1
|
Graf K, Jamous R, Mückschel M, Bluschke A, Beste C. Delayed modulation of alpha band activity increases response inhibition deficits in adolescents with AD(H)D. Neuroimage Clin 2024; 44:103677. [PMID: 39362044 PMCID: PMC11474224 DOI: 10.1016/j.nicl.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
Deficiencies in inhibitory control are one of the hallmarks of attention-deficit-(hyperactivity) disorder (AD(H)D). Response inhibition demands can become increased through additional conflicts, namely when already integrated representations of perception-action associations have to be updated. Yet, the neural mechanisms of how such conflicts worsen response inhibition in AD(H)D are unknown, but, if identified, could help to better understand the complex nature of AD(H)D-associated impulsivity. We investigated both behavioral performance and EEG activity in the theta and alpha band of adolescents (10-18 years of age) with AD(H)D (n = 28) compared to neurotypical (NT) controls (n = 33) in a conflict-modulated Go/Nogo paradigm. We used multivariate pattern analysis (MVPA) and EEG-beamforming to examine how changes in representational content are coded by oscillatory activity and to delineate the cortical structures involved in it. The presented behavioral and neurophysiological data show that adolescents with AD(H)D are more strongly affected by increased response inhibition demands through additional conflicts than NT controls. Precisely, AD(H)D participants showed higher false alarm rates than NT controls in both, non-overlapping and overlapping Nogo trials, but performed even worse in the latter. This is likely due to an inefficient updating of representations related to delayed modulations of alpha band activity in the ventral stream and orbitofrontal regions. Theta band activity is also modulated by conflict but was not differentially affected in the two groups. By this, the present study provides novel insights into underlying neurophysiological mechanisms of the complex nature of response inhibition deficits in adolescents with AD(H)D, stressing the importance to examine the interplay of theta and alpha band activity more closely to better understand inhibitory control deficits in AD(H)D.
Collapse
Affiliation(s)
- Katharina Graf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Roula Jamous
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU, Dresden, Germany.
| |
Collapse
|
2
|
Norton B, Sheen J, Burns L, Enticott PG, Fuller-Tyszkiewicz M, Kirkovski M. Overlap of eating disorders and neurodivergence: the role of inhibitory control. BMC Psychiatry 2024; 24:454. [PMID: 38890597 PMCID: PMC11186180 DOI: 10.1186/s12888-024-05837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Difficulties with inhibitory control have been identified in eating disorders (EDs) and neurodevelopmental disorders (NDs; including attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder), and there appear to be parallels between the expression of these impairments. It is theorised that impairments in inhibitory control within NDs may represent a unique vulnerability for eating disorders (EDs), and this same mechanism may contribute to poorer treatment outcomes. This review seeks to determine the state of the literature concerning the role of inhibitory control in the overlap of EDs and neurodivergence. METHOD A scoping review was conducted to summarise extant research, and to identify gaps in the existing knowledge base. Scopus, Medline, PsycInfo, Embase, and ProQuest were systematically searched. Studies were included if the study measured traits of ADHD or autism, and symptoms of ED, and required participants to complete a performance task measure of inhibitory control. Where studies included a cohort with both an ND and ED, these results had to be reported separately from cohorts with a singular diagnosis. Studies were required to be published in English, within the last 10 years. RESULTS No studies explored the relationship between autism and EDs using behavioural measures of inhibitory control. Four studies exploring the relationship between ADHD and EDs using behavioural measures of inhibitory control met selection criteria. These studies showed a multifaceted relationship between these conditions, with differences emerging between domains of inhibitory control. ADHD symptoms predicted poorer performance on measures of response inhibition in a non-clinical sample; this was not replicated in clinical samples, nor was there a significant association with EDs. Both ADHD and ED symptoms are associated with poor performance on attentional control measures; where these diagnoses were combined, performance was worse than for those with a singular diagnosis of ADHD. This was not replicated when compared to those with only ED diagnoses. CONCLUSION Impairments in attentional control may represent a unique vulnerability for the development of an ED and contribute to poor treatment outcomes. Further research is needed to explore the role of inhibitory control in EDs, ADHD and autism, including the use of both self-report and behavioural measures to capture the domains of inhibitory control.
Collapse
Affiliation(s)
- Bethany Norton
- School of Psychology, Deakin University, Geelong, Australia.
| | - Jade Sheen
- School of Psychology, Deakin University, Geelong, Australia
| | - Lewis Burns
- School of Psychology, Deakin University, Geelong, Australia
| | | | | | - Melissa Kirkovski
- School of Psychology, Deakin University, Geelong, Australia.
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Gumenyuk V, Korzyukov O, Tapaskar N, Wagner M, Larson CR, Hammer MJ. Deficiency in Re-Orienting of Attention in Adults with Attention-Deficit Hyperactivity Disorder. Clin EEG Neurosci 2023; 54:141-150. [PMID: 35861774 DOI: 10.1177/15500594221115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective: To characterize potential brain indexes of attention deficit hyperactivity disorder (ADHD) in adults. Methods: In an effort to develop objective, laboratory-based tests that can help to establish ADHD diagnosis, the brain indexes of distractibility was investigated in a group of adults. We used event-related brain potentials (ERPs) and performance measures in a forced-choice visual task. Results: Behaviorally aberrant distractibility in the ADHD group was significantly higher. Across three ERP components of distraction: N1 enhancement, P300 (P3a), and Reorienting Negativity (RON) the significant difference between ADHD and matched controls was found in the amplitude of the RON. We used non-parametric randomization tests, enabling us to statistically validated this difference between-group. Conclusions: Our main results of this feasibility study suggest that among other ERP components associated with auditory distraction, the RON response is promising index for a potential biomarker of deficient re-orienting of attention in adults s with ADHD.
Collapse
Affiliation(s)
- Valentina Gumenyuk
- Department of Neurological Sciences, MEG laboratory, 12284UNMC, Omaha, NE, USA
| | - Oleg Korzyukov
- Wisconsin Airway Sensory Physiology Laboratory, 5229University of Wisconsin - Whitewater, Whitewater, WI, USA.,Department of Communication Sciences and Disorders, 3270Northwestern University, Evanston, IL, USA
| | - Natalie Tapaskar
- Department of Communication Sciences and Disorders, 3270Northwestern University, Evanston, IL, USA.,Department of Medicine, 21727University of Chicago Medical Center, Chicago, IL, USA
| | | | - Charles R Larson
- Department of Communication Sciences and Disorders, 3270Northwestern University, Evanston, IL, USA
| | - Michael J Hammer
- Wisconsin Airway Sensory Physiology Laboratory, 5229University of Wisconsin - Whitewater, Whitewater, WI, USA
| |
Collapse
|
4
|
Multisensory Enhancement of Cognitive Control over Working Memory Capture of Attention in Children with ADHD. Brain Sci 2022; 13:brainsci13010066. [PMID: 36672047 PMCID: PMC9856446 DOI: 10.3390/brainsci13010066] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder in school-age children. Although it has been well documented that children with ADHD are associated with impairment of executive functions including working memory (WM) and inhibitory control, there is not yet a consensus as to the relationship between ADHD and memory-driven attentional capture (i.e., representations in WM bias attention toward the WM-matched distractors). The present study herein examined whether children with ADHD have sufficient cognitive control to modulate memory-driven attentional capture. 73 school-age children (36 with ADHD and 37 matched typically developing (TD) children) were instructed to perform a visual search task while actively maintaining an item in WM. In such a paradigm, the modality and the validity of the memory sample were manipulated. The results showed that under the visual WM encoding condition, no memory-driven attentional capture was observed in TD children, but significant capture was found in children with ADHD. In addition, under the audiovisual WM encoding condition, memory-matched distractors did not capture the attention of both groups. The results indicate a deficit of cognitive control over memory-driven attentional capture in children with ADHD, which can be improved by multisensory WM encoding. These findings enrich the relationship between ADHD and cognitive control and provide new insight into the influence of cross-modal processing on attentional guidance.
Collapse
|
5
|
Park EJ, Park YM, Lee SH, Kim B. The Loudness Dependence of Auditory Evoked Potentials is associated with the Symptom Severity and Treatment in Boys with Attention Deficit Hyperactivity Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2022; 20:514-525. [PMID: 35879036 PMCID: PMC9329111 DOI: 10.9758/cpn.2022.20.3.514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 01/20/2022] [Accepted: 02/02/2022] [Indexed: 11/18/2022]
Abstract
Objective Methods Results Conclusion
Collapse
Affiliation(s)
- Eun Jin Park
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Young-Min Park
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Seung-Hwan Lee
- Department of Psychiatry, Inje University Ilsan Paik Hospital, Goyang, Korea
| | - Bongseog Kim
- Department of Psychiatry, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
6
|
Ghin F, Stock AK, Beste C. The importance of resource allocation for the interplay between automatic and cognitive control in response inhibition – an EEG source localization study. Cortex 2022; 155:202-217. [DOI: 10.1016/j.cortex.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/12/2022] [Accepted: 07/05/2022] [Indexed: 11/03/2022]
|
7
|
Cañigueral R, Palmer J, Ashwood KL, Azadi B, Asherson P, Bolton PF, McLoughlin G, Tye C. Alpha oscillatory activity during attentional control in children with Autism Spectrum Disorder (ASD), Attention-Deficit/Hyperactivity Disorder (ADHD), and ASD+ADHD. J Child Psychol Psychiatry 2022; 63:745-761. [PMID: 34477232 DOI: 10.1111/jcpp.13514] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) share impairments in top-down and bottom-up modulation of attention. However, it is not yet well understood if co-occurrence of ASD and ADHD reflects a distinct or additive profile of attention deficits. We aimed to characterise alpha oscillatory activity (stimulus-locked alpha desynchronisation and prestimulus alpha) as an index of integration of top-down and bottom-up attentional processes in ASD and ADHD. METHODS Children with ASD, ADHD, comorbid ASD+ADHD, and typically-developing children completed a fixed-choice reaction-time task ('Fast task') while neurophysiological activity was recorded. Outcome measures were derived from source-decomposed neurophysiological data. Main measures of interest were prestimulus alpha power and alpha desynchronisation (difference between poststimulus and prestimulus alpha). Poststimulus activity linked to attention allocation (P1, P3), attentional control (N2), and cognitive control (theta synchronisation, 100-600 ms) was also examined. ANOVA was used to test differences across diagnostics groups on these measures. Spearman's correlations were used to investigate the relationship between attentional control processes (alpha oscillations), central executive functions (theta synchronisation), early visual processing (P1), and behavioural performance. RESULTS Children with ADHD (ADHD and ASD+ADHD) showed attenuated alpha desynchronisation, indicating poor integration of top-down and bottom-up attentional processes. Children with ADHD showed reduced N2 and P3 amplitudes, while children with ASD (ASD and ASD+ADHD) showed greater N2 amplitude, indicating atypical attentional control and attention allocation across ASD and ADHD. In the ASD group, prestimulus alpha and theta synchronisation were negatively correlated, and alpha desynchronisation and theta synchronisation were positively correlated, suggesting an atypical association between attentional control processes and executive functions. CONCLUSIONS ASD and ADHD are associated with disorder-specific impairments, while children with ASD+ADHD overall presented an additive profile with attentional deficits of both disorders. Importantly, these findings may inform the improvement of transdiagnostic procedures and optimisation of personalised intervention approaches.
Collapse
Affiliation(s)
- Roser Cañigueral
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Jason Palmer
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, CoMIT, Suita, Japan.,Institute for Neural Computation, Univeristy of California San Diego, La Jolla, CA, USA
| | - Karen L Ashwood
- Department of Forensic and Neurodevelopmental Sciences, King's College London, London, UK
| | - Bahar Azadi
- Department of Child & Adolescent Psychiatry, King's College London, London, UK
| | - Philip Asherson
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Patrick F Bolton
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Gráinne McLoughlin
- MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Charlotte Tye
- Department of Child & Adolescent Psychiatry, King's College London, London, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| |
Collapse
|
8
|
McCracken HS, Murphy BA, Ambalavanar U, Glazebrook CM, Yielder PC. Source Localization of Audiovisual Multisensory Neural Generators in Young Adults with Attention-Deficit/Hyperactivity Disorder. Brain Sci 2022; 12:brainsci12060809. [PMID: 35741694 PMCID: PMC9221313 DOI: 10.3390/brainsci12060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/01/2023] Open
Abstract
Attention-Deficit/Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder that exhibits unique neurological and behavioural characteristics. Our previous work using event-related potentials demonstrated that adults with ADHD process audiovisual multisensory stimuli somewhat differently than neurotypical controls. This study utilised an audiovisual multisensory two-alternative forced-choice discrimination task. Continuous whole-head electroencephalography (EEG) was recorded. Source localization (sLORETA) software was utilised to determine differences in the contribution made by sources of neural generators pertinent to audiovisual multisensory processing in those with ADHD versus neurotypical controls. Source localization techniques elucidated that the controls had greater neural activity 164 ms post-stimulus onset when compared to the ADHD group, but only when responding to audiovisual stimuli. The source of the increased activity was found to be Brodmann Area 2, postcentral gyrus, right-hemispheric parietal lobe referenced to Montreal Neurological Institute (MNI) coordinates of X = 35, Y = −40, and Z = 70 (p < 0.05). No group differences were present during either of the unisensory conditions. Differences in the integration areas, particularly in the right-hemispheric parietal brain regions, were found in those with ADHD. These alterations may correspond to impaired attentional capabilities when presented with multiple simultaneous sensory inputs, as is the case during a multisensory condition.
Collapse
Affiliation(s)
- Heather S. McCracken
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada; (H.S.M.); (U.A.); (P.C.Y.)
| | - Bernadette A. Murphy
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada; (H.S.M.); (U.A.); (P.C.Y.)
- Correspondence: ; Tel.: +905-721-8668
| | - Ushani Ambalavanar
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada; (H.S.M.); (U.A.); (P.C.Y.)
| | - Cheryl M. Glazebrook
- Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
- Health, Leisure and Human Performance Institute, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Paul C. Yielder
- Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON L1G 0C5, Canada; (H.S.M.); (U.A.); (P.C.Y.)
- School of Medicine, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
9
|
Colzato LS, Hommel B, Zhang W, Roessner V, Beste C. The metacontrol hypothesis as diagnostic framework of OCD and ADHD: A dimensional approach based on shared neurobiological vulnerability. Neurosci Biobehav Rev 2022; 137:104677. [PMID: 35461986 DOI: 10.1016/j.neubiorev.2022.104677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/15/2022]
Abstract
Obsessive-compulsive disorder (OCD) and attention-deficit hyperactivity disorder (ADHD) are multi-faceted neuropsychiatric conditions that in many aspects appear to be each other's antipodes. We suggest a dimensional approach, according to which these partially opposing disorders fall onto a continuum that reflects variability regarding alterations of cortico-striato-thalamo-cortical (CSTC) circuits and of the processing of neural noise during cognition. By using theoretical accounts of human cognitive metacontrol, we develop a framework according to which OCD can be characterized by a chronic bias towards exaggerated cognitive persistence, equivalent to a high signal-to-noise ratio (SNR)-which facilitates perseverative behaviour but impairs mental flexibility. In contrast, ADHD is characterized by a chronic bias towards inflated cognitive flexibility, equivalent to a low SNR-which increases behavioural variability but impairs the focusing on one goal and on relevant information. We argue that, when pharmacology is not feasible, novel treatments of these disorders may involve methods to manipulate the signal-to-noise ratio via non-invasive brain stimulation techniques, in order to normalize the situational imbalance between cognitive persistence and cognitive flexibility.
Collapse
Affiliation(s)
- Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Wenxin Zhang
- Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; University Neuropsychology Center, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China
| |
Collapse
|
10
|
Cavicchioli M, Ogliari A, Movalli M, Maffei C. Persistent Deficits in Self-Regulation as a Mediator between Childhood Attention-Deficit/Hyperactivity Disorder Symptoms and Substance Use Disorders. Subst Use Misuse 2022; 57:1837-1853. [PMID: 36096483 DOI: 10.1080/10826084.2022.2120358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The link between attention-deficit/hyperactivity disorder (ADHD) and substance use disorders (SUDs) has been largely demonstrated. Some scholars have hypothesized that self-regulation mechanisms might play a key role in explaining this association. Objective(s): The current study tested the hypothesis that retrospective childhood ADHD symptoms might lead to more severe SUDs and this association should be mediated by current self-ratings of behavioral disinhibition, inattention, and emotional dysregulation among 204 treatment-seeking adults (male: 67.3%; female: 32.7%) with a primary diagnosis of alcohol use disorder and other SUDs. Methods: The mediational model was estimated through self-report measures of childhood ADHD symptoms (independent variable; WURS), current self-regulation mechanisms (mediators)-behavioral disinhibition (BIS-11 motor subscale), difficulties with attention regulation (MAAS) and emotion regulation (DERS)-and severity of SUDs (dependent variable; SPQ alcohol, illicit and prescribed drugs). Results: The analysis showed that alterations in the self-regulation system fully mediated the association between the severity of childhood ADHD symptoms and SUDs in adulthood. Behavioral disinhibition and difficulties in attention regulation were the most representative alterations in self-regulation processes that explained this association. Conclusions: These findings suggest it is useful to implement several therapeutic approaches (e.g. behavioral, mindfulness-based, and pharmacological) to increase the self-regulation abilities of children and adolescents with ADHD in order to reduce the probability of SUD onset in adulthood. However, future longitudinal neuroimaging and neuropsychological studies are needed to further support the role of self-regulation mechanisms in explaining the prospective association between childhood ADHD symptoms and SUDs in adulthood.
Collapse
Affiliation(s)
- Marco Cavicchioli
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Anna Ogliari
- Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy.,Child in Mind Lab, University "Vita-Salute San Raffaele", Milan, Italy
| | - Mariagrazia Movalli
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| | - Cesare Maffei
- Department of Psychology, University "Vita-Salute San Raffaele", Milan, Italy.,Unit of Clinical Psychology and Psychotherapy, San Raffaele-Turro Hospital, Milan, Italy
| |
Collapse
|
11
|
Adelhöfer N, Bluschke A, Roessner V, Beste C. The dynamics of theta-related pro-active control and response inhibition processes in AD(H)D. NEUROIMAGE-CLINICAL 2021; 30:102609. [PMID: 33711621 PMCID: PMC7970141 DOI: 10.1016/j.nicl.2021.102609] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 02/07/2021] [Accepted: 02/17/2021] [Indexed: 11/01/2022]
Abstract
Impulsivity and deficits in response inhibition are hallmarks of attention-deficit(-hyperactivity) disorder (AD(H)D), can cause severe problems in daily functioning, and are thus of high clinical relevance. Traditionally, research to elucidate associated neural correlates has intensively, but also quite selectively examined mechanisms during response inhibition in various tasks. Doing so, in-between trial periods or periods prior to the response inhibition process, where no information relevant to inhibitory control is presented, have been neglected. Yet, these periods may nevertheless reveal relevant information. In the present study, using a case-control cross-sectional design, we take a more holistic approach, examining the inter-relation of pre-trial and within-trial periods in a Go/Nogo task with a focus on EEG theta band activity. Applying EEG beamforming methods, we show that the dynamics between pre-trial (pro-active) and within-trial (inhibition-related) control processes significantly differ between AD(H)D subtypes. We show that response inhibition, and differences between AD(H)D subtypes, exhibit distinct patterns of (at least) three factors: (i) strength of pre-trial (pro-active control) theta-band activity, (ii) the inter-relation of pro-active control and inhibition-relation theta band activity and (iii) the functional neuroanatomical region active during theta-related pro-active control processes. This multi-factorial pattern is captured by AD(H)D subtype clinical symptom clusters. The study provides a first hint that novel cognitive-neurophysiological facets of AD(H)D may be relevant to distinguish AD(H)D subtypes.
Collapse
Affiliation(s)
- Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
12
|
Zarka D, Leroy A, Cebolla AM, Cevallos C, Palmero-Soler E, Cheron G. Neural generators involved in visual cue processing in children with attention-deficit/hyperactivity disorder (ADHD). Eur J Neurosci 2020; 53:1207-1224. [PMID: 33169431 DOI: 10.1111/ejn.15040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022]
Abstract
Event-related potentials (ERP) studies report alterations in the ongoing visuo-attentional processes in children with attention-deficit/hyperactivity disorder (ADHD). We hypothesized that the neural generators progressively recruited after a cue stimulus imply executive-related areas well before engagement in executive processing in children with ADHD compared to typically developed children (TDC). We computed source localization (swLORETA) of the ERP and ERSP evoked by the Cue stimulus during a visual Cue-Go/Nogo paradigm in 15 ADHD compared to 16 TDC. A significant difference in N200/P200 amplitude over the right centro-frontal regions was observed between ADHD and TDC, supported by a stronger contribution of the left visuo-motor coordination area, premotor cortex, and prefrontal cortex in ADHD. In addition, we recorded a greater beta power spectrum in ADHD during the 80-230 ms interval, which was explained by increased activity in occipito-parieto-central areas and lower activity in the left supramarginal gyrus and prefrontal areas in ADHD. Successive analysis of the ERP generators (0-500 ms with successive periods of 50 ms) revealed significant differences beginning at 50 ms, with higher activity in the ventral anterior cingulate cortex, premotor cortex, and fusiform gyrus, and ending at 400-500 ms with higher activity of the dorsolateral prefrontal cortex and lower activity of the posterior cingulate cortex in ADHD compared to TDC. The areas contributing to ERP in ADHD and TDC differ from the early steps of visuo-attentional processing and reveal an overinvestment of the executive networks interfering with the activity of the dorsal attention network in children with ADHD.
Collapse
Affiliation(s)
- David Zarka
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.,Research Unit in Osteopathy, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Axelle Leroy
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Ana Maria Cebolla
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Carlos Cevallos
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.,Departamento de Ingeniería Mecánica, Facultad de Ingeniería Mecánica, Escuela Politécnica Nacional, Quito, Ecuador
| | - Ernesto Palmero-Soler
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Guy Cheron
- Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Brussels, Belgium.,Laboratory of Electrophysiology, Université de Mons, Mons, Belgium
| |
Collapse
|
13
|
Mückschel M, Roessner V, Beste C. Task experience eliminates catecholaminergic effects on inhibitory control - A randomized, double-blind cross-over neurophysiological study. Eur Neuropsychopharmacol 2020; 35:89-99. [PMID: 32402650 DOI: 10.1016/j.euroneuro.2020.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
Catecholaminergic neural transmission plays an important role during the inhibition of prepotent responses. Methylphenidate (MPH) is an important drug that modulates the catecholaminergic system. However, theoretical considerations suggest that the effects of drugs (e.g. MPH) on cognitive control may depend on prior learning effects. Here we investigate this in a conflict-modulated Go/Nogo task and evaluate neurophysiological processes associated with this dynamic using EEG signal decomposition methods and source localization analysis. The behavioral data show that prior learning experiences eliminate effects of MPH on response inhibition processes. On a neurophysiological level, we show that MPH modulates specific processes in medial frontal brain regions. Although MPH seems to consistently modulate neurophysiological processes associated with response inhibition, this is no longer sufficient to modulate behavioral performance once learning or task familiarization processes have taken place. An important consequence of this study finding is that it may be important to adjust MPH dosage depending on learning effects in a specific setting to constantly increase cognitive control functions in that setting. This has important implications for clinical practice, since MPH is the first-line pharmacological therapy in attention-deficit hyperactivity disorder (ADHD). Cross-over study designs with constant doses of MPH can mask effects on cognitive functions. The impact of learning needs careful consideration in cross-over study designs examining catecholaminergic drug effects.
Collapse
Affiliation(s)
- Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstraße 42, D-01309 Dresden, Germany.
| |
Collapse
|
14
|
Asadzadeh S, Yousefi Rezaii T, Beheshti S, Delpak A, Meshgini S. A systematic review of EEG source localization techniques and their applications on diagnosis of brain abnormalities. J Neurosci Methods 2020; 339:108740. [DOI: 10.1016/j.jneumeth.2020.108740] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
|
15
|
Recognition of emotional facial expressions in adolescents with attention deficit/hyperactivity disorder. J Adolesc 2020; 82:1-10. [PMID: 32442797 DOI: 10.1016/j.adolescence.2020.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 03/21/2020] [Accepted: 04/26/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Attention Deficit/Hyperactivity Disorder (ADHD) is associated with impaired social competencies, due in part to an inability to determine emotional states through facial expressions. Social interactions are a critical component of adolescence, which raises the question of how do adolescents with ADHD cope with this impairment. Yet, previous reviews do not distinguish between children and adolescents. This review focuses on the ability of adolescents (defined by the World Health Organization as 10-19 years old) with ADHD to recognize emotional facial expressions, when compared to their typically-developing peers. METHODS Comprehensive database search and analysis yielded 9 relevant studies published between 2008 and 2018. RESULTS The studies reviewed here examined recognition of emotional facial expressions in adolescents with ADHD. Behavioral measures (reaction time, reaction time variance and recognition accuracy) show no statistically significant differences between adolescents with ADHD and their typically-developing peers. However, neural responses as recorded using functional Magnetic Resonance Imaging (fMRI) or Event Related Potentials (ERP) find differences in brain activity and the temporal evolution of the reaction between the two groups. CONCLUSIONS Studies of children and of adults with ADHD find deficiencies in the recognition of emotional facial expressions. However, this review shows that adolescents with ADHD perform comparably to their peers on accuracy and rate, although their neural processing is different. This suggests that the methodologies employed by the ADHD and typically-developing adolescents to asses facial expressions are different. Further study is needed to determine what these may be.
Collapse
|
16
|
Bluschke A, Schreiter ML, Friedrich J, Adelhöfer N, Roessner V, Beste C. Neurofeedback trains a superordinate system relevant for seemingly opposing behavioral control deficits depending on ADHD subtype. Dev Sci 2020; 23:e12956. [PMID: 32107844 DOI: 10.1111/desc.12956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 09/30/2019] [Accepted: 02/19/2020] [Indexed: 11/29/2022]
Abstract
ADHD is one of the most prevalent neuropsychiatric disorders of childhood, but symptoms vary considerably between individuals. Therefore, different ADHD subtypes can be distinguished. Yet, it is widely elusive whether the specific subtype is critical to consider when examining treatment effects. Based on theoretical considerations, this could be the case for EEG theta/beta neurofeedback. We examine the effects of such an intervention on rapid response execution and inhibition processes using a Go/Nogo task in the inattentive (ADD) and the combined (ADHD-C) subtype. We show that a single neurofeedback protocol affects opposing deficits depending on the ADHD subtype - namely the execution (in ADD) and inhibition of action (in ADHD-C). No changes occurred in the healthy controls. These findings are discussed in relation to overarching principles of neural oscillations, particularly in the beta frequency band. The data suggest that theta/beta neurofeedback trains a superordinate system strongly related to the function of neural beta frequency oscillations to tune neural networks important for the sampling of sensory information used for behavioral control.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Marie L Schreiter
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| |
Collapse
|
17
|
Intact Stimulus-Response Conflict Processing in ADHD-Multilevel Evidence and Theoretical Implications. J Clin Med 2020; 9:jcm9010234. [PMID: 31952353 PMCID: PMC7019707 DOI: 10.3390/jcm9010234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/03/2020] [Accepted: 01/11/2020] [Indexed: 01/31/2023] Open
Abstract
Attention-deficit-hyperactivity disorder (ADHD) is closely associated with deficits in cognitive control. It seems, however, that the degree of deficits strongly depends on the examined subprocess, with the resolution of stimulus–stimulus conflicts being particularly difficult for patients with ADHD. The picture is far less clear regarding stimulus–response conflicts. The current study provides multi-level behavioural and neurophysiological data on this type of conflict monitoring in children with ADHD compared to healthy controls. To account for the potentially strong effects of intra-individual variability, electroencephalogram (EEG) signal decomposition methods were used to analyze the data. Crucially, none of the analyses (behavioural, event-related potentials, or decomposed EEG data) show any differences between the ADHD group and the control group. Bayes statistical analysis confirmed the high likelihood of the null hypothesis being true in all cases. Thus, the data provide multi-level evidence showing that conflict monitoring processes are indeed partly intact in ADHD, even when eliminating possible biasing factors such as intra-individual variability. While stimulus–stimulus conflict processing has been shown to be consistently dysfunctional in ADHD, the resolution of stimulus–response conflicts is not deficient in this patient group. In comparison to other studies, the results provide novel theoretical insights into the nature of conflict control deficits in childhood ADHD.
Collapse
|
18
|
Chmielewski W, Bluschke A, Bodmer B, Wolff N, Roessner V, Beste C. Evidence for an altered architecture and a hierarchical modulation of inhibitory control processes in ADHD. Dev Cogn Neurosci 2019; 36:100623. [PMID: 30738306 PMCID: PMC6969218 DOI: 10.1016/j.dcn.2019.100623] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 01/23/2023] Open
Abstract
Inhibitory control deficits are a hallmark in ADHD. Yet, inhibitory control includes a multitude of entities (e.g. ‘inhibition of interferences’ and ‘action inhibition’). Examining the interplay between these kinds of inhibitory control provides insights into the architecture of inhibitory control in ADHD. Combining a Simon task and a Go/Nogo task, we assessed the interplay of ‘inhibition of interferences’ and ‘action inhibition’. This was combined with EEG recordings, EEG data decomposition and source localization. Simon interference effects in Go trials were larger in ADHD. At the neurophysiological level, this insufficient inhibition of interferences in ADHD related to the superior parietal cortex. Simon interference effects were absent in action inhibition (Nogo) trials in ADHD, compared to controls. This was supported by bayesian statistics. The power of effects was higher than 95%. The differential effects between the groups were associated with modulations of neurophysiological response selection processes in the superior frontal gyrus. ADHD is not only associated with deficits in inhibitory control. Rather, the organization and architecture of the inhibitory control system is different in ADHD. Distinguishable inhibitory control processes operate on a hierarchical ‘first come, first serve’ basis and are not integrated in ADHD. This is a new facet of ADHD.
Collapse
Affiliation(s)
- Witold Chmielewski
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Benjamin Bodmer
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nicole Wolff
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany.
| |
Collapse
|
19
|
Paradoxical, causal effects of sensory gain modulation on motor inhibitory control - a tDCS, EEG-source localization study. Sci Rep 2018; 8:17486. [PMID: 30504787 PMCID: PMC6269458 DOI: 10.1038/s41598-018-35879-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Response inhibition is a key component of executive functioning, but the role of perceptual processes has only recently been focused. Although the interrelation of incoming information and resulting behavioural (motor) effects is well-known to depend on gain control mechanisms, the causal role of sensory gain modulation for response inhibition is elusive. We investigate it using a somatosensory response inhibition (Go/Nogo) task and examine the effects of parietal (somatosensory) cathodal and sham tDCS stimulation on a behavioural and neurophysiological level. For the latter, we combine event-related potential (ERP) and source localization analyses. Behavioural results reveal that cathodal stimulation leads to superior inhibition performance as compared to sham stimulation depending on the intensity of tDCS stimulation. The neurophysiological data show that an early (perceptual) subprocess of the Nogo-N2 ERP-component is differentially modulated by the type of stimulation but not a later (response-related) Nogo-N2 subcomponent. Under cathodal stimulation, the early N2 amplitude is reduced and the right inferior frontal gyrus (BA45) is less active. Cathodal tDCS likely enhances inhibition performance via decreasing the efficiency of gain control and the impact of sensory stimuli to trigger prepotent responses. Thereby, response inhibition processes, associated with structures of the response inhibition network, become less demanded.
Collapse
|