1
|
Tulimieri DT, Decarie A, Singh T, Semrau JA. Impairments in Proprioceptively-Referenced Limb and Eye Movements in Chronic Stroke. Neurorehabil Neural Repair 2025; 39:47-57. [PMID: 39403953 DOI: 10.1177/15459683241289123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
BACKGROUND Upper limb proprioceptive impairments are common after stroke and affect daily function. Recent work has shown that stroke survivors have difficulty using visual information to improve proprioception. It is unclear how eye movements are impacted to guide action of the arm after stroke. Here, we aimed to understand how upper limb proprioceptive impairments impact eye movements in individuals with stroke. METHODS Control (N = 20) and stroke participants (N = 20) performed a proprioceptive matching task with upper limb and eye movements. A KINARM exoskeleton with eye tracking was used to assess limb and eye kinematics. The upper limb was passively moved by the robot and participants matched the location with either an arm or eye movement. Accuracy was measured as the difference between passive robot movement location and active limb matching (Hand-End Point Error) or active eye movement matching (Eye-End Point Error). RESULTS We found that individuals with stroke had significantly larger Hand (2.1×) and Eye-End Point (1.5×) Errors compared to controls. Further, we found that proprioceptive errors of the hand and eye were highly correlated in stroke participants (r = .67, P = .001), a relationship not observed for controls. CONCLUSIONS Eye movement accuracy declined as a function of proprioceptive impairment of the more-affected limb, which was used as a proprioceptive reference. The inability to use proprioceptive information of the arm to coordinate eye movements suggests that disordered proprioception impacts integration of sensory information across different modalities. These results have important implications for how vision is used to actively guide limb movement during rehabilitation.
Collapse
Affiliation(s)
- Duncan T Tulimieri
- Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Amelia Decarie
- Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Tarkeshwar Singh
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
| | - Jennifer A Semrau
- Biomechanics and Movement Science, University of Delaware, Newark, DE, USA
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
2
|
Sasaki R, Kojima S, Saito K, Otsuru N, Shirozu H, Onishi H. Resting-state functional connectivity involved in tactile orientation processing. Neuroimage 2024; 299:120834. [PMID: 39236853 DOI: 10.1016/j.neuroimage.2024.120834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Grating orientation discrimination (GOD) is commonly used to assess somatosensory spatial processing. It allows discrimination between parallel and orthogonal orientations of tactile stimuli applied to the fingertip. Despite its widespread application, the underlying mechanisms of GOD, particularly the role of cortico-cortical interactions and local brain activity in this process, remain elusive. Therefore, we aimed to investigate how a specific cortico-cortical network and inhibitory circuits within the primary somatosensory cortex (S1) and secondary somatosensory cortex (S2) contribute to GOD. METHODS In total, 51 healthy young adults were included in our study. We recorded resting-state magnetoencephalography (MEG) and somatosensory-evoked magnetic field (SEF) in participants with open eyes. We converted the data into a source space based on individual structural magnetic resonance imaging. Next, we estimated S1- and S2-seed resting-state functional connectivity (rs-FC) at the alpha and beta bands through resting-state MEG using the amplitude envelope correlation method across the entire brain (i.e., S1/S2-seeds × 15,000 vertices × two frequencies). We assessed the inhibitory response in the S1 and S2 from SEFs using a paired-pulse paradigm. We automatically measured the GOD task in parallel and orthogonal orientations to the index finger, applying various groove widths with a custom-made device. RESULTS We observed a specific association between the GOD threshold (all P < 0.048) and the alpha rs-FC in the S1-superior parietal lobule and S1-adjacent to the parieto-occipital sulcus (i.e., lower rs-FC values corresponded to higher performance). In contrast, no association was observed between the local responses and the threshold. DISCUSSION The results of this study underpin the significance of specific cortico-cortical networks in recognizing variations in tactile stimuli.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Yokosuka City, Kanagawa, Japan.
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, NHO Nishiniigata Chuo Hospital, Niigata City, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata City, Niigata, Japan; Department of Physical Therapy, Niigata University of Health and Welfare, Niigata City, Niigata, Japan.
| |
Collapse
|
3
|
Chilvers M, Low T, Rajashekar D, Dukelow S. White matter disconnection impacts proprioception post-stroke. PLoS One 2024; 19:e0310312. [PMID: 39264972 PMCID: PMC11392420 DOI: 10.1371/journal.pone.0310312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/28/2024] [Indexed: 09/14/2024] Open
Abstract
Proprioceptive impairments occur in approximately 50-64% of people following stroke. While much is known about the grey matter structures underlying proprioception, our understanding of the white matter correlates of proprioceptive impairments is less well developed. It is recognised that behavioural impairments post-stroke are often the result of disconnection between wide-scale brain networks, however the disconnectome associated with proprioception post-stroke is unknown. In the current study, white matter disconnection was assessed in relation to performance on a robotic arm position matching (APM) task. Neuroimaging and robotic assessments of proprioception were collected for 203 stroke survivors, approximately 2-weeks post-stroke. The robotic assessment was performed in a KINARM Exoskeleton robotic device and consisted of a nine-target APM task. First, the relationship between white matter tract lesion load and performance on the APM task was assessed. Next, differences in the disconnectome between participants with and without impairments on the APM task were examined. Greater lesion load to the superior longitudinal fasciculus (SLF II and III), arcuate fasciculus (all segments) and fronto-insular tracts were associated with worse APM task performance. In those with APM task impairments, there was, additionally, disconnection of the posterior corpus callosum, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus and optic radiations. This study highlights an important perisylvian white matter network supporting proprioceptive processing in the human brain. It also identifies white matter tracts, important for relaying proprioceptive information from parietal and frontal brain regions, that are not traditionally considered proprioceptive in nature.
Collapse
Affiliation(s)
- Matthew Chilvers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Trevor Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Deepthi Rajashekar
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Leszczak J, Pniak B, Drużbicki M, Poświata A, Mikulski M, Roksela A, Guzik A. Assessment of inter-rater and intra-rater reliability of the Luna EMG robot as a tool for assessing upper limb proprioception in patients with stroke-a prospective observational study. PeerJ 2024; 12:e17903. [PMID: 39221272 PMCID: PMC11366229 DOI: 10.7717/peerj.17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Background The aim of the study was to assess the inter-rater and intra-rater agreement of measurements performed with the Luna EMG (electromyography) multifunctional robot, a tool for evaluation of upper limb proprioception in individuals with stroke. Methods The study was conducted in a group of patients with chronic stroke. A total of 126 patients participated in the study, including 78 women and 48 men, on average aged nearly 60 years (mean = 59.9). Proprioception measurements were performed using the Luna EMG diagnostic and rehabilitation robot to assess the left and right upper limbs. The examinations were conducted by two raters, twice, two weeks apart. The results were compared between the raters and the examinations. Results High consistency of the measurements performed for the right and the left hand was reflected by the interclass correlation coefficients (0.996-0.998 and 0.994-0.999, respectively) and by Pearson's linear correlation which was very high (r = 1.00) in all the cases for the right and the left hand in both the inter-rater and intra-rater agreement analyses. Conclusions Measurements performed by the Luna EMG diagnostic and rehabilitation robot demonstrate high inter-rater and intra-rater agreement in the assessment of upper limb proprioception in patients with chronic stroke. The findings show that Luna EMG is a reliable tool enabling effective evaluation of upper limb proprioception post-stroke.
Collapse
Affiliation(s)
- Justyna Leszczak
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
| | - Bogumiła Pniak
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
- Excelsior Health and Rehabilitation Hospital, Iwonicz Zdrój, Poland
| | - Mariusz Drużbicki
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
| | | | | | - Anna Roksela
- EGZOTech Sp. z o.o., Gliwice, Poland
- Faculty of Automatic Control, Electronics, and Computer Science, PhD School, Silesian University of Technology, Gliwice, Poland
| | - Agnieszka Guzik
- Medical College, Institute of Health Sciences, University of Rzeszow, Rzeszów, Poland
| |
Collapse
|
5
|
Liu Y, Huang C, Xiong Y, Wang X, Shen Z, Zhang M, Gao N, Wang N, Du G, Zhan H. The causal relationship between human brain morphometry and knee osteoarthritis: a two-sample Mendelian randomization study. Front Genet 2024; 15:1420134. [PMID: 39040992 PMCID: PMC11260717 DOI: 10.3389/fgene.2024.1420134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background Knee Osteoarthritis (KOA) is a prevalent and debilitating condition affecting millions worldwide, yet its underlying etiology remains poorly understood. Recent advances in neuroimaging and genetic methodologies offer new avenues to explore the potential neuropsychological contributions to KOA. This study aims to investigate the causal relationships between brain-wide morphometric variations and KOA using a genetic epidemiology approach. Method Leveraging data from 36,778 UK Biobank participants for human brain morphometry and 487,411 UK Biobank participants for KOA, this research employed a two-sample Mendelian Randomization (TSMR) approach to explore the causal effects of 83 brain-wide volumes on KOA. The primary method of analysis was the Inverse Variance Weighted (IVW) and Wald Ratio (WR) method, complemented by MR Egger and IVW methods for heterogeneity and pleiotropy assessments. A significance threshold of p < 0.05 was set to determine causality. The analysis results were assessed for heterogeneity using the MR Egger and IVW methods. Brain-wide volumes with Q_pval < 0.05 were considered indicative of heterogeneity. The MR Egger method was employed to evaluate the pleiotropy of the analysis results, with brain-wide volumes having a p-value < 0.05 considered suggestive of pleiotropy. Results Our findings revealed significant causal associations between KOA and eight brain-wide volumes: Left parahippocampal volume, Right posterior cingulate volume, Left transverse temporal volume, Left caudal anterior cingulate volume, Right paracentral volume, Left paracentral volume, Right lateral orbitofrontal volume, and Left superior temporal volume. These associations remained robust after tests for heterogeneity and pleiotropy, underscoring their potential role in the pathogenesis of KOA. Conclusion This study provides novel evidence of the causal relationships between specific brain morphometries and KOA, suggesting that neuroanatomical variations might contribute to the risk and development of KOA. These findings pave the way for further research into the neurobiological mechanisms underlying KOA and may eventually lead to the development of new intervention strategies targeting these neuropsychological pathways.
Collapse
Affiliation(s)
- Yongming Liu
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chao Huang
- Yunyang County People’s Hospital Rehabilitation Medicine Department, Chongqing, China
| | - Yizhe Xiong
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiang Wang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Zhibi Shen
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mingcai Zhang
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ningyang Gao
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Nan Wang
- Department of Traditional Chinese Medicine, Shanghai Yangzhi Rehabilitation Hospital (Yangzhi Affiliated Rehabilitation Hospital), School of Medicine, Tongji University, Shanghai, China
| | - Guoqing Du
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Hongsheng Zhan
- Shi’s Center of Orthopedics and Traumatology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Traumatology and Orthopedics, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
6
|
Huang Q, Elangovan N, Zhang M, Van de Winckel A, Konczak J. Robot-aided assessment and associated brain lesions of impaired ankle proprioception in chronic stroke. J Neuroeng Rehabil 2024; 21:109. [PMID: 38915064 PMCID: PMC11194987 DOI: 10.1186/s12984-024-01396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 05/30/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Impaired ankle proprioception strongly predicts balance dysfunction in chronic stroke. However, only sparse data on ankle position sense and no systematic data on ankle motion sense dysfunction in stroke are available. Moreover, the lesion sites underlying impaired ankle proprioception have not been comprehensively delineated. Using robotic technology, this study quantified ankle proprioceptive deficits post-stroke and determined the associated brain lesions. METHODS Twelve adults with chronic stroke and 13 neurotypical adults participated. A robot passively plantarflexed a participant's ankle to two distinct positions or at two distinct velocities. Participants subsequently indicated which of the two movements was further/faster. Based on the stimulus-response data, psychometric just-noticeable-difference (JND) thresholds and intervals of uncertainty (IU) were derived as measures on proprioceptive bias and precision. To determine group differences, Welch's t-test and the Wilcoxon-Mann-Whitney test were performed for the JND threshold and IU, respectively. Voxel-based lesion subtraction analysis identified the brain lesions associated with observed proprioceptive deficits in adults with stroke. RESULTS 83% of adults with stroke exhibited abnormalities in either position or motion sense, or both. JND and IU measures were significantly elevated compared to the control group (Position sense: + 77% in JND, + 148% in IU; Motion sense: +153% in JND, + 78% in IU). Adults with stroke with both impaired ankle position and motion sense had lesions in the parietal, frontal, and temporoparietal regions. CONCLUSIONS This is the first study to document the magnitude and frequency of ankle position and motion sense impairment in adults with chronic stroke. Proprioceptive dysfunction was characterized by elevated JND thresholds and increased uncertainty in perceiving ankle position/motion. Furthermore, the associated cortical lesions for impairment in both proprioceptive senses were largely overlapping.
Collapse
Affiliation(s)
- Qiyin Huang
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, 1900 University Avenue SE, Minneapolis, MN, 55455, USA.
| | - Naveen Elangovan
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, 1900 University Avenue SE, Minneapolis, MN, 55455, USA
| | - Mingming Zhang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Ann Van de Winckel
- Division of Physical Therapy and Rehabilitation Science, Department of Family Medicine and Community Health, Medical School, University of Minnesota, Minneapolis, USA
| | - Jürgen Konczak
- Human Sensorimotor Control Laboratory, School of Kinesiology and Center for Clinical Movement Science, University of Minnesota, 1900 University Avenue SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
7
|
Moore RT, Piitz MA, Singh N, Dukelow SP, Cluff T. The independence of impairments in proprioception and visuomotor adaptation after stroke. J Neuroeng Rehabil 2024; 21:81. [PMID: 38762552 PMCID: PMC11102216 DOI: 10.1186/s12984-024-01360-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Proprioceptive impairments are common after stroke and are associated with worse motor recovery and poor rehabilitation outcomes. Motor learning may also be an important factor in motor recovery, and some evidence in healthy adults suggests that reduced proprioceptive function is associated with reductions in motor learning. It is unclear how impairments in proprioception and motor learning relate after stroke. Here we used robotics and a traditional clinical assessment to examine the link between impairments in proprioception after stroke and a type of motor learning known as visuomotor adaptation. METHODS We recruited participants with first-time unilateral stroke and controls matched for overall age and sex. Proprioceptive impairments in the more affected arm were assessed using robotic arm position- (APM) and movement-matching (AMM) tasks. We also assessed proprioceptive impairments using a clinical scale (Thumb Localization Test; TLT). Visuomotor adaptation was assessed using a task that systematically rotated hand cursor feedback during reaching movements (VMR). We quantified how much participants adapted to the disturbance and how many trials they took to adapt to the same levels as controls. Spearman's rho was used to examine the relationship between proprioception, assessed using robotics and the TLT, and visuomotor adaptation. Data from healthy adults were used to identify participants with stroke who were impaired in proprioception and visuomotor adaptation. The independence of impairments in proprioception and adaptation were examined using Fisher's exact tests. RESULTS Impairments in proprioception (58.3%) and adaptation (52.1%) were common in participants with stroke (n = 48; 2.10% acute, 70.8% subacute, 27.1% chronic stroke). Performance on the APM task, AMM task, and TLT scores correlated weakly with measures of visuomotor adaptation. Fisher's exact tests demonstrated that impairments in proprioception, assessed using robotics and the TLT, were independent from impairments in visuomotor adaptation in our sample. CONCLUSION Our results suggest impairments in proprioception may be independent from impairments in visuomotor adaptation after stroke. Further studies are needed to understand factors that influence the relationship between motor learning, proprioception and other rehabilitation outcomes throughout stroke recovery.
Collapse
Affiliation(s)
- Robert T Moore
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Mark A Piitz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Nishita Singh
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada
| | - Tyler Cluff
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr NW, Calgary, AB, Canada.
- Faculty of Kinesiology, University of Calgary, 2500 University Dr NW, Calgary, AB, Canada.
| |
Collapse
|
8
|
Nadzri AN, Nik Mohamed NA, Payne SJ, Mohamed Mokhtarudin MJ. Poroelastic modelling of brain tissue swelling and decompressive craniectomy treatment in ischaemic stroke. Comput Methods Biomech Biomed Engin 2024:1-11. [PMID: 38461460 DOI: 10.1080/10255842.2024.2326972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/01/2024] [Indexed: 03/12/2024]
Abstract
Brain oedema or tissue swelling that develops after ischaemic stroke can cause detrimental effects, including brain herniation and increased intracranial pressure (ICP). These effects can be reduced by performing a decompressive craniectomy (DC) operation, in which a portion of the skull is removed to allow swollen brain tissue to expand outside the skull. In this study, a poroelastic model is used to investigate the effect of brain ischaemic infarct size and location on the severity of brain tissue swelling. Furthermore, the model will also be used to evaluate the effectiveness of DC surgery as a treatment for brain tissue swelling after ischaemia. The poroelastic model consists of two equations: one describing the elasticity of the brain tissue and the other describing the changes in the interstitial tissue pressure. The model is applied on an idealized brain geometry, and it is found that infarcts with radius larger than approximately 14 mm and located near the lateral ventricle produce worse brain midline shift, measured through lateral ventricle compression. Furthermore, the model is also able to show the positive effect of DC treatment in reducing the brain midline shift by allowing part of the brain tissue to expand through the skull opening. However, the model does not show a decrease in the interstitial pressure during DC treatment. Further improvement and validation could enhance the capability of the proposed poroelastic model in predicting the occurrence of brain tissue swelling and DC treatment post ischaemia.
Collapse
Affiliation(s)
- Aina Najwa Nadzri
- Faculty of Manufacturing and Mechatronics Engineering Technology, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Nik Abdullah Nik Mohamed
- Faculty of Engineering, Technology and Built Environment, UCSI University Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
9
|
Kenzie JM, Rajashekar D, Goodyear BG, Dukelow SP. Resting state functional connectivity associated with impaired proprioception post-stroke. Hum Brain Mapp 2024; 45:e26541. [PMID: 38053448 PMCID: PMC10789217 DOI: 10.1002/hbm.26541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.
Collapse
Affiliation(s)
- Jeffrey M. Kenzie
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| | - Deepthi Rajashekar
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Bradley G. Goodyear
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Sean P. Dukelow
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| |
Collapse
|
10
|
Shih PC, Steele CJ, Hoepfel D, Muffel T, Villringer A, Sehm B. The impact of lesion side on bilateral upper limb coordination after stroke. J Neuroeng Rehabil 2023; 20:166. [PMID: 38093308 PMCID: PMC10717693 DOI: 10.1186/s12984-023-01288-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND A stroke frequently results in impaired performance of activities of daily life. Many of these are highly dependent on effective coordination between the two arms. In the context of bimanual movements, cyclic rhythmical bilateral arm coordination patterns can be classified into two fundamental modes: in-phase (bilateral homologous muscles contract simultaneously) and anti-phase (bilateral muscles contract alternately) movements. We aimed to investigate how patients with left (LHS) and right (RHS) hemispheric stroke are differentially affected in both individual-limb control and inter-limb coordination during bilateral movements. METHODS We used kinematic measurements to assess bilateral coordination abilities of 18 chronic hemiparetic stroke patients (9 LHS; 9 RHS) and 18 age- and sex-matched controls. Using KINARM upper-limb exoskeleton system, we examined individual-limb control by quantifying trajectory variability in each hand and inter-limb coordination by computing the phase synchronization between hands during anti- and in-phase movements. RESULTS RHS patients exhibited greater impairment in individual- and inter-limb control during anti-phase movements, whilst LHS patients showed greater impairment in individual-limb control during in-phase movements alone. However, LHS patients further showed a swap in hand dominance during in-phase movements. CONCLUSIONS The current study used individual-limb and inter-limb kinematic profiles and showed that bilateral movements are differently impaired in patients with left vs. right hemispheric strokes. Our results demonstrate that both fundamental bilateral coordination modes are differently controlled in both hemispheres using a lesion model approach. From a clinical perspective, we suggest that lesion side should be taken into account for more individually targeted bilateral coordination training strategies. TRIAL REGISTRATION the current experiment is not a health care intervention study.
Collapse
Affiliation(s)
- Pei-Cheng Shih
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Sony Computer Science Laboratories, Inc, Tokyo, Japan
| | - Christopher J Steele
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Psychology, Concordia University, Montreal, QC, Canada
| | - Dennis Hoepfel
- Clinic and Polyclinic for Psychiatry and Psychotherapy, Leipzig, Germany
| | - Toni Muffel
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Department of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany.
- Department of Neurology, University Hospital Halle (Saale), Halle, Germany.
| |
Collapse
|
11
|
Park K, Ritsma BR, Dukelow SP, Scott SH. A robot-based interception task to quantify upper limb impairments in proprioceptive and visual feedback after stroke. J Neuroeng Rehabil 2023; 20:137. [PMID: 37821970 PMCID: PMC10568927 DOI: 10.1186/s12984-023-01262-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND A key motor skill is the ability to rapidly interact with our dynamic environment. Humans can generate goal-directed motor actions in response to sensory stimulus within ~ 60-200ms. This ability can be impaired after stroke, but most clinical tools lack any measures of rapid feedback processing. Reaching tasks have been used as a framework to quantify impairments in generating motor corrections for individuals with stroke. However, reaching may be inadequate as an assessment tool as repeated reaching can be fatiguing for individuals with stroke. Further, reaching requires many trials to be completed including trials with and without disturbances, and thus, exacerbate fatigue. Here, we describe a novel robotic task to quantify rapid feedback processing in healthy controls and compare this performance with individuals with stroke to (more) efficiently identify impairments in rapid feedback processing. METHODS We assessed a cohort of healthy controls (n = 135) and individuals with stroke (n = 40; Mean 41 days from stroke) in the Fast Feedback Interception Task (FFIT) using the Kinarm Exoskeleton robot. Participants were instructed to intercept a circular white target moving towards them with their hand represented as a virtual paddle. On some trials, the arm could be physically perturbed, the target or paddle could abruptly change location, or the target could change colour requiring the individual to now avoid the target. RESULTS Most participants with stroke were impaired in reaction time (85%) and end-point accuracy (83%) in at least one of the task conditions, most commonly with target or paddle shifts. Of note, this impairment was also evident in most individuals with stroke when performing the task using their unaffected arm (75%). Comparison with upper limb clinical measures identified moderate correlations with the FFIT. CONCLUSION The FFIT was able to identify a high proportion of individuals with stroke as impaired in rapid feedback processing using either the affected or unaffected arms. The task allows many different types of feedback responses to be efficiently assessed in a short amount of time.
Collapse
Affiliation(s)
- Kayne Park
- Centre for Neuroscience Studies, Queen's University, Botterell Hall, 18 Stuart St, Kingston, ON, K7L 3N6, Canada.
| | - Benjamin R Ritsma
- Department of Physical Medicine and Rehabilitation, Queen's University, Kingston, ON, Canada
- Providence Care Hospital, Queen's University, Kingston, ON, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Stephen H Scott
- Centre for Neuroscience Studies, Queen's University, Botterell Hall, 18 Stuart St, Kingston, ON, K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
- Department of Medicine, Queen's University, Kingston, ON, Canada
- Providence Care Hospital, Queen's University, Kingston, ON, Canada
| |
Collapse
|
12
|
Senadheera I, Larssen BC, Mak-Yuen YYK, Steinfort S, Carey LM, Alahakoon D. Profiling Somatosensory Impairment after Stroke: Characterizing Common "Fingerprints" of Impairment Using Unsupervised Machine Learning-Based Cluster Analysis of Quantitative Measures of the Upper Limb. Brain Sci 2023; 13:1253. [PMID: 37759854 PMCID: PMC10526214 DOI: 10.3390/brainsci13091253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Altered somatosensory function is common among stroke survivors, yet is often poorly characterized. Methods of profiling somatosensation that illustrate the variability in impairment within and across different modalities remain limited. We aimed to characterize post-stroke somatosensation profiles ("fingerprints") of the upper limb using an unsupervised machine learning cluster analysis to capture hidden relationships between measures of touch, proprioception, and haptic object recognition. Raw data were pooled from six studies where multiple quantitative measures of upper limb somatosensation were collected from stroke survivors (n = 207) using the Tactile Discrimination Test (TDT), Wrist Position Sense Test (WPST) and functional Tactile Object Recognition Test (fTORT) on the contralesional and ipsilesional upper limbs. The Growing Self Organizing Map (GSOM) unsupervised machine learning algorithm was used to generate a topology-preserving two-dimensional mapping of the pooled data and then separate it into clusters. Signature profiles of somatosensory impairment across two modalities (TDT and WPST; n = 203) and three modalities (TDT, WPST, and fTORT; n = 141) were characterized for both hands. Distinct impairment subgroups were identified. The influence of background and clinical variables was also modelled. The study provided evidence of the utility of unsupervised cluster analysis that can profile stroke survivor signatures of somatosensory impairment, which may inform improved diagnosis and characterization of impairment patterns.
Collapse
Affiliation(s)
- Isuru Senadheera
- Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia;
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
| | - Beverley C. Larssen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yvonne Y. K. Mak-Yuen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
- Department of Occupational Therapy, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Sarah Steinfort
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
| | - Damminda Alahakoon
- Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
13
|
Huang Q, Zhong B, Elangovan N, Zhang M, Konczak J. A Robotic Device for Measuring Human Ankle Motion Sense. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2822-2830. [PMID: 37347627 DOI: 10.1109/tnsre.2023.3288550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
Abstract
Proprioceptive signals about ankle motion are essential for the control of balance and gait. However, objective, accurate methods for testing ankle motion sense in clinical settings are not established. This study presents a fast and accurate method to assess human ankle motion sense acuity. A one degree-of-freedom (DOF) robotic device was used to passively rotate the ankle under controlled conditions and applied a psychophysical forced-choice paradigm. Twenty healthy participants were recruited for study participation. Within a trial, participants experienced one of three reference velocities (10°/s, 15°/s, and 20°/s), and a smaller comparison velocity. Subsequently, they verbally indicated which of the two movements was faster. As outcome measures, a just-noticeable-difference (JND) threshold and interval of uncertainty (IU) were derived from the psychometric stimulus-response difference function for each participant. Our data show that mean JND threshold increased almost linearly from 0.53°/s at the 10°/s reference to 1.6°/s at 20°/s ( ). Perceptual uncertainty increased similarly (median IU = 0.33°/s at 10°/s and 0.97°/s at 20°/s; ). Both measures were strongly correlated ( r s = 0.70). This implies that the bias of the human ankle motion sense is approximately 5 - 8% of the experienced movement velocity. We demonstrate that this robot-aided test produces quantitative data on human ankle motion sense acuity. It provides a useful addition to the current measures of ankle proprioceptive function.
Collapse
|
14
|
Chilvers MJ, Rajashekar D, Low TA, Scott SH, Dukelow SP. Clinical, Neuroimaging and Robotic Measures Predict Long-Term Proprioceptive Impairments following Stroke. Brain Sci 2023; 13:953. [PMID: 37371431 DOI: 10.3390/brainsci13060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Proprioceptive impairments occur in ~50% of stroke survivors, with 20-40% still impaired six months post-stroke. Early identification of those likely to have persistent impairments is key to personalizing rehabilitation strategies and reducing long-term proprioceptive impairments. In this study, clinical, neuroimaging and robotic measures were used to predict proprioceptive impairments at six months post-stroke on a robotic assessment of proprioception. Clinical assessments, neuroimaging, and a robotic arm position matching (APM) task were performed for 133 stroke participants two weeks post-stroke (12.4 ± 8.4 days). The APM task was also performed six months post-stroke (191.2 ± 18.0 days). Robotics allow more precise measurements of proprioception than clinical assessments. Consequently, an overall APM Task Score was used as ground truth to classify proprioceptive impairments at six months post-stroke. Other APM performance parameters from the two-week assessment were used as predictive features. Clinical assessments included the Thumb Localisation Test (TLT), Behavioural Inattention Test (BIT), Functional Independence Measure (FIM) and demographic information (age, sex and affected arm). Logistic regression classifiers were trained to predict proprioceptive impairments at six months post-stroke using data collected two weeks post-stroke. Models containing robotic features, either alone or in conjunction with clinical and neuroimaging features, had a greater area under the curve (AUC) and lower Akaike Information Criterion (AIC) than models which only contained clinical or neuroimaging features. All models performed similarly with regard to accuracy and F1-score (>70% accuracy). Robotic features were also among the most important when all features were combined into a single model. Predicting long-term proprioceptive impairments, using data collected as early as two weeks post-stroke, is feasible. Identifying those at risk of long-term impairments is an important step towards improving proprioceptive rehabilitation after a stroke.
Collapse
Affiliation(s)
- Matthew J Chilvers
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Deepthi Rajashekar
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Trevor A Low
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, ON K7L 3N6, Canada
- Centre for Neuroscience Studies, Queens University, Kingston, ON K7L 3N6, Canada
- Providence Care Hospital, Kingston, ON K7L 3N6, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
15
|
Matyas TA, Mak-Yuen YYK, Boelsen-Robinson TP, Carey LM. Calibration of Impairment Severity to Enable Comparison across Somatosensory Domains. Brain Sci 2023; 13:654. [PMID: 37190619 PMCID: PMC10137124 DOI: 10.3390/brainsci13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Comparison across somatosensory domains, important for clinical and scientific goals, requires prior calibration of impairment severity. Provided test score distributions are comparable across domains, valid comparisons of impairment can be made by reference to score locations in the corresponding distributions (percentile rank or standardized scores). However, this is often not the case. Test score distributions for tactile texture discrimination (n = 174), wrist joint proprioception (n = 112), and haptic object identification (n = 98) obtained from pooled samples of stroke survivors in rehabilitation settings were investigated. The distributions showed substantially different forms, undermining comparative calibration via percentile rank or standardized scores. An alternative approach is to establish comparable locations in the psychophysical score ranges spanning performance from just noticeably impaired to maximally impaired. Several simulation studies and a theoretical analysis were conducted to establish the score distributions expected from completely insensate responders for each domain. Estimates of extreme impairment values suggested by theory, simulation and observed samples were consistent. Using these estimates and previously discovered values for impairment thresholds in each test domain, comparable ranges of impairment from just noticeable to extreme impairment were found. These ranges enable the normalization of the three test scales for comparison in clinical and research settings.
Collapse
Affiliation(s)
- Thomas A. Matyas
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC 3084, Australia
| | - Yvonne Y. K. Mak-Yuen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC 3084, Australia
- Department of Occupational Therapy, St Vincent’s Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - Tristan P. Boelsen-Robinson
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC 3084, Australia
| |
Collapse
|
16
|
Moharramipour A, Takahashi T, Kitazawa S. Distinctive modes of cortical communications in tactile temporal order judgment. Cereb Cortex 2023; 33:2982-2996. [PMID: 35811300 DOI: 10.1093/cercor/bhac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 11/12/2022] Open
Abstract
Temporal order judgment of two successive tactile stimuli delivered to our hands is often inverted when we cross our hands. The present study aimed to identify time-frequency profiles of the interactions across the cortical network associated with the crossed-hand tactile temporal order judgment task using magnetoencephalography. We found that the interactions across the cortical network were channeled to a low-frequency band (5-10 Hz) when the hands were uncrossed. However, the interactions became activated in a higher band (12-18 Hz) when the hands were crossed. The participants with fewer inverted judgments relied mainly on the higher band, whereas those with more frequent inverted judgments (reversers) utilized both. Moreover, reversers showed greater cortical interactions in the higher band when their judgment was correct compared to when it was inverted. Overall, the results show that the cortical network communicates in two distinctive frequency modes during the crossed-hand tactile temporal order judgment task. A default mode of communications in the low-frequency band encourages inverted judgments, and correct judgment is robustly achieved by recruiting the high-frequency mode.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory for Consciousness, Center for Brain Science (CBS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0106, Japan
| | - Toshimitsu Takahashi
- Department of Physiology, Dokkyo Medical University, 880 Kitakobayashi, Mibu, Shimotsuga, Tochigi 321-0293, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, 1-3 Yamakaoka, Suita, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, 1-4 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Hossain D, Scott SH, Cluff T, Dukelow SP. The use of machine learning and deep learning techniques to assess proprioceptive impairments of the upper limb after stroke. J Neuroeng Rehabil 2023; 20:15. [PMID: 36707846 PMCID: PMC9881388 DOI: 10.1186/s12984-023-01140-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Robots can generate rich kinematic datasets that have the potential to provide far more insight into impairments than standard clinical ordinal scales. Determining how to define the presence or absence of impairment in individuals using kinematic data, however, can be challenging. Machine learning techniques offer a potential solution to this problem. In the present manuscript we examine proprioception in stroke survivors using a robotic arm position matching task. Proprioception is impaired in 50-60% of stroke survivors and has been associated with poorer motor recovery and longer lengths of hospital stay. We present a simple cut-off score technique for individual kinematic parameters and an overall task score to determine impairment. We then compare the ability of different machine learning (ML) techniques and the above-mentioned task score to correctly classify individuals with or without stroke based on kinematic data. METHODS Participants performed an Arm Position Matching (APM) task in an exoskeleton robot. The task produced 12 kinematic parameters that quantify multiple attributes of position sense. We first quantified impairment in individual parameters and an overall task score by determining if participants with stroke fell outside of the 95% cut-off score of control (normative) values. Then, we applied five machine learning algorithms (i.e., Logistic Regression, Decision Tree, Random Forest, Random Forest with Hyperparameters Tuning, and Support Vector Machine), and a deep learning algorithm (i.e., Deep Neural Network) to classify individual participants as to whether or not they had a stroke based only on kinematic parameters using a tenfold cross-validation approach. RESULTS We recruited 429 participants with neuroimaging-confirmed stroke (< 35 days post-stroke) and 465 healthy controls. Depending on the APM parameter, we observed that 10.9-48.4% of stroke participants were impaired, while 44% were impaired based on their overall task score. The mean performance metrics of machine learning and deep learning models were: accuracy 82.4%, precision 85.6%, recall 76.5%, and F1 score 80.6%. All machine learning and deep learning models displayed similar classification accuracy; however, the Random Forest model had the highest numerical accuracy (83%). Our models showed higher sensitivity and specificity (AUC = 0.89) in classifying individual participants than the overall task score (AUC = 0.85) based on their performance in the APM task. We also found that variability was the most important feature in classifying performance in the APM task. CONCLUSION Our ML models displayed similar classification performance. ML models were able to integrate more kinematic information and relationships between variables into decision making and displayed better classification performance than the overall task score. ML may help to provide insight into individual kinematic features that have previously been overlooked with respect to clinical importance.
Collapse
Affiliation(s)
- Delowar Hossain
- grid.22072.350000 0004 1936 7697Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Stephen H. Scott
- grid.410356.50000 0004 1936 8331Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
| | - Tyler Cluff
- grid.22072.350000 0004 1936 7697Faculty of Kinesiology, University of Calgary, Calgary, AB Canada
| | - Sean P. Dukelow
- grid.22072.350000 0004 1936 7697Department of Clinical Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| |
Collapse
|
18
|
Beyond the Dorsal Column Medial Lemniscus in Proprioception and Stroke: A White Matter Investigation. Brain Sci 2022; 12:brainsci12121651. [PMID: 36552111 PMCID: PMC9775186 DOI: 10.3390/brainsci12121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Proprioceptive deficits are common following stroke, yet the white matter involved in proprioception is poorly understood. Evidence suggests that multiple cortical regions are involved in proprioception, each connected by major white matter tracts, namely: Superior Longitudinal Fasciculus (branches I, II and III), Arcuate Fasciculus and Middle Longitudinal Fasciculus (SLF I, SLF II, SLF III, AF and MdLF respectively). However, direct evidence on the involvement of these tracts in proprioception is lacking. Diffusion imaging was used to investigate the proprioceptive role of the SLF I, SLF II, SLF III, AF and MdLF in 26 participants with stroke, and seven control participants without stroke. Proprioception was assessed using a robotic Arm Position Matching (APM) task, performed in a Kinarm Exoskeleton robotic device. Lesions impacting each tract resulted in worse APM task performance. Lower Fractional Anisotropy (FA) was also associated with poorer APM task performance for the SLF II, III, AF and MdLF. Finally, connectivity data surrounding the cortical regions connected by each tract accurately predicted APM task impairments post-stroke. This study highlights the importance of major cortico-cortical white matter tracts, particularly the SLF III and AF, for accurate proprioception after stroke. It advances our understanding of the white matter tracts responsible for proprioception.
Collapse
|
19
|
Jamal K, Penisson A, Rostagno S, Duclos C. Where Are We on Proprioception Assessment Tests Among Poststroke Individuals? A Systematic Review of Psychometric Properties. J Neurol Phys Ther 2022; 46:231-239. [PMID: 35671401 DOI: 10.1097/npt.0000000000000405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Proprioception is often impaired in poststroke individuals. This is a significant issue since altered proprioception is associated with poorer physical function outcomes poststroke. However, there is limited consensus on the best tools for assessing proprioception and support for their widespread use by clinicians. The objective is to appraise the psychometric properties of each test used to assess proprioception in poststroke individuals. METHODS A systematic search was performed according to PRISMA guidelines using the databases MEDLINE, Cochrane Library, PEDro, DiTa, and BioMedicalCentral for articles published up to January 2021. RESULTS Sixteen studies of low methodological quality were included. Sixteen different proprioception assessment tests were extracted. The proprioception portion of the Fugl-Meyer Assessment Scale was found to be the most valid and reliable tool for screening patients in clinical settings. Although no real gold standard exists, the technological devices demonstrated better responsiveness and measurement accuracy than clinical tests. Technological devices might be more appropriate for assessing proprioception recovery or better suited for research purposes. DISCUSSION AND CONCLUSIONS This review revealed low-quality articles and a paucity of tests with good psychometric properties available to clinicians to properly screen and assess all subcomponents of proprioception. In perspective, technological devices, such as robotic orthoses or muscle vibration, may provide the best potential for assessing the different subcomponents of proprioception. Further studies should be conducted to develop and investigate such approaches.Video, Supplemental Digital Content 1, available at:http://links.lww.com/JNPT/A388.
Collapse
Affiliation(s)
- Karim Jamal
- Institut universitaire sur la réadaptation en déficience physique de Montréal-IURDPM, Centre de Recherche Interdisciplinaire en Réadaptation du Montréal métropolitain-CRIR Canada and School of Rehabilitation, Université de Montréal, Montreal, Quebec, Canada (K.J., C.D.); Physical and Rehabilitation Medicine Department, University Hospital of Rennes, Rennes, France (K.J.); and Physiotherapy School of Marseille-France, Marseille, France (A.P., S.R.)
| | | | | | | |
Collapse
|
20
|
Moore RT, Piitz MA, Singh N, Dukelow SP, Cluff T. Assessing Impairments in Visuomotor Adaptation After Stroke. Neurorehabil Neural Repair 2022; 36:415-425. [PMID: 35616370 PMCID: PMC9198391 DOI: 10.1177/15459683221095166] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Motor impairment in the arms is common after stroke and many individuals participate in therapy to improve function. It is assumed that individuals with stroke can adapt and improve their movements using feedback that arises from movement or is provided by a therapist. Here we investigated visuomotor adaptation in individuals with sub-acute and chronic stroke. Objective: We examined the impact of the stroke-affected arm (dominant or non-dominant), time post-stroke, and relationships with clinical measures of motor impairment and functional independence. Methods: Participants performed reaching movements with their arm supported in a robotic exoskeleton. We rotated the relationship between the motion of the participant’s hand and a feedback cursor displayed in their workspace. Outcome measures included the amount that participants adapted their arm movements and the number of trials they required to adapt. Results: Participants with stroke (n = 36) adapted less and required more trials to adapt than controls (n = 29). Stroke affecting the dominant arm impaired the amount of adaptation more than stroke affecting the non-dominant arm. Overall, 53% of participants with stroke were impaired in one or more measures of visuomotor adaptation. Initial adaptation was weakly correlated with time post-stroke, and the amount of adaptation correlated moderately with clinical measures of motor impairment and functional independence. Conclusion: Our findings reveal impairments in visuomotor adaptation that are associated with motor impairment and function after stroke. Longitudinal studies are needed to understand the relationship between adaptation and recovery attained in a therapy setting.
Collapse
Affiliation(s)
- Robert T Moore
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Mark A Piitz
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Nishita Singh
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - Tyler Cluff
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Faculty of Kinesiology, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
21
|
Schuch CP, Lam TK, Levin MF, Cramer SC, Swartz RH, Thiel A, Chen JL. A comparison of lesion-overlap approaches to quantify corticospinal tract involvement in chronic stroke. J Neurosci Methods 2022; 376:109612. [PMID: 35487314 DOI: 10.1016/j.jneumeth.2022.109612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Affiliation(s)
- Clarissa Pedrini Schuch
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada
| | - Timothy K Lam
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC, H3G 1Y5, Canada; Jewish Rehabilitation Hospital Site, Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Laval, QC, H7V 1R2, Canada
| | - Steven C Cramer
- Department of Neurology, David Geffen School of Medicine at University of California, Los Angeles; and California Rehabilitation Institute; Los Angeles, CA, 90095-1769, United States of America
| | - Richard H Swartz
- Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, M4N 3M5, Canada
| | - Alexander Thiel
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Joyce L Chen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 2W6, Canada; Heart and Stroke Foundation Canadian Partnership for Stroke Recovery, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada.
| |
Collapse
|
22
|
Lee KW, Kang SH, Lim SC. Simple and Reliable Position Sense Assessment under Different External Torques: Toward Developing a Post-stroke Proprioception Evaluation Device. IEEE Trans Neural Syst Rehabil Eng 2022; 30:823-832. [PMID: 35324443 DOI: 10.1109/tnsre.2022.3161948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of position sense post-stroke is essential for rehabilitation. Position sense may be an output of a process needing position information, external torque, and the sense of effort. Even for healthy individuals, it is unclear whether external torque affects position sense. Thus, evaluation of position sense under different external torques in clinical settings is strongly needed. However, simple devices for measuring position sense under different external torques in clinical settings are lacking. Technologically advanced devices that may evaluate the elbow position sense under different torques were reported to be infeasible clinically because of device complexity and the need for technical experts when analyzing data. To address the unmet need, in this study, a simple and light elbow position sense measurement device was developed that allows clinicians to measure elbow position sense under different external torques in the form of position matching error objectively without any technical difficulties. The feasibility of the device, including intra-session intra-rater reliability and test-retest reliability over two consecutive days, was verified to be clinically applicable using tests with 25 healthy subjects. Thanks to its ease of use, high reliability, and ease of data analysis, it is expected that the device can help to evaluate the position sense post-stroke comprehensively.
Collapse
|
23
|
Isaacs MW, Buxbaum LJ, Wong AL. Proprioception-based movement goals support imitation and are disrupted in apraxia. Cortex 2022; 147:140-156. [PMID: 35033899 PMCID: PMC8852218 DOI: 10.1016/j.cortex.2021.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/17/2021] [Accepted: 11/05/2021] [Indexed: 02/03/2023]
Abstract
The ability to imitate observed actions serves as an efficient method for learning novel movements and is specifically impaired (without concomitant gross motor impairments) in the neurological disorder of limb apraxia, a disorder common after left hemisphere stroke. Research with apraxic patients has advanced our understanding of how people imitate. However, the role of proprioception in imitation has been rarely assessed directly. Prior work has proposed that proprioceptively sensed body position is transformed into a visual format, supporting the attainment of a desired imitation goal represented visually (i.e., how the movement should look when performed). In contrast, we hypothesized a more direct role for proprioception: we suggest that movement goals are also represented proprioceptively (i.e., how a desired movement should feel when performed), and the ability to represent or access such proprioceptive goals is deficient in apraxia. Using a novel imitation task in which a robot cued meaningless trajectories proprioceptively or visually, we probed the role of each sensory modality. We found that patients with left hemisphere stroke were disproportionately worse than controls at imitating when cued proprioceptively versus visually. This proprioceptive versus visual disparity was associated with apraxia severity as assessed by a traditional imitation task, but could not be explained by general proprioceptive impairment or speed-accuracy trade-offs. These data suggest that successful imitation depends in part on the ability to represent movement goals in terms of how those movements should feel, and that deficits in this ability contribute to imitation impairments in patients with apraxia.
Collapse
Affiliation(s)
| | | | - Aaron L Wong
- Moss Rehabilitation Research Institute, Elkins Park, PA, USA.
| |
Collapse
|
24
|
Yu Y, Chen Y, Lou T, Shen X. Correlation Between Proprioceptive Impairment and Motor Deficits After Stroke: A Meta-Analysis Review. Front Neurol 2022; 12:688616. [PMID: 35095706 PMCID: PMC8793362 DOI: 10.3389/fneur.2021.688616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022] Open
Abstract
Introduction: Proprioceptive impairment is a common symptom after stroke. Clarifying how proprioception correlates with motor function after stroke may be helpful in optimizing proprioception-augmented movement training. Previous studies have shown inconsistent findings. A meta-analysis is an optimal method to explore the correlation and identify the factors contributing to these inconsistencies. Objective: To explore the correlation between proprioception and motor function after stroke through a meta-analysis, taking into account characteristics of the measurements used in these studies. Methods: We searched multiple databases until November 2021 for eligible studies that measured both proprioception and motor functions in persons with stroke and reported their correlation or data for correlation analysis. A meta-analysis of the correlations was performed. The subgroup analysis and meta-regression were further conducted to investigate potential factors contributing to the heterogeneity of correlation strength, based on the participants' characteristics, proprioception, and motor function measures. Results: In total, 28 studies comprising of 1,829 participants with stroke were included in the meta-analysis. The overall correlation between proprioception and motor function was significant (r = 0.267, p < 0.05), but there was heterogeneity across studies (I2 = 45%, p < 0.05). The results of the subgroup analysis showed proprioception of the axial segment in weight-bearing conditions (r = 0.443, p < 0.05) and upper limb without weight-bearing (r = 0.292, p < 0.05) had a stronger correlation with motor function than proprioception of the lower limb without weight-bearing. The proprioception measured through ipsilateral matching (r = 0.412, p < 0.05) showed a stronger correlation with motor function than through contralateral matching. The International Classification of Functioning, Disability, and Health (ICF) domains of motor function, movement function (r = 0.338, p < 0.05), activity performance (r = 0.239, p < 0.05), and independence (r = 0.319, p < 0.05) showed a stronger correlation with proprioception than with other domains. Conclusion: There is a significant correlation between proprioception and motor dysfunction after stroke. The proprioception measured in the axial segment under weight-bearing conditions or measured with ipsilateral matching, and motor function, specifically in the ICF domains of movement function, activity performance, and independence showed a positive contribution to the association between proprioception and motor function. The correlation does not imply causation and might be underestimated by attributes of current tests for proprioception and motor function. Further studies are needed to clarify the cause-effect relationship.
Collapse
Affiliation(s)
- Yifan Yu
- Department of Physical Therapy, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yufang Chen
- Laboratory of Biomechanics and Rehabilitation Engineering, School of Medicine, Tongji University, Shanghai, China
| | - Teng Lou
- Rehabilitation center, Shanghai First Rehabilitation Hospital, Shanghai, China
| | - Xia Shen
- Rehabilitation Medicine Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
- Department of Rehabilitation Sciences, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Xia Shen
| |
Collapse
|
25
|
Nasrallah FA, Mohamed AZ, Yap HK, Lai HS, Yeow CH, Lim JH. Effect of proprioceptive stimulation using a soft robotic glove on motor activation and brain connectivity in stroke survivors. J Neural Eng 2021; 18:066049. [PMID: 34933283 DOI: 10.1088/1741-2552/ac456c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Soft-robotic-assisted training may improve motor function during post-stroke recovery, but the underlying physiological changes are not clearly understood. We applied a single-session of intensive proprioceptive stimulation to stroke survivors using a soft robotic glove to delineate its short-term influence on brain functional activity and connectivity. APPROACH In this study, we utilized task-based and resting-state functional magnetic resonance imaging (fMRI) to characterize the changes in different brain networks following a soft robotic intervention. Nine stroke patients with hemiplegic upper limb engaged in resting-state and motor-task fMRI. The motor tasks comprised two conditions: active movement of fingers (active task) and glove-assisted active movement using a robotic glove (glove-assisted task), both with visual instruction. Each task was performed using bilateral hands simultaneously or the affected hand only. The same set of experiments was repeated following a 30-minute treatment of continuous passive motion (CPM) using a robotic glove. MAIN RESULTS On simultaneous bimanual movement, increased activation of supplementary motor area (SMA) and primary motor area (M1) were observed after CPM treatment compared to the pre-treatment condition, both in active and glove-assisted task. However, when performing the tasks solely using the affected hand, the phenomena of increased activity were not observed either in active or glove-assisted task. The comparison of the resting-state fMRI between before and after CPM showed the connectivity of the supramarginal gyrus and SMA was increased in the somatosensory network and salience network. SIGNIFICANCE This study demonstrates how passive motion exercise activates M1 and SMA in the post-stroke brain. The effective proprioceptive motor integration seen in bimanual exercise in contrast to the unilateral affected hand exercise suggests that the unaffected hemisphere might reconfigure connectivity to supplement damaged neural networks in the affected hemisphere. The somatosensory modulation rendered by the intense proprioceptive stimulation would affect the motor learning process in stroke survivors.
Collapse
Affiliation(s)
- Fatima A Nasrallah
- The University of Queensland Queensland Brain Institute, The University of Queensland, Brisbane, Saint Lucia, Queensland, 4072, AUSTRALIA
| | - Abdalla Z Mohamed
- The University of Queensland Queensland Brain Institute, The University of Queensland, Brisbane, Australia., Saint Lucia, Queensland, 4072, AUSTRALIA
| | - Hong Kai Yap
- Roceso Technologies, 83 Science Park Dr #04-01, Singapore, 118258, SINGAPORE
| | - Hwa Sen Lai
- National University of Singapore, Biomedical Engineering, Singapore, 119260, SINGAPORE
| | - Chen-Hua Yeow
- National University of Singapore, Biomedical Engineering, Singapore, 119260, SINGAPORE
| | - Jeong Hoon Lim
- School of Medicine, Medicine, National University of Singapore, NUHS Tower block level 10 1E, Kent Ridge Road, Singapore, Singapore, 119228, SINGAPORE
| |
Collapse
|
26
|
Rajashekar D, Wilms M, MacDonald ME, Schimert S, Hill MD, Demchuk A, Goyal M, Dukelow SP, Forkert ND. Lesion-symptom mapping with NIHSS sub-scores in ischemic stroke patients. Stroke Vasc Neurol 2021; 7:124-131. [PMID: 34824139 PMCID: PMC9067270 DOI: 10.1136/svn-2021-001091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background Lesion-symptom mapping (LSM) is a statistical technique to investigate the population-specific relationship between structural integrity and post-stroke clinical outcome. In clinical practice, patients are commonly evaluated using the National Institutes of Health Stroke Scale (NIHSS), an 11-domain clinical score to quantitate neurological deficits due to stroke. So far, LSM studies have mostly used the total NIHSS score for analysis, which might not uncover subtle structure–function relationships associated with the specific sub-domains of the NIHSS evaluation. Thus, the aim of this work was to investigate the feasibility to perform LSM analyses with sub-score information to reveal category-specific structure–function relationships that a total score may not reveal. Methods Employing a multivariate technique, LSM analyses were conducted using a sample of 180 patients with NIHSS assessment at 48-hour post-stroke from the ESCAPE trial. The NIHSS domains were grouped into six categories using two schemes. LSM was conducted for each category of the two groupings and the total NIHSS score. Results Sub-score LSMs not only identify most of the brain regions that are identified as critical by the total NIHSS score but also reveal additional brain regions critical to each function category of the NIHSS assessment without requiring extensive, specialised assessments. Conclusion These findings show that widely available sub-scores of clinical outcome assessments can be used to investigate more specific structure–function relationships, which may improve predictive modelling of stroke outcomes in the context of modern clinical stroke assessments and neuroimaging. Trial registration number NCT01778335.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Biomedical Engineering Graduate Program, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada .,Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Matthias Wilms
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - M Ethan MacDonald
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Electrical and Computer Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Serena Schimert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Michael D Hill
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Andrew Demchuk
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Mayank Goyal
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Nils Daniel Forkert
- Department of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Chilvers MJ, Hawe RL, Scott SH, Dukelow SP. Investigating the neuroanatomy underlying proprioception using a stroke model. J Neurol Sci 2021; 430:120029. [PMID: 34695704 DOI: 10.1016/j.jns.2021.120029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Neuroanatomical investigations have associated cortical areas, beyond Primary Somatosensory Cortex (S1), with impaired proprioception. Cortical regions have included temporoparietal (TP) regions (supramarginal gyrus, superior temporal gyrus, Heschl's gyrus) and insula. Previous approaches have struggled to account for concurrent damage across multiple brain regions. Here, we used a targeted lesion analysis approach to examine the impact of specific combinations of cortical and sub-cortical lesions and quantified the prevalence of proprioceptive impairments when different regions are damaged or spared. Seventy-seven individuals with stroke (49 male; 28 female) were identified meeting prespecified lesion criteria based on MRI/CT imaging: 1) TP lesions without S1, 2) TP lesions with S1, 3) isolated S1 lesions, 4) isolated insula lesions, and 5) lesions not impacting these regions (other regions group). Initially, participants meeting these criteria (1-4) were grouped together into right or left lesion groups and compared to each other, and the other regions group (5), on a robotic Arm Position Matching (APM) task and a Kinesthesia (KIN) task. We then examined the behaviour of individuals that met each specific criteria (groups 1-5). Proprioceptive impairments were more prevalent following right hemisphere lesions than left hemisphere lesions. The extent of damage to TP regions correlated with performance on both robotic tasks. Even without concurrent S1 lesions, TP and insular lesions were associated with impairments on the APM and KIN tasks. Finally, lesions not impacting these regions were much less likely to result in impairments. This study highlights the critical importance of TP and insular regions for accurate proprioception. SIGNIFICANCE STATEMENT: This work advances our understanding of the neuroanatomy of human proprioception. We validate the importance of regions, beyond the dorsal column medial lemniscal pathway and S1, for proprioception. Further, we provide additional evidence of the importance of the right hemisphere for human proprioception. Improved knowledge on the neuroanatomy of proprioception is crucial for advancing therapeutic approaches which target individuals with proprioceptive impairments following neurological injury or with neurological disorders.
Collapse
Affiliation(s)
- Matthew J Chilvers
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| | - Rachel L Hawe
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada; School of Kinesiology, University of Minnesota, 1900 University Ave SE, Minneapolis, MN 55455, United States
| | - Stephen H Scott
- Department of Biomedical and Molecular Sciences, Centre for Neuroscience Studies, Queens University, Kingston, ON K7L 3N6, Canada
| | - Sean P Dukelow
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
28
|
Kim JH, Kim J, Yeon J, Park JY, Chung D, Kim SP. Neural correlates of tactile hardness intensity perception during active grasping. PeerJ 2021; 9:e11760. [PMID: 34414027 PMCID: PMC8340901 DOI: 10.7717/peerj.11760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/21/2021] [Indexed: 11/20/2022] Open
Abstract
While tactile sensation plays an essential role in interactions with the surroundings, relatively little is known about the neural processes involved in the perception of tactile information. In particular, it remains unclear how different intensities of tactile hardness are represented in the human brain during object manipulation. This study aims to investigate neural responses to various levels of tactile hardness using functional magnetic resonance imaging while people grasp objects to perceive hardness intensity. We used four items with different hardness levels but otherwise identical in shape and texture. A total of Twenty-five healthy volunteers participated in this study. Before scanning, participants performed a behavioral task in which they received a pair of stimuli and they were to report the perceived difference of hardness between them. During scanning, without any visual information, they were randomly given one of the four objects and asked to grasp it. We found significant blood oxygen-level-dependent (BOLD) responses in the posterior insula in the right hemisphere (rpIns) and the right posterior lobe of the cerebellum (rpCerebellum), which parametrically tracked hardness intensity. These responses were supported by BOLD signal changes in the rpCerebellum and rpIns correlating with tactile hardness intensity. Multidimensional scaling analysis showed similar representations of hardness intensity among physical, perceptual, and neural information. Our findings demonstrate the engagement of the rpCerebellum and rpIns in perceiving tactile hardness intensity during active object manipulation.
Collapse
Affiliation(s)
- Ji-Hyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Junsuk Kim
- Department of Industrial ICT Engineering, Dong Eui University, Busan, Republic of Korea
| | - Jiwon Yeon
- Department of Psychology, Georgia Institute of Technology, Atlanta, Georgia, United States
| | - Jang-Yeon Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.,Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dongil Chung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
29
|
|
30
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
31
|
Bernard-Espina J, Beraneck M, Maier MA, Tagliabue M. Multisensory Integration in Stroke Patients: A Theoretical Approach to Reinterpret Upper-Limb Proprioceptive Deficits and Visual Compensation. Front Neurosci 2021; 15:646698. [PMID: 33897359 PMCID: PMC8058201 DOI: 10.3389/fnins.2021.646698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
For reaching and grasping, as well as for manipulating objects, optimal hand motor control arises from the integration of multiple sources of sensory information, such as proprioception and vision. For this reason, proprioceptive deficits often observed in stroke patients have a significant impact on the integrity of motor functions. The present targeted review attempts to reanalyze previous findings about proprioceptive upper-limb deficits in stroke patients, as well as their ability to compensate for these deficits using vision. Our theoretical approach is based on two concepts: first, the description of multi-sensory integration using statistical optimization models; second, on the insight that sensory information is not only encoded in the reference frame of origin (e.g., retinal and joint space for vision and proprioception, respectively), but also in higher-order sensory spaces. Combining these two concepts within a single framework appears to account for the heterogeneity of experimental findings reported in the literature. The present analysis suggests that functional upper limb post-stroke deficits could not only be due to an impairment of the proprioceptive system per se, but also due to deficiencies of cross-references processing; that is of the ability to encode proprioceptive information in a non-joint space. The distinction between purely proprioceptive or cross-reference-related deficits can account for two experimental observations: first, one and the same patient can perform differently depending on specific proprioceptive assessments; and a given behavioral assessment results in large variability across patients. The distinction between sensory and cross-reference deficits is also supported by a targeted literature review on the relation between cerebral structure and proprioceptive function. This theoretical framework has the potential to lead to a new stratification of patients with proprioceptive deficits, and may offer a novel approach to post-stroke rehabilitation.
Collapse
Affiliation(s)
| | | | - Marc A Maier
- Université de Paris, INCC UMR 8002, CNRS, Paris, France
| | | |
Collapse
|
32
|
Moharramipour A, Kitazawa S. What Underlies a Greater Reversal in Tactile Temporal Order Judgment When the Hands Are Crossed? A Structural MRI Study. Cereb Cortex Commun 2021; 2:tgab025. [PMID: 34296170 PMCID: PMC8152922 DOI: 10.1093/texcom/tgab025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 02/02/2023] Open
Abstract
Our subjective temporal order of two successive tactile stimuli, delivered one to each hand, is often inverted when our hands are crossed. However, there is great variability among different individuals. We addressed the question of why some show almost complete reversal, but others show little reversal. To this end, we obtained structural magnetic resonance imaging data from 42 participants who also participated in the tactile temporal order judgment (TOJ) task. We extracted the cortical thickness and the convoluted surface area as cortical characteristics in 68 regions. We found that the participants with a thinner, larger, and more convoluted cerebral cortex in 10 regions, including the right pars-orbitalis, right and left postcentral gyri, left precuneus, left superior parietal lobule, right middle temporal gyrus, left superior temporal gyrus, right cuneus, left supramarginal gyrus, and right rostral middle frontal gyrus, showed a smaller degree of judgment reversal. In light of major theoretical accounts, we suggest that cortical elaboration in the aforementioned regions improve the crossed-hand TOJ performance through better integration of the tactile stimuli with the correct spatial representations in the left parietal regions, better representation of spatial information in the postcentral gyrus, or improvement of top-down inhibitory control by the right pars-orbitalis.
Collapse
Affiliation(s)
- Ali Moharramipour
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
| | - Shigeru Kitazawa
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Department of Brain Physiology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
33
|
Suárez-Méndez I, Walter S, López-Sanz D, Pasquín N, Bernabé R, Castillo Gallo E, Valdés M, Del Pozo F, Maestú F, Rodríguez-Mañas L. Ongoing Oscillatory Electrophysiological Alterations in Frail Older Adults: A MEG Study. Front Aging Neurosci 2021; 13:609043. [PMID: 33679373 PMCID: PMC7935553 DOI: 10.3389/fnagi.2021.609043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: The role of the central nervous system in the pathophysiology of frailty is controversial. We used magnetoencephalography (MEG) to search for abnormalities in the ongoing oscillatory neural activity of frail individuals without global cognitive impairment. Methods: Fifty four older (≥70 years) and cognitively healthy (Mini-Mental State Examination ≥24) participants were classified as robust (0 criterion, n = 34) or frail (≥ 3 criteria, n = 20) following Fried's phenotype. Memory, language, attention, and executive function were assessed through well-validated neuropsychological tests. Every participant underwent a resting-state MEG and a T1-weighted magnetic resonance imaging scan. We performed MEG power spectral analyses to compare the electrophysiological profiles of frail and robust individuals. We used an ensemble learner to investigate the ability of MEG spectral power to discriminate frail from robust participants. Results: We identified increased relative power in the frail group in the mu (p < 0.05) and sensorimotor (p < 0.05) frequencies across right sensorimotor, posterior parietal, and frontal regions. The ensemble learner discriminated frail from robust participants [area under the curve = 0.73 (95% CI = 0.49–0.98)]. Frail individuals performed significantly worse in the Trail Making Test, Digit Span Test (forward), Rey-Osterrieth Complex Figure, and Semantic Fluency Test. Interpretation: Frail individuals without global cognitive impairment showed ongoing oscillatory alterations within brain regions associated with aspects of motor control, jointly to failures in executive function. Our results suggest that some physical manifestations of frailty might partly arise from failures in central structures relevant to sensorimotor and executive processing.
Collapse
Affiliation(s)
- Isabel Suárez-Méndez
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid (UCM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain
| | - Stefan Walter
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Department of Medicine and Public Health, Rey Juan Carlos University, Madrid, Spain
| | - David López-Sanz
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Psychobiology and Methodology in Behavioral Sciences, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Natalia Pasquín
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | - Raquel Bernabé
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain
| | | | - Myriam Valdés
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| | - Francisco Del Pozo
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Fernando Maestú
- Laboratory of Cognitive and Computational Neuroscience (Complutense University of Madrid - Universidad Politécnica de Madrid), Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid (UPM), Madrid, Spain.,Department of Experimental Psychology, Complutense University of Madrid (UCM), Madrid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | - Leocadio Rodríguez-Mañas
- Foundation for Biomedical Research, University Hospital of Getafe, Getafe, Spain.,Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Spain.,Geriatric Service, University Hospital of Getafe, Getafe, Spain
| |
Collapse
|
34
|
Pillette L, Lotte F, N'Kaoua B, Joseph PA, Jeunet C, Glize B. Why we should systematically assess, control and report somatosensory impairments in BCI-based motor rehabilitation after stroke studies. Neuroimage Clin 2020; 28:102417. [PMID: 33039972 PMCID: PMC7551360 DOI: 10.1016/j.nicl.2020.102417] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/22/2020] [Accepted: 09/03/2020] [Indexed: 11/25/2022]
Abstract
The neuronal loss resulting from stroke forces 80% of the patients to undergo motor rehabilitation, for which Brain-Computer Interfaces (BCIs) and NeuroFeedback (NF) can be used. During the rehabilitation, when patients attempt or imagine performing a movement, BCIs/NF provide them with a synchronized sensory (e.g., tactile) feedback based on their sensorimotor-related brain activity that aims at fostering brain plasticity and motor recovery. The co-activation of ascending (i.e., somatosensory) and descending (i.e., motor) networks indeed enables significant functional motor improvement, together with significant sensorimotor-related neurophysiological changes. Somatosensory abilities are essential for patients to perceive the feedback provided by the BCI system. Thus, somatosensory impairments may significantly alter the efficiency of BCI-based motor rehabilitation. In order to precisely understand and assess the impact of somatosensory impairments, we first review the literature on post-stroke BCI-based motor rehabilitation (14 randomized clinical trials). We show that despite the central role that somatosensory abilities play on BCI-based motor rehabilitation post-stroke, the latter are rarely reported and used as inclusion/exclusion criteria in the literature on the matter. We then argue that somatosensory abilities have repeatedly been shown to influence the motor rehabilitation outcome, in general. This stresses the importance of also considering them and reporting them in the literature in BCI-based rehabilitation after stroke, especially since half of post-stroke patients suffer from somatosensory impairments. We argue that somatosensory abilities should systematically be assessed, controlled and reported if we want to precisely assess the influence they have on BCI efficiency. Not doing so could result in the misinterpretation of reported results, while doing so could improve (1) our understanding of the mechanisms underlying motor recovery (2) our ability to adapt the therapy to the patients' impairments and (3) our comprehension of the between-subject and between-study variability of therapeutic outcomes mentioned in the literature.
Collapse
Affiliation(s)
- Léa Pillette
- Inria, 200 av.de la Vieille Tour, 33400 Talence, France; LaBRI (Univ.Bordeaux, CNRS, Bordeaux-INP), 351, cours de la Libération, 33405 Talence, France.
| | - Fabien Lotte
- Inria, 200 av.de la Vieille Tour, 33400 Talence, France; LaBRI (Univ.Bordeaux, CNRS, Bordeaux-INP), 351, cours de la Libération, 33405 Talence, France.
| | - Bernard N'Kaoua
- Handicap, Activity, Cognition, Health, Inserm/University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France.
| | - Pierre-Alain Joseph
- Handicap, Activity, Cognition, Health, Inserm/University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France; Service MPR Pôle de Neurosciences Cliniques CHU, University of Bordeaux, Place Amélie Raba-Léon, 33000 Bordeaux cedex, France.
| | - Camille Jeunet
- CLLE (CNRS, Univ.Toulouse Jean Jaurès), 5 Allées Antonio Machado, 31058 Toulouse cedex 9, France.
| | - Bertrand Glize
- Handicap, Activity, Cognition, Health, Inserm/University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux cedex, France; Service MPR Pôle de Neurosciences Cliniques CHU, University of Bordeaux, Place Amélie Raba-Léon, 33000 Bordeaux cedex, France.
| |
Collapse
|
35
|
Rajashekar D, Wilms M, Hecker KG, Hill MD, Dukelow S, Fiehler J, Forkert ND. The Impact of Covariates in Voxel-Wise Lesion-Symptom Mapping. Front Neurol 2020; 11:854. [PMID: 32922356 PMCID: PMC7456820 DOI: 10.3389/fneur.2020.00854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/07/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Voxel-wise lesion-symptom mapping (VLSM) is a statistical technique to infer the structure-function relationship in patients with cerebral strokes. Previous VLSM research suggests that it is important to adjust for various confounders such as lesion size to minimize the inflation of true effects. The aim of this work is to investigate the regional impact of covariates on true effects in VLSM. Methods: A total of 222 follow-up datasets of acute ischemic stroke patients with known NIH Stroke Scale (NIHSS) score at 48-h post-stroke were available for this study. Patient age, lesion volume, and follow-up imaging time were tested for multicollinearity using variance inflation factor analysis and used as covariates in VLSM analyses. Covariate importance maps were computed from the VLSM results by standardizing the beta coefficients of general linear models. Results: Covariates were found to have distinct regional importance with respect to lesion eloquence in the brain. Age has a relatively higher importance in the superior temporal gyrus, inferior parietal lobule, and in the pre- and post-central gyri. Volume explains more variability in the opercular area of the insula, inferior frontal gyrus, and caudate. Follow-up imaging time accounts for most of the variance in the globus pallidus, ventromedial- and dorsolateral putamen, dorsal caudate, pre-motor thalamus, and the dorsal insula. Conclusions: This is the first study investigating and revealing distinctive regional patterns of importance for covariates typically used in VLSM. These covariate importance maps can improve our understanding of the lesion-deficit relationships in patients and could prove valuable for patient-specific treatment and rehabilitation planning.
Collapse
Affiliation(s)
- Deepthi Rajashekar
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Matthias Wilms
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Kent G Hecker
- Departments of Community Health Sciences and Veterinary Clinical, and Diagnostic Sciences, University of Calgary, Calgary, AB, Canada
| | - Michael D Hill
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Sean Dukelow
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nils D Forkert
- Department of Radiology, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
36
|
Lowrey CR, Blazevski B, Marnet JL, Bretzke H, Dukelow SP, Scott SH. Robotic tests for position sense and movement discrimination in the upper limb reveal that they each are highly reproducible but not correlated in healthy individuals. J Neuroeng Rehabil 2020; 17:103. [PMID: 32711540 PMCID: PMC7382092 DOI: 10.1186/s12984-020-00721-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/06/2020] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Robotic technologies for neurological assessment provide sensitive, objective measures of behavioural impairments associated with injuries or disease such as stroke. Previous robotic tasks to assess proprioception typically involve single limbs or in some cases both limbs. The challenge with these approaches is that they often rely on intact motor function and/or working memory to remember/reproduce limb position, both of which can be impaired following stroke. Here, we examine the feasibility of a single-arm Movement Discrimination Threshold (MDT) task to assess proprioception by quantifying thresholds for sensing passive limb movement without vision. We use a staircase method to adjust movement magnitude based on subject performance throughout the task in order to reduce assessment time. We compare MDT task performance to our previously-designed Arm Position Matching (APM) task. Critically, we determine test-retest reliability of each task in the same population of healthy controls. METHOD Healthy participants (N = 21, age = 18-22 years) completed both tasks in the End-Point Kinarm robot. In the MDT task the robot moved the dominant arm left or right and participants indicated the direction moved. Movement displacement was systematically adjusted (decreased after correct answers, increased after incorrect) until the Discrimination Threshold was found. In the APM task, the robot moved the dominant arm and participants "mirror-matched" with the non-dominant arm. RESULTS Discrimination Threshold for direction of arm displacement in the MDT task ranged from 0.1-1.3 cm. Displacement Variability ranged from 0.11-0.71 cm. Test-retest reliability of Discrimination Threshold based on ICC confidence intervals was moderate to excellent (range, ICC = 0.78 [0.52-0.90]). Interestingly, ICC values for Discrimination Threshold increased to 0.90 [0.77-0.96] (good to excellent) when the number of trials was reduced to the first 50. Most APM parameters had ICC's above 0.80, (range, ICC = [0.86-0.88]) with the exception of variability (ICC = 0.30). Importantly, no parameters were significantly correlated across tasks as Spearman rank correlations across parameter-pairings ranged from - 0.27 to 0.30. CONCLUSIONS The MDT task is a feasible and reliable task, assessing movement discrimination threshold in ~ 17 min. Lack of correlation between the MDT and a position-matching task (APM) indicates that these tasks assess unique aspects of proprioception that are not strongly related in young, healthy individuals.
Collapse
Affiliation(s)
- Catherine R. Lowrey
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
| | - Benett Blazevski
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
| | - Jean-Luc Marnet
- BioEngineering and Innovation in Neuroscience, University Paris Descartes, Paris, France
| | - Helen Bretzke
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
| | - Sean P. Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta Canada
| | - Stephen H. Scott
- Laboratory of Integrative Motor Behaviour, Centre for Neuroscience Studies, Queen’s University, 18 Stuart St., Kingston, ON K7L 3N6 Canada
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada
- Department of Medicine, Queen’s University, Kingston, ON Canada
| |
Collapse
|
37
|
Marini F, Zenzeri J, Pippo V, Morasso P, Campus C. Neural correlates of proprioceptive upper limb position matching. Hum Brain Mapp 2019; 40:4813-4826. [PMID: 31348604 PMCID: PMC6865654 DOI: 10.1002/hbm.24739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/06/2022] Open
Abstract
Proprioceptive information allows humans to perform smooth coordinated movements by constantly updating one's mind with knowledge of the position of one's limbs in space. How this information is combined with other sensory modalities and centrally processed to form conscious perceptions of limb position remains relatively unknown. What has proven even more elusive is pinpointing the contribution of proprioception in cortical activity related to motion. This study addresses these gaps by examining electrocortical dynamics while participants performed an upper limb position matching task in two conditions, namely with proprioceptive feedback or with both visual and proprioceptive feedback. Specifically, we evaluated the reduction of the electroencephalographic power (desynchronization) in the μ frequency band (8-12 Hz), which is known to characterize the neural activation associated with motor control and behavior. We observed a stronger desynchronization in the left motor and somatosensory areas, contralateral to the moving limb while, parietal and occipital regions, identifying association and visual areas, respectively, exhibited a similar activation level in the two hemispheres. Pertaining to the influence of the two experimental conditions it affected only movement's offset, and precisely we found that when matching movements are performed relying only on proprioceptive information, a lower cortical activity is entailed. This effect was strongest in the visual and association areas, while there was a minor effect in the hand motor and somatosensory areas.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Valentina Pippo
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Pietro Morasso
- Department of Robotics, Brain and Cognitive SciencesIstituto Italiano di TecnologiaGenoaItaly
| | - Claudio Campus
- U‐VIP Unit for Visually Impaired PeopleIstituto Italiano di TecnologiaGenoaItaly
| |
Collapse
|
38
|
Findlater SE, Hawe RL, Mazerolle EL, Al Sultan AS, Cassidy JM, Scott SH, Pike GB, Dukelow SP. Comparing CST Lesion Metrics as Biomarkers for Recovery of Motor and Proprioceptive Impairments After Stroke. Neurorehabil Neural Repair 2019; 33:848-861. [DOI: 10.1177/1545968319868714] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background. Corticospinal tract (CST) damage is considered a biomarker for stroke recovery. Several methods have been used to define CST damage and examine its relationship to motor performance, but which method is most useful remains unclear. Proprioceptive impairment also affects stroke recovery and may be related to CST damage. Methods. Robotic assessment quantified upper-limb motor and proprioceptive performance at 2 weeks and 6 months poststroke (n = 149). Three previously-established CST lesion metrics were calculated using clinical neuroimaging. Diffusion magnetic resonance imaging quantified CST microstructure in a subset of participants (n = 21). Statistical region of interest (sROI) analysis identified lesion locations associated with motor and proprioceptive deficits. Results. CST lesion metrics were moderately correlated with motor scores at 2 weeks and 6 months poststroke. CST fractional anisotropy (FA) was correlated with motor scores at 1 month poststroke, but not at 6 months. The FA ratio of the posterior limb of the internal capsule was not correlated with motor performance. CST lesion metrics were moderately correlated with proprioceptive scores at 2 weeks and 6 months poststroke. sROI analysis confirmed that CST damage was associated with motor and proprioceptive deficits and additionally found that putamen, internal capsule, and corticopontocerebellar tract lesions were associated with poor motor performance. Conclusions. Across all methods used to quantify CST damage, correlations with motor or proprioceptive performance were moderate at best. Future research is needed to identify complementary or alternative biomarkers to address the complexity and heterogeneity of stroke recovery.
Collapse
|
39
|
Findlater SE, Mazerolle EL, Pike GB, Dukelow SP. Proprioception and motor performance after stroke: An examination of diffusion properties in sensory and motor pathways. Hum Brain Mapp 2019; 40:2995-3009. [PMID: 30891844 DOI: 10.1002/hbm.24574] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/27/2019] [Accepted: 03/04/2019] [Indexed: 01/23/2023] Open
Abstract
Proprioceptive and motor impairments commonly occur after stroke. Relationships between corticospinal tract (CST) fractional anisotropy (FA) and motor recovery have been identified. However, the relationship between sensory tract microstructure and proprioceptive recovery remains unexplored. Using probabilistic tractography, we examined the relationship between diffusion metrics in three tracts known to contain proprioceptive information (a) dorsal-column medial-lemniscal (DCML), (b) postcentral gyrus to supramarginal gyrus (POCG-SMG), (c) postcentral gyrus to Heschl's gyrus (POCG-HG) and proprioception at 1 (n = 26) and 6 months (n = 19) poststroke. Proprioception was assessed using two robotic tasks. Motor performance was also assessed robotically and compared to CST diffusion metrics. At 1-month poststroke, a nonsignificant relationship (r = -0.43, p = 0.05) was observed between DCML-FA and proprioceptive impairment. A moderate relationship was identified between POCG-SMG FA and POCG-HG FA and proprioceptive impairment (r = -0.47, p = 0.001 and r = -0.51, p = 0.008, respectively). No relationships were significant at 6 months poststroke. Similar to previous studies, lower CST-FA correlated with motor impairment at 1 month poststroke (r = -0.58, p = 0.002). While CST-FA is considered a predictor of motor impairment, our findings suggest that the relationship between FA and tracts containing proprioceptive information is not as straightforward and highlights the importance of sensory association areas in proprioception.
Collapse
Affiliation(s)
- Sonja E Findlater
- Department of Neuroscience, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Erin L Mazerolle
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Sean P Dukelow
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Division of Physical Medicine and Rehabilitation, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|