on water’s motion into the brain, allows a representation of this maturation process. Similarly, the brain’s connections become disorganized. The connectome gathers structural and anatomical white matter fibers, as well as functional networks referring to remote brain regions connected one over another. Structural and functional connectivity is illustrated by tractography and functional MRI, respectively. Their organizations consist of core nodes connected by edges. This basic distribution is already established in the fetal brain. It evolves greatly over time but is compromised by prematurity. Finally, cerebral plasticity is nurtured by a lifetime experience at microstructural and macrostructural scales. A preterm birth causes a negative and early disruption, though it can be partly mitigated by positive stimuli based on developmental neonatal care.
Collapse
Affiliation(s)
- Philippe Vo Van
- Department of Neonatology, Hospices Civils de Lyon, Femme Mère Enfant Hospital, 59 Boulevard Pinel, 69500 Bron, France
- Correspondence:
| | - Marianne Alison
- Service d’Imagerie Pédiatrique, Hôpital Robert Debré, APHP, 75019 Paris, France;
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
| | - Baptiste Morel
- Pediatric Radiology Department, Clocheville Hospital, CHRU of Tours, 37000 Tours, France;
- UMR 1253, iB-Rain, Université de Tours, Inserm, 37000 Tours, France
| | - Jonathan Beck
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Nathalie Bednarek
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Lucie Hertz-Pannier
- U1141 Neurodiderot, Équipe 5 inDev, Inserm, CEA, Université de Paris, 75019 Paris, France;
- NeuroSpin, CEA-Saclay, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Gauthier Loron
- Department of Neonatology, Reims University Hospital Alix de Champagne, 51100 Reims, France; (J.B.); (N.B.); (G.L.)
- CReSTIC EA 3804, Université de Reims Champagne Ardenne, 51100 Reims, France
| |
Collapse
|
7
|
Gao Y, Meng X, Bai Z, Liu X, Zhang M, Li H, Ding G, Liu L, Booth JR. Left and Right Arcuate Fasciculi Are Uniquely Related to Word Reading Skills in Chinese-English Bilingual Children. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:109-131. [PMID: 37215330 PMCID: PMC10158580 DOI: 10.1162/nol_a_00051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 07/10/2021] [Indexed: 05/24/2023]
Abstract
Whether reading in different writing systems recruits language-unique or language-universal neural processes is a long-standing debate. Many studies have shown the left arcuate fasciculus (AF) to be involved in phonological and reading processes. In contrast, little is known about the role of the right AF in reading, but some have suggested that it may play a role in visual spatial aspects of reading or the prosodic components of language. The right AF may be more important for reading in Chinese due to its logographic and tonal properties, but this hypothesis has yet to be tested. We recruited a group of Chinese-English bilingual children (8.2 to 12.0 years old) to explore the common and unique relation of reading skill in English and Chinese to fractional anisotropy (FA) in the bilateral AF. We found that both English and Chinese reading skills were positively correlated with FA in the rostral part of the left AF-direct segment. Additionally, English reading skill was positively correlated with FA in the caudal part of the left AF-direct segment, which was also positively correlated with phonological awareness. In contrast, Chinese reading skill was positively correlated with FA in certain segments of the right AF, which was positively correlated with visual spatial ability, but not tone discrimination ability. Our results suggest that there are language universal substrates of reading across languages, but that certain left AF nodes support phonological mechanisms important for reading in English, whereas certain right AF nodes support visual spatial mechanisms important for reading in Chinese.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xiangzhi Meng
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavioral and Mental Health, Peking University, Beijing, China
- PekingU-PolyU Center for Child Development and Learning, Beijing, China
| | - Zilin Bai
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Liu
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Manli Zhang
- Department of Cognitive Neuroscience and Maastricht Brain Imaging Center, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Hehui Li
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - James R. Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
8
|
Sato J, Vandewouw MM, Bando N, Branson HM, O'Connor DL, Unger SL, Taylor MJ. White matter alterations and cognitive outcomes in children born very low birth weight. Neuroimage Clin 2021; 32:102843. [PMID: 34601309 PMCID: PMC8496319 DOI: 10.1016/j.nicl.2021.102843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 10/25/2022]
Abstract
BACKGROUND Very low birth weight (VLBW) infants are at risk for disrupted white matter maturation, yet little is known about the contributing factors, particularly at preschool-age when cognitive difficulties begin to emerge. We examined white matter microstructure in five-year-old VLBW and full-term (FT) children, and its association with cognitive outcomes and birth weight. METHODS Multi-shell diffusion and MR images were obtained for 41 VLBW (mean birth weight: 1028.6 ± 256.8 g) and 26 FT (3295.4 ± 493.9 g) children. Fractional anisotropy (FA), radial diffusivity (RD), neurite orientation dispersion index (ODI) and density index (NDI) were estimated using diffusion tensor and neurite orientation dispersion and density imaging models. Between-group analyses used a general linear model with group and sex as explanatory variables. Within-group associations between white matter microstructure, cognitive outcomes and birth weight were also investigated. RESULTS VLBW compared to FT children showed lower FA and NDI across widespread white matter regions. Smaller clusters of atypical ODI were also found in VLBW children. Within-group analyses in FT children revealed that lower RD and higher NDI were associated with vocabulary acquisition and working memory. In VLBW children, higher FA and NDI, and lower RD and ODI, were associated with improved processing speed. In both groups, FA was positively associated with birth weight. CONCLUSIONS Our findings demonstrate white matter alterations in young VLBW children, including widespread reductions in axon density that may reflect sustained myelination disruptions. The associations with cognitive outcomes may also highlight which of the VLBW children are at higher risk for later cognitive difficulties.
Collapse
Affiliation(s)
- Julie Sato
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Psychology, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada.
| | - Marlee M Vandewouw
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Bando
- Translational Medicine, SickKids Research Institute, Toronto, Ontario, Canada
| | - Helen M Branson
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Medical Imaging, University of Toronto, Ontario, Canada
| | - Deborah L O'Connor
- Translational Medicine, SickKids Research Institute, Toronto, Ontario, Canada; Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Paediatrics, Mount Sinai Health, Toronto, Ontario, Canada
| | - Sharon L Unger
- Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada; Paediatrics, University of Toronto, Toronto, Ontario, Canada; Paediatrics, Mount Sinai Health, Toronto, Ontario, Canada; Division of Neonatology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Margot J Taylor
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Psychology, University of Toronto, Toronto, Ontario, Canada; Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Medical Imaging, University of Toronto, Ontario, Canada; Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Kanel D, Vanes LD, Pecheva D, Hadaya L, Falconer S, Counsell SJ, Edwards DA, Nosarti C. Neonatal White Matter Microstructure and Emotional Development during the Preschool Years in Children Who Were Born Very Preterm. eNeuro 2021; 8:ENEURO.0546-20.2021. [PMID: 34373253 PMCID: PMC8489022 DOI: 10.1523/eneuro.0546-20.2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 11/21/2022] Open
Abstract
Children born very preterm (<33 weeks of gestation) are at a higher risk of developing socio-emotional difficulties compared with those born at term. In this longitudinal study, we tested the hypothesis that diffusion characteristics of white matter (WM) tracts implicated in socio-emotional processing assessed in the neonatal period are associated with socio-emotional development in 151 very preterm children previously enrolled into the Evaluation of Preterm Imaging study (EudraCT 2009-011602-42). All children underwent diffusion tensor imaging at term-equivalent age and fractional anisotropy (FA) was quantified in the uncinate fasciculus (UF), inferior fronto-occipital fasciculus (IFOF), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). Children's socio-emotional development was evaluated at preschool age (median = 4.63 years). Exploratory factor analysis conducted on the outcome variables revealed a three-factor structure, with latent constructs summarized as: "emotion moderation," "social function," and "empathy." Results of linear regression analyses, adjusting for full-scale IQ and clinical and socio-demographic variables, showed an association between lower FA in the right UF and higher "emotion moderation" scores (β = -0.280; p < 0.001), which was mainly driven by negative affectivity scores (β = -0.281; p = 0.001). Results further showed an association between higher full-scale IQ and better social functioning (β = -0.334, p < 0.001). Girls had higher empathy scores than boys (β = -0.341, p = 0.006). These findings suggest that early alterations of diffusion characteristics of the UF could represent a biological substrate underlying the link between very preterm birth and emotional dysregulation in childhood and beyond.
Collapse
Affiliation(s)
- Dana Kanel
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Lucy D Vanes
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Diliana Pecheva
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Laila Hadaya
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Shona Falconer
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - Serena J Counsell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
| | - David A Edwards
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, United Kingdom
| | - Chiara Nosarti
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, United Kingdom
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| |
Collapse
|
10
|
Lammertink F, Vinkers CH, Tataranno ML, Benders MJNL. Premature Birth and Developmental Programming: Mechanisms of Resilience and Vulnerability. Front Psychiatry 2021; 11:531571. [PMID: 33488409 PMCID: PMC7820177 DOI: 10.3389/fpsyt.2020.531571] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
The third trimester of pregnancy represents a sensitive phase for infant brain plasticity when a series of fast-developing cellular events (synaptogenesis, neuronal migration, and myelination) regulates the development of neural circuits. Throughout this dynamic period of growth and development, the human brain is susceptible to stress. Preterm infants are born with an immature brain and are, while admitted to the neonatal intensive care unit, precociously exposed to stressful procedures. Postnatal stress may contribute to altered programming of the brain, including key systems such as the hypothalamic-pituitary-adrenal axis and the autonomic nervous system. These neurobiological systems are promising markers for the etiology of several affective and social psychopathologies. As preterm birth interferes with early development of stress-regulatory systems, early interventions might strengthen resilience factors and might help reduce the detrimental effects of chronic stress exposure. Here we will review the impact of stress following premature birth on the programming of neurobiological systems and discuss possible stress-related neural circuits and pathways involved in resilience and vulnerability. Finally, we discuss opportunities for early intervention and future studies.
Collapse
Affiliation(s)
- Femke Lammertink
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christiaan H. Vinkers
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Maria L. Tataranno
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Manon J. N. L. Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
11
|
Kallankari H, Saunavaara V, Parkkola R, Haataja L, Hallman M, Kaukola T. Diffusion tensor imaging in frontostriatal tracts is associated with executive functioning in very preterm children at 9 years of age. Pediatr Radiol 2021; 51:112-118. [PMID: 32870358 PMCID: PMC7796865 DOI: 10.1007/s00247-020-04802-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/27/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023]
Abstract
BACKGROUND Very preterm birth can disturb brain maturation and subject these high-risk children to neurocognitive difficulties later. OBJECTIVE The aim of the study was to evaluate the impact of prematurity on microstructure of frontostriatal tracts in children with no severe neurologic impairment, and to study whether the diffusion tensor imaging metrics of frontostriatal tracts correlate to executive functioning. MATERIALS AND METHODS The prospective cohort study comprised 54 very preterm children (mean gestational age 28.8 weeks) and 20 age- and gender-matched term children. None of the children had severe neurologic impairment. The children underwent diffusion tensor imaging and neuropsychological assessments at a mean age of 9 years. We measured quantitative diffusion tensor imaging metrics of frontostriatal tracts using probabilistic tractography. We also administered five subtests from the Developmental Neuropsychological Assessment, Second Edition, to evaluate executive functioning. RESULTS Very preterm children had significantly higher fractional anisotropy and axial diffusivity values (P<0.05, corrected for multiple comparison) in dorsolateral prefrontal caudate and ventrolateral prefrontal caudate tracts as compared to term-born children. We found negative correlations between the diffusion tensor imaging metrics of frontostriatal tracts and inhibition functions (P<0.05, corrected for multiple comparison) in very preterm children. CONCLUSION Prematurity has a long-term effect on frontostriatal white matter microstructure that might contribute to difficulties in executive functioning.
Collapse
Affiliation(s)
- Hanna Kallankari
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland. .,Department of Child Neurology, Oulu University Hospital, P.O. Box 23, FIN-90029 OYS, Oulu, Finland.
| | - Virva Saunavaara
- PET Center, Turku University Hospital, Turku, Finland ,Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Leena Haataja
- Department of Child Neurology, Children and Adolescents, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Tuula Kaukola
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland ,Department of Neonatology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
12
|
Lee HJ, Kwon H, Kim JI, Lee JY, Lee JY, Bang S, Lee JM. The cingulum in very preterm infants relates to language and social-emotional impairment at 2 years of term-equivalent age. NEUROIMAGE-CLINICAL 2020; 29:102528. [PMID: 33338967 PMCID: PMC7750449 DOI: 10.1016/j.nicl.2020.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/15/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023]
Abstract
Maturation of specific WM tracts in preterm individuals differs from those of term controls. The elastic net logistic regression model was used to identify altered white matter tracts in the preterm brain. The alteration of the cingulum in the preterm at near-term correlate with neurodevelopmental scores at 18–22 months of age.
Background Relative to full-term infants, very preterm infants exhibit disrupted white matter (WM) maturation and problems related to development, including motor, cognitive, social-emotional, and receptive and expressive language processing. Objective The present study aimed to determine whether regional abnormalities in the WM microstructure of very preterm infants, as defined relative to those of full-term infants at a near-term age, are associated with neurodevelopmental outcomes at the age of 18–22 months. Methods We prospectively enrolled 89 very preterm infants (birth weight < 1500 g) and 43 normal full-term control infants born between 2016 and 2018. All infants underwent a structural brain magnetic resonance imaging scan at near-term age. The diffusion tensor imaging (DTI) metrics of the whole-brain WM tracts were extracted based on the neonatal probabilistic WM pathway. The elastic net logistic regression model was used to identify altered WM tracts in the preterm brain. We evaluated the associations between the altered WM microstructure at near-term age and motor, cognitive, social-emotional, and receptive and expressive language developments at 18–22 months of age, as measured using the Bayley Scales of Infant Development, Third Edition. Results We found that the elastic net logistic regression model could classify preterm and full-term neonates with an accuracy of 87.9% (corrected p < 0.008) using the DTI metrics in the pathway of interest with a 10% threshold level. The fractional anisotropy (FA) values of the body and splenium of the corpus callosum, middle cerebellar peduncle, left and right uncinate fasciculi, and right portion of the pathway between the premotor and primary motor cortices (premotor-PMC), as well as the mean axial diffusivity (AD) values of the left cingulum, were identified as contributive features for classification. Increased adjusted AD values in the left cingulum pathway were significantly correlated with language scores after false discovery rate (FDR) correction (r = 0.217, p = 0.043). The expressive language and social-emotional composite scores showed a significant positive correlation with the AD values in the left cingulum pathway (r = 0.226 [p = 0.036] and r = 0.31 [p = 0.003], respectively) after FDR correction. Conclusion Our approach suggests that the cingulum pathways of very preterm infants differ from those of full-term infants and significantly contribute to the prediction of the subsequent development of the language and social-emotional domains. This finding could improve our understanding of how specific neural substrates influence neurodevelopment at later ages, and individual risk prediction, thus helping to inform early intervention strategies that address developmental delay.
Collapse
Affiliation(s)
- Hyun Ju Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Hyeokjin Kwon
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University, Seoul, South Korea; Division of Neonatology and Developmental Medicine, Seoul Hanyang University Hospital, Seoul, South Korea
| | - Joo Young Lee
- Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Ji Young Lee
- Department of Radiology, Hanyang University College of Medicine, Seoul, South Korea
| | - SungKyu Bang
- Department of Electronic Engineering, Hanyang University, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.
| |
Collapse
|
13
|
Dubner SE, Rose J, Bruckert L, Feldman HM, Travis KE. Neonatal white matter tract microstructure and 2-year language outcomes after preterm birth. NEUROIMAGE-CLINICAL 2020; 28:102446. [PMID: 33035964 PMCID: PMC7554644 DOI: 10.1016/j.nicl.2020.102446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/18/2020] [Accepted: 09/20/2020] [Indexed: 01/04/2023]
Abstract
Preterm infant white matter tracts uniquely predict later toddler language. Neonatal medical history moderates posterior corpus callosum–language relations. Different associations by tract may relate to brain maturation and medical history.
Aim To determine whether variability in diffusion MRI (dMRI) white matter tract metrics, obtained in a cohort of preterm infants prior to neonatal hospital discharge, would be associated with language outcomes at age 2 years, after consideration of age at scan and number of major neonatal complications. Method 30 children, gestational age 28.9 (2.4) weeks, underwent dMRI at mean post menstrual age 36.4 (1.4) weeks and language assessment with the Bayley Scales of Infant Development–III at mean age 22.2 (1.7) months chronological age. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for 5 white matter tracts. Hierarchical linear regression assessed associations between tract FA, moderating variables, and language outcomes. Results FA of the left inferior longitudinal fasciculus accounted for 17% (p = 0.03) of the variance in composite language and FA of the posterior corpus callosum accounted for 19% (p = 0.02) of the variance in composite language, beyond that accounted for by post-menstrual age at scan and neonatal medical complications. The number of neonatal medical complications moderated the relationship between language and posterior corpus callosum FA but did not moderate the association in the other tract. Conclusion Language at age 2 is associated with white matter metrics in early infancy in preterm children. The different pattern of associations by fiber group may relate to the stage of brain maturation and/or the nature and timing of medical complications related to preterm birth. Future studies should replicate these findings with a larger sample size to assure reliability of the findings.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jessica Rose
- Division of Pediatric Orthopaedics, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Barnes-Davis ME, Williamson BJ, Merhar SL, Holland SK, Kadis DS. Rewiring the extremely preterm brain: Altered structural connectivity relates to language function. Neuroimage Clin 2020; 25:102194. [PMID: 32032818 PMCID: PMC7005506 DOI: 10.1016/j.nicl.2020.102194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 11/26/2022]
Abstract
Children born preterm are at increased risk for cognitive impairment, with higher-order functions such as language being especially vulnerable. Previously, we and others have reported increased interhemispheric functional connectivity in children born extremely preterm; the finding appears at odds with literature showing decreased integrity of the corpus callosum, the primary commissural bundle, in preterm children. We address the apparent discrepancy by obtaining advanced measures of structural connectivity in twelve school-aged children born extremely preterm (<28 weeks) and ten term controls. We hypothesize increased extracallosal structural connectivity might support the functional hyperconnectivity we had previously observed. Participants were aged four to six years at time of study and groups did not differ in age, sex, race, ethnicity, or socioeconomic status. Whole-brain and language-network-specific (functionally-constrained) connectometry analyses were performed. At the whole-brain level, preterm children had decreased connectivity in the corpus callosum and increased connectivity in the cerebellum versus controls. Functionally-constrained analyses revealed significantly increased extracallosal connectivity between bilateral temporal regions in preterm children (FDRq <0.05). Connectivity within these extracallosal pathways was positively correlated with performance on standardized language assessments in children born preterm (FDRq <0.001), but unrelated to performance in controls. This is the first study to identify anatomical substrates for increased interhemispheric functional connectivity in children born preterm; increased reliance on an extracallosal pathway may represent a biomarker for resiliency following extremely preterm birth.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States.
| | - Brady J Williamson
- Department of Psychology, University of Cincinnati, United States; Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, United States
| | - Stephanie L Merhar
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, United States; Department of Pediatrics, University of Cincinnati College of Medicine, United States
| | - Scott K Holland
- Department of Physics, University of Cincinnati, United States; Medpace Imaging Core Laboratory, Medpace Inc., United States
| | - Darren S Kadis
- Neurosciences and Mental Health Research Institute, Hospital for Sick Children, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Canada
| |
Collapse
|
15
|
Bruckert L, Shpanskaya K, McKenna ES, Borchers LR, Yablonski M, Blecher T, Ben-Shachar M, Travis KE, Feldman HM, Yeom KW. Age-Dependent White Matter Characteristics of the Cerebellar Peduncles from Infancy Through Adolescence. THE CEREBELLUM 2019; 18:372-387. [PMID: 30637673 DOI: 10.1007/s12311-018-1003-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cerebellum-cerebrum connections are essential for many motor and cognitive functions and cerebellar disorders are prevalent in childhood. The middle (MCP), inferior (ICP), and superior cerebellar peduncles (SCP) are the major white matter pathways that permit communication between the cerebellum and the cerebrum. Knowledge about the microstructural properties of these cerebellar peduncles across childhood is limited. Here, we report on a diffusion magnetic resonance imaging tractography study to describe age-dependent characteristics of the cerebellar peduncles in a cross-sectional sample of infants, children, and adolescents from newborn to 17 years of age (N = 113). Scans were collected as part of clinical care; participants were restricted to those whose scans showed no abnormal findings and whose history and exam had no risk factors for cerebellar abnormalities. A novel automated tractography protocol was applied. Results showed that mean tract-FA increased, while mean tract-MD decreased from infancy to adolescence in all peduncles. Rapid changes were observed in both diffusion measures in the first 24 months of life, followed by gradual change at older ages. The shape of the tract profiles was similar across ages for all peduncles. These data are the first to characterize the variability of diffusion properties both across and within cerebellar white matter pathways that occur from birth through later adolescence. The data represent a rich normative data set against which white matter alterations seen in children with posterior fossa conditions can be compared. Ultimately, the data will facilitate the identification of sensitive biomarkers of cerebellar abnormalities.
Collapse
Affiliation(s)
- Lisa Bruckert
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katie Shpanskaya
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Emily S McKenna
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Lauren R Borchers
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Maya Yablonski
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Tal Blecher
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, 5290002, Ramat Gan, Israel.,Department of English Literature and Linguistics, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Bruckert L, Borchers LR, Dodson CK, Marchman VA, Travis KE, Ben-Shachar M, Feldman HM. White Matter Plasticity in Reading-Related Pathways Differs in Children Born Preterm and at Term: A Longitudinal Analysis. Front Hum Neurosci 2019; 13:139. [PMID: 31139064 PMCID: PMC6519445 DOI: 10.3389/fnhum.2019.00139] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
Children born preterm (PT) are at risk for white matter injuries based on complications of prematurity. They learn to read but on average perform below peers born full term (FT). Studies have yet to establish whether properties of white matter pathways at the onset of learning to read are associated with individual variation later in reading development in PT children. Here, we asked whether fractional anisotropy (FA) at age 6 years is associated with reading outcome at age 8 years in PT children in the same pathways as previously demonstrated in a sample of FT children. PT (n = 34, mean gestational age = 29.5 weeks) and FT children (n = 37) completed diffusion MRI and standardized measures of non-verbal IQ, language, and phonological awareness at age 6 years. Reading skills were assessed at age 8 years. Mean tract-FA was extracted from pathways that predicted reading outcome in children born FT: left arcuate fasciculus (Arc), bilateral superior longitudinal fasciculus (SLF), and left inferior cerebellar peduncle (ICP). We explored associations in additional pathways in the PT children: bilateral inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus. Linear regression models examined whether the prediction of reading outcome at age 8 years based on mean tract-FA at age 6 years was moderated by birth group. Children born PT and FT did not differ significantly in tract-FA at age 6 years or in reading at age 8 years. Sex, socioeconomic status, and non-verbal IQ at age 6 years were associated with reading outcome and were included as covariates in all models. Birth group status significantly moderated associations between reading outcome and mean tract-FA only in the left Arc, right SLF, and left ICP, before and after consideration of pre-literacy skills. Microstructural properties of these cerebral and cerebellar pathways predicted later reading outcome in FT but not in PT children. Children born PT may rely on alternative pathways to achieve fluent reading. These findings have implications for plasticity of neural organization after early white matter injury.
Collapse
Affiliation(s)
- Lisa Bruckert
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Lauren R Borchers
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Cory K Dodson
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Virginia A Marchman
- Language Learning Lab, Center for Infant Studies, Department of Psychology, Stanford University, Stanford, CA, United States
| | - Katherine E Travis
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel.,Department of English Literature and Linguistics, Bar-Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- The Developmental-Behavioral Pediatrics Research Group, Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, United States
| |
Collapse
|
17
|
Dubner SE, Dodson CK, Marchman VA, Ben-Shachar M, Feldman HM, Travis KE. White matter microstructure and cognitive outcomes in relation to neonatal inflammation in 6-year-old children born preterm. NEUROIMAGE-CLINICAL 2019; 23:101832. [PMID: 31075555 PMCID: PMC6603335 DOI: 10.1016/j.nicl.2019.101832] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cognitive outcomes in preterm (PT) children have been associated with microstructural properties of white matter. PT children who experienced neonatal inflammatory conditions have poorer cognitive outcomes than those who did not. The goal of this study was to contrast white matter microstructure and cognitive outcomes after preterm birth in relation to the presence or absence of severe inflammatory conditions in the neonatal period. METHODS PT children (n = 35), born at gestational age 22-32 weeks, were classified as either PT+ (n = 12) based on a neonatal history of inflammatory conditions, including bronchopulmonary dysplasia, necrotizing enterocolitis or culture positive sepsis, or PT- (n = 23) based on the absence of the three inflammatory conditions. Full term (FT) children (n = 43) served as controls. Participants underwent diffusion MRI and cognitive testing (intelligence, reading, and executive function) at age 6 years. The corpus callosum was segmented into 7 regions using deterministic tractography and based on the cortical projection zones of the callosal fibers. Mean fractional anisotropy (FA) and mean diffusivity (MD) were calculated for each segment. General linear models with planned contrasts assessed group differences in FA, MD and cognitive outcomes. Pearson correlations assessed associations of white matter metrics and cognitive outcome measures. RESULTS FA was significantly lower and MD was significantly higher in PT+ compared to PT- or FT groups in multiple callosal segments, even after adjusting for gestational age. Executive function scores, but not intelligence or reading scores, were less favorable in PT+ than in PT- groups. Among the entire sample, occipital FA was significantly correlated with IQ (r = 0.25, p < 0.05), reading (r = 0.32, p < 0.01), and executive function (r = -0.28, p < 0.05) measures. Anterior frontal FA and superior parietal FA were significantly correlated with executive function (r = -0.25, r = 0.23, respectively, p < 0.05). CONCLUSIONS We observed differences in the white matter microstructure of the corpus callosum and in the cognitive skills of 6-year-old PT children based on their history of neonatal inflammation. Neonatal inflammation is one medical factor that may contribute to variation in long-term neurobiological and neuropsychological outcomes in PT samples.
Collapse
Affiliation(s)
- Sarah E Dubner
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Cory K Dodson
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine E Travis
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Travis KE, Castro MRH, Berman S, Dodson CK, Mezer AA, Ben-Shachar M, Feldman HM. More than myelin: Probing white matter differences in prematurity with quantitative T1 and diffusion MRI. Neuroimage Clin 2019; 22:101756. [PMID: 30901711 PMCID: PMC6428958 DOI: 10.1016/j.nicl.2019.101756] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 03/03/2019] [Accepted: 03/09/2019] [Indexed: 01/07/2023]
Abstract
OBJECTIVE We combined diffusion MRI (dMRI) with quantitative T1 (qT1) relaxometry in a sample of school-aged children born preterm and full term to determine whether reduced fractional anisotropy (FA) within the corpus callosum of the preterm group could be explained by a reduction in myelin content, as indexed by R1 (1/T1) from qT1 scans. METHODS 8-year-old children born preterm (n = 29; GA 22-32 weeks) and full term (n = 24) underwent dMRI and qT1 scans. Four subdivisions of the corpus callosum were segmented in individual native space according to cortical projection zones (occipital, temporal, motor and anterior-frontal). Fractional anisotropy (FA) and R1 were quantified along the tract trajectory of each subdivision and compared across two birth groups. RESULTS Compared to controls, preterm children demonstrated significantly decreased FA in 3 of 4 analyzed corpus callosum subdivisions (temporal, motor, and anterior frontal segments) and decreased R1 in only 2 of 4 corpus callosum subdivisions (temporal and motor segments). FA and RD were significantly associated with R1 within temporal but not anterior frontal subdivisions of the corpus callosum in the term group; RD correlated with R1 in the anterior subdivision in the preterm group only. CONCLUSIONS Myelin content, as indexed by R1, drives some but not all of the differences in white matter between preterm and term born children. Other factors, such as axonal diameter and directional coherence, likely contributed to FA differences in the anterior frontal segment of the corpus callosum that were not well explained by R1.
Collapse
Affiliation(s)
- Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Maria R H Castro
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Shai Berman
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
19
|
Hyde C, Fuelscher I, Enticott PG, Jones DK, Farquharson S, Silk TJ, Williams J, Caeyenberghs K. White matter organization in developmental coordination disorder: A pilot study exploring the added value of constrained spherical deconvolution. NEUROIMAGE-CLINICAL 2018; 21:101625. [PMID: 30552074 PMCID: PMC6411781 DOI: 10.1016/j.nicl.2018.101625] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/13/2018] [Accepted: 12/01/2018] [Indexed: 12/13/2022]
Abstract
Previous studies of white matter organization in sensorimotor tracts in developmental coordination disorder (DCD) have adopted diffusion tensor imaging (DTI), a method unable to reconcile pathways with ‘crossing fibres’. In response to limitations of the commonly adopted DTI approach, the present study employed a framework that can reconcile the ‘crossing fibre’ problem (i.e., constrained spherical deconvolution- CSD) to characterize white matter tissue organization of sensorimotor tracts in young adults with DCD. Participants were 19 healthy adults aged 18–46: 7 met diagnostic criteria for DCD (4 females) and 12 were controls (3 females). All underwent high angular diffusion MRI. After preprocessing, the left and right corticospinal tracts (CST) and superior longitudinal fasciculi (SLF) were delineated and all tracts were then generated using both CSD and DTI tractography respectively. Based on the CSD model, individuals with DCD demonstrated significantly decreased mean apparent fibre density (AFD) in the left SLF relative to controls (with large effect size, Cohen's d = 1.32) and a trend for decreased tract volume of the right SLF (with medium-large effect size, Cohen's d = 0.73). No differences in SLF microstructure were found between groups using DTI, nor were differences in CST microstructure observed across groups regardless of hemisphere or diffusion model. Our data are consistent with the view that motor impairment characteristic of DCD may be subserved by white matter abnormalities in sensorimotor tracts, specifically the left and right SLF. Our data further highlight the benefits of higher order diffusion MRI (e.g. CSD) relative to DTI for clarifying earlier inconsistencies in reports speaking to white matter organization in DCD, and its contribution to poor motor skill in DCD. All previous diffusion studies of white matter in DCD have employed a tensor model We employed a non-tensor model to characterize microstructure in adults with DCD The non-tensor model showed atypical white matter organization in the SLF in DCD The tensor model failed to detect microstructural group differences for any tract Motor impairment characteristic of DCD may be subserved by white matter abnormalities
We need to move beyond the tensor model in characterizing white matter in DCD
Collapse
Affiliation(s)
- Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Neuroscience and Mental Health Research Institute, Cardiff University, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| | - Shawna Farquharson
- Melbourne Brain Centre Imaging Unit, Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Australia; Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Melbourne, Australia
| | - Tim J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia; Developmental Imaging, Clinical Sciences, Murdoch Children's Research Institute, Melbourne, Australia; Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Karen Caeyenberghs
- Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
20
|
Dodson CK, Travis KE, Borchers LR, Marchman VA, Ben-Shachar M, Feldman HM. White matter properties associated with pre-reading skills in 6-year-old children born preterm and at term. Dev Med Child Neurol 2018; 60:695-702. [PMID: 29722009 PMCID: PMC5993607 DOI: 10.1111/dmcn.13783] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
AIM To assess associations between white matter properties and pre-reading skills (phonological awareness and receptive and expressive language) in children born preterm and at term at the onset of reading acquisition. METHOD Six-year-old children born preterm (n=36; gestational age 22-32wks) and at term (n=43) underwent diffusion magnetic resonance imaging and behavioural assessments. Tracts were selected a priori based on findings from a study of 6-year-old children born at term: the left-hemisphere arcuate fasciculus and superior longitudinal fasciculus, and right-hemisphere uncinate fasciculus. Using linear regression, we assessed associations between fractional anisotropy of tracts and phonological awareness and receptive and expressive language scores. We investigated whether associations were moderated by prematurity. RESULTS Fractional anisotropy of the left-hemisphere arcuate fasciculus contributed unique variance to phonological awareness across birth groups. The association between fractional anisotropy of the right-hemisphere uncinate fasciculus and receptive and expressive language was significantly moderated by prematurity. INTERPRETATION A left-hemisphere tract was associated with phonological awareness in both birth groups. A right-hemisphere tract was associated with language only in the term group, suggesting that expressive and receptive language is mediated by different white matter pathways in 6-year-old children born preterm. These findings provide novel insights into similarities and differences of the neurobiology of pre-reading skills between children born preterm and at term at reading onset. WHAT THIS PAPER ADDS White matter properties and pre-reading abilities were associated in children born preterm at the onset of reading. The neurobiology of phonological awareness was similar in children born preterm versus children born at term at 6 years. The neurobiology of language was different in children born preterm versus children born at term at 6 years.
Collapse
Affiliation(s)
- Cory K Dodson
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Katherine E Travis
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | - Lauren R Borchers
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| | | | - Michal Ben-Shachar
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan
- Department of English Literature and Linguistics, Bar Ilan University, Ramat Gan, Israel
| | - Heidi M Feldman
- Division of Developmental and Behavioral Medicine, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
21
|
Strength of Temporal White Matter Pathways Predicts Semantic Learning. J Neurosci 2017; 37:11101-11113. [PMID: 29025925 DOI: 10.1523/jneurosci.1720-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/13/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
Learning the associations between words and meanings is a fundamental human ability. Although the language network is cortically well defined, the role of the white matter pathways supporting novel word-to-meaning mappings remains unclear. Here, by using contextual and cross-situational word learning, we tested whether learning the meaning of a new word is related to the integrity of the language-related white matter pathways in 40 adults (18 women). The arcuate, uncinate, inferior-fronto-occipital and inferior-longitudinal fasciculi were virtually dissected using manual and automatic deterministic fiber tracking. Critically, the automatic method allowed assessing the white matter microstructure along the tract. Results demonstrate that the microstructural properties of the left inferior-longitudinal fasciculus predict contextual learning, whereas the left uncinate was associated with cross-situational learning. In addition, we identified regions of special importance within these pathways: the posterior middle temporal gyrus, thought to serve as a lexical interface and specifically related to contextual learning; the anterior temporal lobe, known to be an amodal hub for semantic processing and related to cross-situational learning; and the white matter near the hippocampus, a structure fundamental for the initial stages of new-word learning and, remarkably, related to both types of word learning. No significant associations were found for the inferior-fronto-occipital fasciculus or the arcuate. While previous results suggest that learning new phonological word forms is mediated by the arcuate fasciculus, these findings show that the temporal pathways are the crucial neural substrate supporting one of the most striking human abilities: our capacity to identify correct associations between words and meanings under referential indeterminacy.SIGNIFICANCE STATEMENT The language-processing network is cortically (i.e., gray matter) well defined. However, the role of the white matter pathways that support novel word learning within this network remains unclear. In this work, we dissected language-related (arcuate, uncinate, inferior-fronto-occipital, and inferior-longitudinal) fasciculi using manual and automatic tracking. We found the left inferior-longitudinal fasciculus to be predictive of word-learning success in two word-to-meaning tasks: contextual and cross-situational learning paradigms. The left uncinate was predictive of cross-situational word learning. No significant correlations were found for the arcuate or the inferior-fronto-occipital fasciculus. While previous results showed that learning new phonological word forms is supported by the arcuate fasciculus, these findings demonstrate that learning new word-to-meaning associations is mainly dependent on temporal white matter pathways.
Collapse
|