1
|
Bai Y, Chang D, Ren H, Ju M, Wang Y, Chen B, Li H, Liu X, Li D, Huo X, Guo X, Tong M, Tan Y, Yao H, Han B. Engagement of N6-methyladenisine methylation of Gng4 mRNA in astrocyte dysfunction regulated by CircHECW2. Acta Pharm Sin B 2024; 14:1644-1660. [PMID: 38572093 PMCID: PMC10985031 DOI: 10.1016/j.apsb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
The N6-methyladenosine (m6A) modification is the most prevalent modification of eukaryotic mRNAs and plays a crucial role in various physiological processes by regulating the stability or function of target mRNAs. Accumulating evidence has suggested that m6A methylation may be involved in the pathological process of major depressive disorder (MDD), a common neuropsychiatric disorder with an unclear aetiology. Here, we found that the levels of the circular RNA HECW2 (circHECW2) were significantly increased in the plasma of both MDD patients and the chronic unpredictable stress (CUS) mouse model. Notably, the downregulation of circHECW2 attenuated astrocyte dysfunction and depression-like behaviors induced by CUS. Furthermore, we demonstrated that the downregulation of circHECW2 increased the expression of the methylase WTAP, leading to an increase in Gng4 expression via m6A modifications. Our findings provide functional insight into the correlation between circHECW2 and m6A methylation, suggesting that circHECW2 may represent a potential target for MDD treatment.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Chang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Biling Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaofei Guo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mengze Tong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Tan
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
2
|
Ye HT, Lu CQ, Wang C, Zhang D, Li YF, Feng XY, Wang HP, Mao YY, Ji MH, Yang JJ. Plasma Aβ level alterations after sleep deprivation correspond to brain structural remodeling in medical night shift workers. Brain Res Bull 2023; 203:110776. [PMID: 37805053 DOI: 10.1016/j.brainresbull.2023.110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 09/30/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The relationship between brain structure alteration and metabolic product clearance after night shift work with total sleep deprivation (SD) remains unclear. Twenty-two intensive care unit staff on regularly rotating shift work were implemented with structural and diffusion MRI under both rest wakefulness (RW) and SD conditions. Peripheral blood samples were collected for the measurement of cerebral metabolites. Voxel-based morphometry and diffusion tensor imaging analysis were used to investigate the alterations in the gray matter density (GMD) and mean diffusivity (MD) within the participants. Furthermore, correlation analysis was performed to investigate the relationship between the neuroimaging metrics and hematological parameters. A significant increase in the GMD values was observed in the anterior and peripheral areas of the brain under SD. In contrast, a decrease in the values was observed in the posterior regions, such as the bilateral cerebellum and thalamus. In addition, a significant reduction in the total cerebrospinal fluid volume was observed under SD. The Aβ42/Aβ40 levels in participants under SD were significantly lower than those under RW. The mean MD increment values extracted from the region of interest (ROI) of the anterior brain were negatively correlated with the increment of plasma Aβ42/Aβ40 levels (r = -0.658, P = 0.008). The mean GMD decrement values extracted from the posterior ROI were positively correlated with the increment of plasma Aβ-40 levels (r = 0.601, P = 0.023). The findings of this study suggest that one night of shift work under SD induces extensive and direction-specific structural alterations of the brain, which are associated with aberrant brain metabolic waste clearance.
Collapse
Affiliation(s)
- Hao-Tian Ye
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chun-Qiang Lu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical School of Southeast University, Nanjing 210009, China
| | - Cong Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yan-Fei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiang-Yun Feng
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hua-Peng Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yuan-Yuan Mao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mu-Huo Ji
- Department of Anesthesiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China.
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
3
|
Zhang B, Peng J, Chen H, Hu W. Machine learning for detecting Wilson's disease by amplitude of low-frequency fluctuation. Heliyon 2023; 9:e18087. [PMID: 37483763 PMCID: PMC10362133 DOI: 10.1016/j.heliyon.2023.e18087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/18/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
Wilson's disease (WD) is a genetic disorder with the A7P7B gene mutations. It is difficult to diagnose in clinic. The purpose of this study was to confirm whether amplitude of low-frequency fluctuations (ALFF) is one of the potential biomarkers for the diagnosis of WD. The study enrolled 30 healthy controls (HCs) and 37 WD patients (WDs) to obtain their resting-state functional magnetic resonance imaging (rs-fMRI) data. ALFF was obtained through preprocessing of the rs-fMRI data. To distinguish between patients with WDs and HCs, four clusters with abnormal ALFF-z values were identified through between-group comparisons. Based on these clusters, three machine learning models were developed, including Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR). Abnormal ALFF z-values were also combined with volume information, clinical variables, and imaging features to develop machine learning models. There were 4 clusters where the ALFF z-values of the WDs were significantly higher than that of the HCs. Cluster1 was in the cerebellar region, Cluster2 was in the left caudate nucleus, Cluster3 was in the bilateral thalamus, and Cluster4 was in the right caudate nucleus. In the training set and test set, the models trained with Cluster2, Cluster3, and Cluster4 achieved area of curve (AUC) greater than 0.80. In the Delong test, only the AUC values of models trained with Cluster4 exhibited statistical significance. The AUC values of the Logit model (P = 0.04) and RF model (P = 0.04) were significantly higher than those of the SVM model. In the test set, the LR model and RF model trained with Cluster3 had high specificity, sensitivity, and accuracy. By conducting the Delong test, we discovered that there was no statistically significant inter-group difference in AUC values between the model that integrates multi-modal information and the model before fusion. The LR models trained with multimodal information and Cluster 4, as well as the LR and RF models trained with multimodal information and Cluster 3, have demonstrated high accuracy, specificity, and sensitivity. Overall, these findings suggest that using ALFF based on the thalamus or caudate nucleus as markers can effectively differentiate between WDs and HCs. The fusion of multimodal information did not significantly improve the classification performance of the models before fusion.
Collapse
Affiliation(s)
- Bing Zhang
- Graduate School of Anhui University of Chinese Medicine,230012, China
| | - Jingjing Peng
- Graduate School of Anhui University of Chinese Medicine,230012, China
| | - Hong Chen
- Graduate School of Anhui University of Chinese Medicine,230012, China
| | - Wenbin Hu
- Graduate School of Anhui University of Chinese Medicine,230012, China
- Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine,230031, China
| |
Collapse
|
4
|
Lin S, Guo Z, Chen S, Lin X, Ye M, Qiu Y. Progressive Brain Structural Impairment Assessed via Network and Causal Analysis in Patients With Hepatitis B Virus-Related Cirrhosis. Front Neurol 2022; 13:849571. [PMID: 35599731 PMCID: PMC9120530 DOI: 10.3389/fneur.2022.849571] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/03/2022] Open
Abstract
Objectives This research amid to elucidate the disease stage-specific spatial patterns and the probable sequences of gray matter (GM) deterioration as well as the causal relationship among structural network components in hepatitis B virus-related cirrhosis (HBV-RC) patients. Methods Totally 30 HBV-RC patients and 38 healthy controls (HC) were recruited for this study. High-resolution T1-weighted magnetic resonance imaging and psychometric hepatic encephalopathy score (PHES) were evaluated in all participants. Voxel-based morphometry (VBM), structural covariance network (SCN), and causal SCN (CaSCN) were applied to identify the disease stage-specific GM abnormalities in morphology and network, as well as their causal relationship. Results Compared to HC (0.443 ± 0.073 cm3), the thalamus swelled significantly in the no minimal hepatic encephalopathy (NMHE) stage (0.607 ± 0.154 cm3, p <0.05, corrected) and further progressed and expanded to the bilateral basal ganglia, the cortices, and the cerebellum in the MHE stage (p < 0.05, corrected). Furthermore, the thalamus swelling had a causal effect on other parts of cortex-basal ganglia-thalamus circuits (p < 0.05, corrected), which was negatively correlated with cognitive performance (r = −0.422, p < 0.05). Moreover, the thalamus-related SCN also displayed progressive deterioration as the disease advanced in HBV-RC patients (p < 0.05, corrected). Conclusion Progressive deterioration of GM morphology and SCN exists in HBV-RC patients during advanced disease, displaying thalamus-related causal effects. These findings indicate that bilateral thalamus morphology as well as the thalamus-related network may serve as an in vivo biomarker for monitoring the progression of the disease in HBV-RC patients.
Collapse
Affiliation(s)
- Shiwei Lin
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zheng Guo
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Shengli Chen
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of Radiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Xiaoshan Lin
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory of Precision Medicine for Hematological Malignancies, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University Health Science Center, Shenzhen, China
| | - Min Ye
- Department of Geriatrics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Geriatrics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Min Ye
| | - Yingwei Qiu
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Yingwei Qiu
| |
Collapse
|
5
|
Li W, Yue L, Sun L, Xiao S. An Increased Aspartate to Alanine Aminotransferase Ratio Is Associated With a Higher Risk of Cognitive Impairment. Front Med (Lausanne) 2022; 9:780174. [PMID: 35463002 PMCID: PMC9021637 DOI: 10.3389/fmed.2022.780174] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Recent Alzheimer's disease (AD) hypotheses implicate that hepatic metabolic disorders might contribute to the disease pathogenesis of AD, but the mechanism remains unclear. Aims To investigate whether the elevated aspartate aminotransferase (AST) and Alanine aminotransferase (ALT) ratio is associated with future cognitive decline, and to explore the possible mechanisms of liver enzymes affecting cognitive function. Methods Three different clinical cohorts were included in the current study, including one cross-sectional study (Cohort 1) and two longitudinal follow-up studies (Cohort 2 and 3). All participants completed a detailed clinical evaluation, neuropsychological tests, and liver enzyme tests. In addition, some of them also underwent structural magnetic resonance imaging (MRI) scans. Results Cohort 1 was derived from the CRC2017ZD02 program, including 135 amnestic mild cognitive impairment (aMCI) patients, 22 AD patients, and 319 normal controls. In this cross-sectional study, we found that the AST/ALT ratio was associated with AD (p = 0.014, OR = 1.848, 95%CI: 1.133∼3.012), but not aMCI; Cohort 2 was derived from the Shanghai Brain Health Program. A total of 260 community elderly people with normal cognitive function were included in the study and followed up for 2 years. In this 2-year longitudinal follow-up study, we found that a higher AST/ALT ratio was a risk factor for future development of aMCI (p = 0.014, HR = 1.848, 95%CI: 1.133∼3.021); Cohort 3 was derived from the China longitudinal aging study (CLAS) Program. A total of 94 community elderly people with normal cognitive function were followed up for 7 years, and all of them completed MRI scans. In this 7-year longitudinal follow-up study, we found that a higher AST/ALT ratio was a risk factor for future development of aMCI (p = 0.006, HR = 2.247, 95%CI: 1.248∼4.049), and the AST/ALT ratio was negatively correlated with right hippocampal volume (r = -0.148, p = 0.043). Conclusion An increased ratio of AST to ALT is associated with a higher risk of cognitive impairment and may impair cognitive function by affecting hippocampal volume.
Collapse
Affiliation(s)
- Wei Li
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yue
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin Sun
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| | - Shifu Xiao
- Department of Geriatric Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Alzheimer's Disease and Related Disorders Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Aldemir A, Yucel K, Güven H, Kamaşak B, Dilli A, Acer N, Çomoğlu S. Structural neuroimaging findings in migraine patients with restless legs syndrome. Neuroradiology 2020; 62:1301-1313. [PMID: 32488307 DOI: 10.1007/s00234-020-02451-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/28/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE One out of three migraine patients might have accompanying restless legs syndrome (RLS). In our study, we aimed to compare the volumes of the brain structures of migraineurs with and without RLS. METHODS We had 37 female patients with migraine and 17 females as the control group. Nineteen migraineurs had no RLS (RLS0) and 18 migraineurs had comorbidity of RLS (RLS1). The volumes of the brain structures were obtained by manual measurements, volBrain, and voxel-based morphometry (VBM). Manually, we measured caudate and putamen volumes. We used age, years of education, depression, anxiety scores, and total intracranial volume as covariates. RESULTS According to VBM analyses, the volumes of the left superior occipital gyrus and precuneus were increased, and the substantia nigra and cuneus were decreased in the RLS1 group compared with the RLS0 group. RLS1 patients had larger superior temporal gyrus, Brodmann area 38, and left insula, and RLS0 patients had larger Brodmann area 22, right superior temporal gyrus, and Heschl gyrus compared with controls. Migraine and RLS0 patients had a smaller corpus callosum anteriorly, whereas RLS1 patients had a smaller splenium. Caudate volumes were larger in migraine patients via the three techniques. There was a positive relation between the caudate and putamen volumes and attack frequency. CONCLUSIONS Comorbidity of RLS might be a confounding factor in structural neuroimaging studies in migraine. Deficits in the visual network seem to be related to accompanying RLS; deficits in the auditory network are particularly related to migraine.
Collapse
Affiliation(s)
- Arzu Aldemir
- Department of Neurology, Acıbadem Hospital, Eskişehir, Turkey
| | - Kaan Yucel
- Department of Anatomy, Aksaray University Medical School, Aksaray, Turkey.
| | - Hayat Güven
- Department of Neurology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Burcu Kamaşak
- Department of Anatomy, Ahi Evran University Medical School, Kırşehir, Turkey
| | - Alper Dilli
- Department of Radiology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Niyazi Acer
- Department of Anatomy, Erciyes University Medical School, Kayseri, Turkey
| | - Selçuk Çomoğlu
- Department of Neurology, Dışkapı Yıldırım Beyazıt Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
7
|
Zöllner HJ, Butz M, Jördens M, Füllenbach ND, Häussinger D, Schmitt B, Wittsack HJ, Schnitzler A. Chemical exchange saturation transfer imaging in hepatic encephalopathy. NEUROIMAGE-CLINICAL 2019; 22:101743. [PMID: 30856541 PMCID: PMC6411782 DOI: 10.1016/j.nicl.2019.101743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/04/2019] [Accepted: 03/02/2019] [Indexed: 01/08/2023]
Abstract
Hepatic encephalopathy (HE) is a common complication in liver cirrhosis and associated with an invasion of ammonia into the brain through the blood-brain barrier. Resulting higher ammonia concentrations in the brain are suggested to lead to a dose-dependent gradual increase of HE severity and an associated impairment of brain function. Amide proton transfer-weighted (APTw) chemical exchange saturation transfer (CEST) imaging has been found to be sensitive to ammonia concentration. The aim of this work was to study APTw CEST imaging in patients with HE and to investigate the relationship between disease severity, critical flicker frequency (CFF), psychometric test scores, blood ammonia, and APTw signals in different brain regions. Whole-brain APTw CEST images were acquired in 34 participants (14 controls, 20 patients (10 minimal HE, 10 manifest HE)) on a 3 T clinical MRI system accompanied by T1 mapping and structural images. T1 normalized magnetization transfer ratio asymmetry analysis was performed around 3 ppm after B0 and B1 correction to create APTw images. All APTw images were spatially normalized into a cohort space to allow direct comparison. APTw images in 6 brain regions (cerebellum, occipital cortex, putamen, thalamus, caudate, white matter) were tested for group differences as well as the link to CFF, psychometric test scores, and blood ammonia. A decrease in APTw intensities was found in the cerebellum and the occipital cortex of manifest HE patients. In addition, APTw intensities in the cerebellum correlated positively with several psychometric scores, such as the fine motor performance scores MLS1 for hand steadiness / tremor (r = 0.466; p = .044) and WRT2 for motor reaction time (r = 0.523; p = .022). Moreover, a negative correlation between APTw intensities and blood ammonia was found for the cerebellum (r = −0.615; p = .007) and the occipital cortex (r = −0.478; p = .045). An increase of APTw intensities was observed in the putamen of patients with minimal HE and correlated negatively with the CFF (r = −0.423; p = .013). Our findings demonstrate that HE is associated with regional differential alterations in APTw signals. These variations are most likely a consequence of hyperammonemia or hepatocerebral degeneration processes, and develop in parallel with disease severity. Ammonia is suggested to play a key role in the emergence of HE. Increase of ammonia in HE patients might be studied with APTw CEST. HE leads to regionally decreasing APTw CEST signal. APTw CEST correlates with blood ammonia levels and psychometric test scores. APTw CEST is possibly linked to hyperammonemia or hepatocerebral degeneration.
Collapse
Affiliation(s)
- Helge Jörn Zöllner
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany; Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Markus Jördens
- Department of Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Nur-Deniz Füllenbach
- Department of Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Benjamin Schmitt
- Siemens Ltd. Australia, Healthcare Sector, 160 Herring Road, Macquarie Park, NSW 2113,Australia
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Germany
| |
Collapse
|