1
|
You B, Wen H, Jackson T. Resting-state brain activity as a biomarker of chronic pain impairment and a mediator of its association with pain resilience. Hum Brain Mapp 2024; 45:e26780. [PMID: 38984446 PMCID: PMC11234141 DOI: 10.1002/hbm.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.
Collapse
Affiliation(s)
- Beibei You
- School of NursingGuizhou Medical UniversityGuian New DistrictChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of PsychologySouthwest UniversityChongqingChina
| | - Todd Jackson
- Department of PsychologyUniversity of MacauTaipaMacau, SARChina
| |
Collapse
|
2
|
Mei J, Hu Y. Degree centrality-based resting-state functional magnetic resonance imaging explores central mechanisms in lumbar disc herniation patients with chronic low back pain. Front Neurol 2024; 15:1370398. [PMID: 38919971 PMCID: PMC11197982 DOI: 10.3389/fneur.2024.1370398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Objective To investigate the central mechanism of lumbar disc herniation in patients with chronic low back pain (LDHCP) using resting-state functional magnetic resonance imaging (rs-fMRI) utilizing the Degree Centrality (DC) method. Methods Twenty-five LDHCP and twenty-two healthy controls (HCs) were enrolled, and rs-fMRI data from their brains were collected. We compared whole-brain DC values between the LDHCP and HC groups, and examined correlations between DC values within the LDHCP group and the Visual Analogue Score (VAS), Oswestry Dysfunction Index (ODI), and disease duration. Diagnostic efficacy was evaluated using receiver operating characteristic (ROC) curve analysis. Results LDHCP patients exhibited increased DC values in the bilateral cerebellum and brainstem, whereas decreased DC values were noted in the left middle temporal gyrus and right post-central gyrus when compared with HCs. The DC values of the left middle temporal gyrus were positively correlated with VAS (r = 0.416, p = 0.039) and ODI (r = 0.405, p = 0.045), whereas there was no correlation with disease duration (p > 0.05). Other brain regions showed no significant correlations with VAS, ODI, or disease duration (p > 0.05). Furthermore, the results obtained from ROC curve analysis demonstrated that the Area Under the Curve (AUC) for the left middle temporal gyrus was 0.929. Conclusion The findings indicated local abnormalities in spontaneous neural activity and functional connectivity in the bilateral cerebellum, bilateral brainstem, left middle temporal gyrus, and right postcentral gyrus among LDHCP patients.
Collapse
Affiliation(s)
| | - Yong Hu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Meng J, Zhang T, Hao T, Xie X, Zhang M, Zhang L, Wan X, Zhu C, Li Q, Wang K. Functional and Structural Abnormalities in the Pain Network of Generalized Anxiety Disorder Patients with Pain Symptoms. Neuroscience 2024; 543:28-36. [PMID: 38382693 DOI: 10.1016/j.neuroscience.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
Pain symptoms significantly impact the well-being and work capacity of individuals with generalized anxiety disorder (GAD), and hinder treatment and recovery. Despite existing literature focusing on the neural substrate of pain and anxiety separately, further exploration is needed to understand the possible neuroimaging mechanisms of the pain symptoms in GAD patients. We recruited 73 GAD patients and 75 matched healthy controls (HC) for clinical assessments, as well as resting-state functional and structural magnetic resonance imaging scans. We defined a pain-related network through a published meta-analysis, including the insula, thalamus, periaqueductal gray, prefrontal cortex, anterior cingulate cortex, amygdala, and hippocampus. Subsequently, we conducted the regional homogeneity (ReHo) and the gray matter volume (GMV) within the pain-related network. Correlation analysis was then employed to explore associations between abnormal regions and self-reported outcomes, assessed using the Patient Health Questionnaire-15 (PHQ-15) and pain scores. We observed significantly increased ReHo in the bilateral insula but decreased GMV in the bilateral thalamus of GAD compared to HC. Further correlation analysis revealed a positive correlation between ReHo of the left anterior insula and pain scores in GAD patients, while a respective negative correlation between GMV of the bilateral thalamus and PHQ-15 scores. In summary, GAD patients exhibit structural and functional abnormalities in pain-related networks. The enhanced ReHo in the left anterior insula is correlated with pain symptoms, which might be a crucial brain region of pain symptoms in GAD.
Collapse
Affiliation(s)
- Jie Meng
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Ting Zhang
- Department of Psychiatry, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Tong Hao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xiaohui Xie
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Mengdan Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Lei Zhang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China
| | - Xingsong Wan
- Affiliated Psychological Hospital of Anhui Medical University, Hefei, Anhui Province, China; Anhui Mental Health Center, Hefei, Anhui Province, China
| | - Chunyan Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qianqian Li
- Department of Psychology and Sleep Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China.
| | - Kai Wang
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, Anhui Province, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China; Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, Anhui Province, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, Anhui Province, China; Institute of Artificial Intelligence, University of Science and Technology of China, Hefei, Anhui Province, China.
| |
Collapse
|
4
|
Mei YD, Gao H, Chen WF, Zhu W, Gu C, Zhang JP, Tao JM, Hua XY. Research on the multidimensional brain remodeling mechanisms at the level of brain regions, circuits, and networks in patients with chronic lower back pain caused by lumbar disk herniation. Front Neurosci 2024; 18:1357269. [PMID: 38516315 PMCID: PMC10956359 DOI: 10.3389/fnins.2024.1357269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/21/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Chronic lower back pain (cLBP), frequently attributed to lumbar disk herniation (LDH), imposes substantial limitations on daily activities. Despite its prevalence, the neural mechanisms underlying lower back pain remain incompletely elucidated. Functional magnetic resonance imaging (fMRI) emerges as a non-invasive modality extensively employed for investigating neuroplastic changes in neuroscience. In this study, task-based and resting-state fMRI methodologies are employed to probe the central mechanisms of lower back pain. Methods The study included 71 chronic lower back pain patients (cLBP group) due to LDH and 80 age, gender, and education-matched healthy volunteers (HC group). The subjects are mainly middle-aged and elderly individuals. Visual Analog Scale (VAS), Oswestry Disability Index (ODI), and Japanese Orthopedic Association Scores (JOA) were recorded. Resting-state and task-based fMRI data were collected. Results/discussion No significant differences were observed in age, gender, and education level between the two groups. In the cLBP group during task execution, there was diffuse and reduced activation observed in the primary motor cortex and supplementary motor area. Additionally, during resting states, notable changes were detected in brain regions, particularly in the frontal lobe, primary sensory area, primary motor cortex, precuneus, and caudate nucleus, accompanied by alterations in Amplitude of Low Frequency Fluctuation, Regional Homogeneity, Degree Centrality, and functional connectivity. These findings suggest that chronic lower back pain may entail reduced excitability in sensory-motor areas during tasks and heightened activity in the sensory-motor network during resting states, along with modified functional connectivity in various brain regions.
Collapse
Affiliation(s)
- Yuan-Dong Mei
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Hang Gao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei-Fei Chen
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Wei Zhu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Chen Gu
- Department of Hand Surgery, the Second People’s Hospital of Changshu, Changshu, China
| | - Jun-Peng Zhang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Ming Tao
- Department of Rehabilitation, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Qiu Z, Zhong X, Yang Q, Shi X, He L, Zhou H, Xu X. Altered spontaneous brain activity in lumbar disc herniation patients: insights from an ALE meta-analysis of neuroimaging data. Front Neurosci 2024; 18:1349512. [PMID: 38379762 PMCID: PMC10876805 DOI: 10.3389/fnins.2024.1349512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Objective To explore the characteristics of spontaneous brain activity changes in patients with lumbar disc herniation (LDH), and help reconcile the contradictory findings in the literature and enhance the understanding of LDH-related pain. Materials and methods PubMed, Web of Science, Embase, Chinese National Knowledge Infrastructure (CNKI), SinoMed, and Wanfang databases were searched for literature that studies the changes of brain basal activity in patients with LDH using regional homogeneity (ReHo) and amplitude of low-frequency fluctuation/fraction amplitude of low-frequency fluctuation (ALFF/fALFF) analysis methods. Activation likelihood estimation (ALE) was used to perform a meta-analysis of the brain regions with spontaneous brain activity changes in LDH patients compared with healthy controls (HCs). Results A total of 11 studies were included, including 7ALFF, 2fALFF, and 2ReHo studies, with a total of 269 LDH patients and 277 HCs. Combined with the data from the ALFF/fALFF and ReHo studies, the meta-analysis results showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right middle frontal gyrus (MFG), left anterior cingulate cortex (ACC) and the right anterior lobe of the cerebellum, while they had decreased spontaneous brain activity in the left superior frontal gyrus (SFG). Meta-analysis using ALFF/fALFF data alone showed that compared with HCs, LDH patients had increased spontaneous brain activity in the right MFG and left ACC, but no decrease in spontaneous brain activity was found. Conclusion In this paper, through the ALE Meta-analysis method, based on the data of reported rs-fMRI whole brain studies, we found that LDH patients had spontaneous brain activity changes in the right middle frontal gyrus, left anterior cingulate gyrus, right anterior cerebellar lobe and left superior frontal gyrus. However, it is still difficult to assess whether these results are specific and unique to patients with LDH. Further neuroimaging studies are needed to compare the effects of LDH and other chronic pain diseases on the spontaneous brain activity of patients. Furthermore, the lateralization results presented in our study also require further LDH-related pain side-specific grouping study to clarify this causation. Systematic review registration PROSPERO, identifier CRD42022375513.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiaoxue Xu
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
6
|
Hu Y, Wang S, Wu L, Xi S, Wen W, Zhao C. Deficits of Visual Cortex Function in Acute Acquired Concomitant Esotropia Patients. Invest Ophthalmol Vis Sci 2023; 64:46. [PMID: 37902746 PMCID: PMC10617634 DOI: 10.1167/iovs.64.13.46] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 07/25/2023] [Indexed: 10/31/2023] Open
Abstract
Purpose The purpose of this study was to explore the cortical deficits of patients with acquired concomitant esotropia (AACE) using the resting-state functional magnetic resonance imaging (rs-fMRI) technique. Methods Rs-fMRI signals from 25 patients with AACE and 25 matched controls were collected. The repeated-measures analysis of variance (RM-ANOVA) test and two-sample t-test were used to investigate statistical differences of the amplitudes of low-frequency fluctuation (ALFF) signals and correlation analysis was performed to validate the relationship of signal change and clinical features. Results The AACE group showed decreased ALFF in both hemispheres symmetrically (t = 0.38, P = 0.71), with peak t in both middle occipital gyrus. The ALFF signal from the upper left inferior frontal gyrus was negatively correlated with the age of onset (r = 0.62, P = 0.0008), and the ALFF signal from the right superior temporal gyrus was negatively correlated with the near work hours (r = 0.63, P = 0.0008). The ALFF signal in the left fusiform gyrus was positively correlated with both near (r = 0.48, P = 0.01) and far (r = 0.44, P = 0.03) deviation, whereas it was only positively correlated with far deviation (r = 0.44, P = 0.03) in the right. Besides, the age of onset and the near work hour were independent factors of signal changes. Conclusions Using the ALFF signal of rs-fMRI, we found functional deficits in the primary visual cortex and dorsal pathway in patients with AACE. There were functional changes in the fusiform gyrus, and the greater the deviation angle, the higher the changing level. These findings reveal the association of AACE and the visual center, giving us more clues about the treatment of AACE.
Collapse
Affiliation(s)
- Yan Hu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Shenjiang Wang
- Department of Radiology, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
| | - Lianqun Wu
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Sida Xi
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wen Wen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Chen Zhao
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital, Shanghai Medical School, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Zhou XC, Huang YB, Wu S, Hong SW, Tian Y, Hu HJ, Lv LJ, Lv ZZ. Lever positioning manipulation alters real-time brain activity in patients with lumbar disc herniation: An amplitude of low-frequency fluctuation and regional homogeneity study. Psychiatry Res Neuroimaging 2023; 334:111674. [PMID: 37413860 DOI: 10.1016/j.pscychresns.2023.111674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
INTRODUCTION Lumbar disk herniation (LDH) is the preeminent disease of lever positioning manipulation (LPM), a complex disorder involving alterations in brain function. Resting-state functional magnetic resonance imaging (rs-fMRI) has the advantages of non-trauma, zero radiation, and high spatial resolution, which has become an effective means to study brain science in contemporary physical therapy. Furthermore, it can better elucidate the response characteristics of the brain region of LPM intervention in LDH. We utilized two data analysis methods, the amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) of rs-fMRI, to assess the effects of LPM on real-time brain activity in patients with LDH. METHODS Patients with LDH (Group 1, n = 21) and age-, gender- and education-matched healthy controls without LDH (Group 2, n = 21) were prospectively enrolled. Brain fMRI was performed for Group 1 at two-time points (TPs): before LPM (TP1) and after one LPM session (TP2). The healthy controls (Group 2) did not receive LPM and underwent only one fMRI scan. Participants in Group 1 completed clinical questionnaires assessing pain and functional disorders using a Visual Analog Scale and the Japanese Orthopaedic Association (JOA), respectively. Furthermore, we employed MNL90 (Montreal Neurological Institute) as a brain-specific template. RESULTS Compared to the healthy controls (Group 2), the patients with LDH (Group 1) had significant variation in ALFF and ReHo values in brain activity. After the LPM session (TP2), Group 1 at TP1 also showed significant variation in ALFF and ReHo values in brain activity. In addition, the latter (TP2 vs TP1) showed more significant changes in brain regions than the former (Group 1 vs Group 2). The ALFF values were increased in the Frontal_Mid_R and decreased in the Precentral_L in Group 1 at TP2 compared with TP1. The Reho values were increased in the Frontal_Mid_R and decreased in the Precentral_L in Group 1 at TP2 compared with TP1. The ALFF values were increased in the Precuneus_R and decreased in the Frontal_Mid_Orb_L in Group 1 compared with Group 2. Only three brain areas with significant activity in Group 1 compared with Group 2: Frontal_Mid_Orb_L, Frontal_Sup_Orb_L, and Frontal_Mid_R. ALFF value in the Frontal_Mid_R at TP2 correlated positively with the change rates of JOA scores between TP1 and TP2 (P = 0.04, r = 0.319, R2 = 0.102). DISCUSSION Patients with LDH showed abnormal brain ALFF and ReHo values, which were altered after LPM. The default mode network, prefrontal cortex, and primary somatosensory cortex regions could predict real-time brain activity for sensory and emotional pain management in patients with LDH after LPM.
Collapse
Affiliation(s)
- Xing-Chen Zhou
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu-Bo Huang
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Shuang Wu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shuang-Wei Hong
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yu Tian
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Hui-Jie Hu
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Li-Jiang Lv
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China.
| | - Zhi-Zhen Lv
- The Third Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Research Institute of Spinal manipulation, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China; Key Laboratory of Acupuncture and Neurology of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Chen XM, Wen Y, Chen S, Jin X, Liu C, Wang W, Kong N, Ling DY, Huang Q, Chai JE, Zhao XL, Li J, Xu MS, Jiang Z, Du HG. Traditional Chinese Manual Therapy (Tuina) reshape the function of default mode network in patients with lumbar disc herniation. Front Neurosci 2023; 17:1125677. [PMID: 37008205 PMCID: PMC10050335 DOI: 10.3389/fnins.2023.1125677] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
PurposeInvestigating the changes of regional homogeneity (ReHo) values and both static and dynamic functional connectivity (FC) before and after Traditional Chinese Manual Therapy (Tuina) in patients with lumbar disk herniation (LDH) through resting-state functional magnetic resonance imaging (RS-fMRI). Based on this, we observe the effect of Tuina on the above abnormal changes.MethodsPatients with LDH (n = 27) and healthy controls (HCs) (n = 28) were recruited. The functional magnetic resonance imaging (fMRI) scanning was performed two times in LDH patients, before Tuina (time point 1, LDH-pre) and after the sixth Tuina (time point 2, LDH-pos). And for one time in HCs which received no intervention. The ReHo values were compared between LDH-pre and HCs. The significant clusters detected by ReHo analysis were selected as seeds to calculate static functional connectivity (sFC). We also applied the sliding-window to perform dynamic functional connectivity (dFC). To evaluate the Tuina effect, the mean ReHo and FC values (both static and dynamic) were extracted from significant clusters and compared between LDH and HCs.ResultsIn comparison to HCs, LDH patients displayed decreased ReHo in the left orbital part middle frontal gyrus (LO-MFG). For sFC analysis, no significant difference was found. However, we found decreased dFC variance between LO-MFG and the left Fusiform, and increased dFC variance in the left orbital inferior frontal gyrus and left precuneus. Both ReHo and dFC values revealed after Tuina, the brain activities in LDH patients were similar to HCs.ConclusionThe present study characterized the altered patterns of regional homogeneity in spontaneous brain activity and those of functional connectivity in patients with LDH. Tuina can reshape the function of the default mode network (DMN) in LDH patients, which may contribute to the analgesic effect of Tuina in LDH patients.
Collapse
Affiliation(s)
- Xiao-Min Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ya Wen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Shao Chen
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xin Jin
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chen Liu
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Wei Wang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ning Kong
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Dong-Ya Ling
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qin Huang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jin-Er Chai
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xiao-Lei Zhao
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jie Li
- Department of Radiology, Changshu No.2 People’s Hospital, The Affiliated Changshu Hospital of Xuzhou Medical University, Changshu, Jiangsu, China
| | - Mao-Sheng Xu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Zhong Jiang
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Zhong Jiang,
| | - Hong-Gen Du
- Department of Tuina, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- *Correspondence: Hong-Gen Du,
| |
Collapse
|
9
|
Morphologic and Morphometric Measurements of the Foramen Ovale: Comparing Digitized Measurements Performed on Dried Human Crania With Computed Tomographic Imaging. An Observational Anatomic Study. J Craniofac Surg 2023; 34:404-410. [PMID: 36197435 DOI: 10.1097/scs.0000000000008996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/04/2022] [Indexed: 11/05/2022] Open
Abstract
The foramen ovale (FO) of the sphenoid bone is clinically important for the interventional treatment of trigeminal neuralgia. Percutaneous procedures applied to treat the chronic pain condition typically involve the cannulation of this oval-like foramen located at the base of the skull. Anatomic variations of the FO have been reported to contribute to difficulties in the cannulation of this structure. Computed tomography (CT) can help the surgeon improve the accuracy and safety of the intervention. However, even with navigation technology, unsuccessful cannulation of the FO has been reported. The aim of this observational anatomic study was to define morphometric and morphologic data of the FO and to investigate for potential differences between measurements taken on dried human crania and digitized measurements of the FO measured on CT images. One hundred eighteen FOs were evaluated. Twenty FOs underwent CT scanning. The mean length of the foramen was 7.41±1.3 mm on the left side and 7.57±1.07 mm on the right. The mean width of the foramen was 4.63±0.86 mm on the left side and 4.33±0.99 on the right. The mean area on the left side was 27.11±7.58 and 25.73±6.64 mm 2 on the right. No significant left-right differences were found for any of these dimensions. The most important conclusion that we can draw is that the measurements can indeed be performed on CT images to obtain an accurate picture of the morphology. Considering the surgical importance of the FO and taking into consideration the limitations this study added to scientific knowledge, this study was constructive as far as neurosurgeons and anatomists are concerned.
Collapse
|
10
|
Zeng Y, Shu Y, Liu X, Li P, Kong L, Li K, Xie W, Zeng L, Long T, Huang L, Li H, Peng D. Frequency-specific alterations in intrinsic low-frequency oscillations in newly diagnosed male patients with obstructive sleep apnea. Front Neurosci 2022; 16:987015. [PMID: 36248662 PMCID: PMC9561418 DOI: 10.3389/fnins.2022.987015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Previous studies found abnormal low-frequency spontaneous brain activity related to cognitive impairment in patients with obstructive sleep apnea (OSA). However, it is unclear if low-frequency spontaneous brain activity is related to specific frequency bands in OSA patients. In this study, we used the amplitude of low-frequency fluctuation (ALFF) method in patients with OSA to explore characteristics of spontaneous brain activity in the classical (0.01–0.1 Hz) and five sub-frequency bands (slow-2 to slow-6) and analyzed the relationship between spontaneous brain activity and clinical evaluation was analyzed. Patients and methods Resting-state magnetic resonance imaging data and clinical assessments were collected from 52 newly-diagnosed OSA patients and 62 healthy controls (HCs). We calculated the individual group ALFF values in the classical and five different sub-frequency bands. A two-sample t-test compared ALFF differences, and one-way analysis of variance explored interactions in frequency bands between the two groups. Results ALFF values in the OSA group were lower than those in the HC group in the bilateral precuneus/posterior cingulate cortex, bilateral angular gyrus, left inferior parietal lobule, brainstem, and right fusiform gyrus. In contrast, ALFF values in the OSA group were higher than those in the HC group in the bilateral cerebellum posterior lobe, bilateral superior frontal gyrus, bilateral middle frontal gyrus, left inferior frontal gyrus, left inferior temporal gyrus, and left fusiform gyrus. Some ALFF values in altered brain regions were associated with body mass index, apnea-hypopnea index, neck circumference, snoring history, minimum SaO2, average SaO2, arousal index, oxygen reduction index, deep sleep period naming, abstraction, and delayed recall in specific frequency bands. Conclusion Our results indicated the existence of frequency-specific differences in spontaneous brain activity in OSA patients, which were related to cognitive and other clinical symptoms. This study identified frequency-band characteristics related to brain damage, expanded the cognitive neuroimaging mechanism, and provided additional OSA neuroimaging markers.
Collapse
Affiliation(s)
- Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yongqiang Shu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiang Liu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Panmei Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linghong Kong
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Long
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Huang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Haijun Li,
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Dechang Peng,
| |
Collapse
|
11
|
Pei Y, Peng J, Zhang Y, Huang M, Zhou F. Aberrant functional connectivity and temporal variability of the dynamic pain connectome in patients with low back related leg pain. Sci Rep 2022; 12:6324. [PMID: 35428850 PMCID: PMC9012841 DOI: 10.1038/s41598-022-10238-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Neuroimaging studies have suggested a link between the intensity of chronic low back pain intensity and structural and functional brain alterations. However, chronic pain results from the coordination and dynamics among several brain networks that comprise the dynamic pain connectome. Here, we use resting-state functional magnetic resonance imaging and measures of static (sFC) and dynamic functional connectivity (dFC) variability in the typical (0.01–0.1 Hz) and five specific (slow-6 to slow-2) frequency bands to test hypotheses regarding disruption in this variability in low back-related leg pain (LBLP) patients who experience chronic pain and numbness. Twenty-four LBLP patients and 23 healthy controls completed clinical assessments, and partial correlational analyses between altered sFC and dFC variability and clinical measures were conducted. We found a lower within-network sFC in the ascending nociceptive pathway (Asc) and a lower cross-network sFC between nodes of the salience network and the Asc in the typical frequency band. In the slow-5 frequency band, a lower within-network sFC was found in the Asc. Abnormal cross-network sFC was found between nodes of the salience network-Asc (slow-5 and slow-6) and the default mode network-Asc (slow-4 and slow-6). Furthermore, cross-network abnormalities in the typical and certain specific frequency bands were linked to clinical assessments. These findings indicate that frequency-related within- and cross-network communication among the nodes in the dynamic pain connectome is dysfunctional in LBLP patients and that selecting specific frequencies may be potentially useful for detecting LBLP-related brain activity.
Collapse
Affiliation(s)
- Yixiu Pei
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China.,Department of Medical Imaging, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Jidong Peng
- Department of Medical Imaging, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, Jiangxi, 341000, People's Republic of China
| | - Yong Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China.,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, People's Republic of China. .,Neuroradiology Laboratory, Jiangxi Province Medical Imaging Research Institute, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
12
|
Yang YC, Zeng K, Wang W, Gong ZG, Chen YL, Cheng JM, Zhang M, Huang YW, Men XB, Wang JW, Zhan S, Tan WL. The Changes of Brain Function After Spinal Manipulation Therapy in Patients with Chronic Low Back Pain: A Rest BOLD fMRI Study. Neuropsychiatr Dis Treat 2022; 18:187-199. [PMID: 35153482 PMCID: PMC8828077 DOI: 10.2147/ndt.s339762] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate the changes of regional homogeneity (Reho) values before and after spinal manipulative therapy (SMT) in patients with chronic low back pain (CLBP) through rest blood-oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI). METHODS Patients with CLBP (Group 1, n = 20) and healthy control subjects (Group 2, n = 20) were recruited. The fMRI was performed three times in Group 1 before SMT (time point 1, TP1), after the first SMT (time point 2, TP2), after the sixth SMT (time point 3, TP3), and for one time in Group 2, which received no intervention. The clinical scales were finished in Group 1 every time before fMRI was performed. The Reho values were compared among Group 1 at different time points, and between Group 1 and Group 2. The correlation between Reho values with the statistical differences and the clinical scale scores were calculated. RESULTS The bilateral precuneus and right mid-frontal gyrus in Group 1 had different Reho values compared with Group 2 at TP1. The Reho values were increased in the left precuneus and decreased in the left superior frontal gyrus in Group 1 at TP2 compared with TP1. The Reho values were increased in the left postcentral gyrus and decreased in the left posterior cingulate cortex and the superior frontal gyrus in Group 1 at TP3 compared with TP1. The ReHo values of the left precuneus in Group 1 at TP1 were negatively correlated with the pain degree at TP1 and TP2 (r = -0.549, -0.453; p = 0.012, 0.045). The Reho values of the middle temporal gyrus in Group 1 at TP3 were negatively correlated with the changes of clinical scale scores between TP3 and TP1 (r = 0.454, 0.559; p = 0.044, 0.01). CONCLUSION Patients with CLBP showed abnormal brain function activity, which was altered after SMT. The Reho values of the left precuneus could predict the immediate analgesic effect of SMT.
Collapse
Affiliation(s)
- Yu-Chan Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Ke Zeng
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wei Wang
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Zhi-Gang Gong
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yi-Lei Chen
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian-Ming Cheng
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Min Zhang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Yan-Wen Huang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Xin-Bo Men
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jian-Wei Wang
- Department of Massage, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Wen-Li Tan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| |
Collapse
|
13
|
Guo P, Lang S, Jiang M, Wang Y, Zeng Z, Wen Z, Liu Y, Chen BT. Alterations of Regional Homogeneity in Children With Congenital Sensorineural Hearing Loss: A Resting-State fMRI Study. Front Neurosci 2021; 15:678910. [PMID: 34690668 PMCID: PMC8526795 DOI: 10.3389/fnins.2021.678910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 09/07/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Brain functional alterations have been observed in children with congenital sensorineural hearing loss (CSNHL). The purpose of this study was to assess the alterations of regional homogeneity in children with CSNHL. Methods: Forty-five children with CSNHL and 20 healthy controls were enrolled into this study. Brain resting-state functional MRI (rs-fMRI) for regional homogeneity including the Kendall coefficient consistency (KCC-ReHo) and the coherence-based parameter (Cohe-ReHo) was analyzed and compared between the two groups, i.e., the CSNHL group and the healthy control group. Results: Compared to the healthy controls, children with CSNHL showed increased Cohe-ReHo values in left calcarine and decreased values in bilateral ventrolateral prefrontal cortex (VLPFC) and right dorsolateral prefrontal cortex (DLPFC). Children with CSNHL also had increased KCC-ReHo values in the left calcarine, cuneus, precentral gyrus, and right superior parietal lobule (SPL) and decreased values in the left VLPFC and right DLPFC. Correlations were detected between the ReHo values and age of the children with CSNHL. There were positive correlations between ReHo values in the pre-cuneus/pre-frontal cortex and age (p < 0.05). There were negative correlations between ReHo values in bilateral temporal lobes, fusiform gyrus, parahippocampal gyrus and precentral gyrus, and age (p < 0.05). Conclusion: Children with CSNHL had RoHo alterations in the auditory, visual, motor, and other related brain cortices as compared to the healthy controls with normal hearing. There were significant correlations between ReHo values and age in brain regions involved in information integration and processing. Our study showed promising data using rs-fMRI ReHo parameters to assess brain functional alterations in children with CSNHL.
Collapse
Affiliation(s)
- Pingping Guo
- Department of Medical Ultrasound, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Siyuan Lang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Muliang Jiang
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yifeng Wang
- Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu, China
| | - Zisan Zeng
- Department of Radiology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zuguang Wen
- Department of Radiology, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yikang Liu
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
14
|
Wu X, Yu W, Tian X, Liang Z, Su Y, Wang Z, Li X, Yang L, Shen J. Altered Posterior Cerebellar Lobule Connectivity With Perigenual Anterior Cingulate Cortex in Women With Primary Dysmenorrhea. Front Neurol 2021; 12:645616. [PMID: 34239492 PMCID: PMC8258113 DOI: 10.3389/fneur.2021.645616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/21/2021] [Indexed: 11/22/2022] Open
Abstract
Objectives: This study aimed to investigate the potential connectivity mechanism between the cerebellum and anterior cingulate cortex (ACC) and the cerebellar structure in primary dysmenorrhea (PDM). Methods: We applied the spatially unbiased infratentorial template (SUIT) of the cerebellum to obtain anatomical details of cerebellar lobules, upon which the functional connectivity (FC) between the cerebellar lobules and ACC subregions was analyzed and the gray matter (GM) volume of cerebellar lobules was measured by using voxel-based morphometry (VBM) in 35 PDM females and 38 age-matched healthy females. The potential relationship between the altered FC or GM volume and clinical information was also evaluated in PDM females. Results: PDM females showed higher connectivity between the left perigenual ACC (pACC) and lobule vermis_VI, between the left pACC and left lobule IX, and between right pACC and right cerebellar lobule VIIb than did the healthy controls. Compared with healthy controls, no altered GM volume was found in PDM females. No significant correlation was found between altered cerebellum–ACC FC and the clinical variables in the PDM females. Conclusion: PDM females have abnormal posterior cerebellar connectivity with pACC but no abnormal structural changes. ACC–cerebellar circuit disturbances might be involved in the PDM females.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,School of Psychology, South China Normal University, Guangzhou, China
| | - Wenjun Yu
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China.,School of Education, Jinggangshan University, Jiangxi, China
| | - Xuwei Tian
- Department of Radiology, First People's Hospital of Kashgar, Xinjiang, China
| | - Zhiying Liang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yun Su
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhihui Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiumei Li
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Li Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
15
|
Zhuang L, Ni H, Wang J, Liu X, Lin Y, Su Y, Zhang K, Li Y, Peng G, Luo B. Aggregation of Vascular Risk Factors Modulates the Amplitude of Low-Frequency Fluctuation in Mild Cognitive Impairment Patients. Front Aging Neurosci 2020; 12:604246. [PMID: 33408627 PMCID: PMC7779477 DOI: 10.3389/fnagi.2020.604246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Several vascular risk factors, including hypertension, diabetes, body mass index, and smoking status are found to be associated with cognitive decline and the risk of Alzheimer's disease (AD). We aimed to investigate whether an aggregation of vascular risk factors modulates the amplitude of low-frequency fluctuation (ALFF) in patients with mild cognitive impairment (MCI). Methods: Forty-three MCI patients and twenty-nine healthy controls (HCs) underwent resting-state functional MRI scans, and spontaneous brain activity was measured by the ALFF technique. The vascular risk profile was represented with the Framingham Heart Study general cardiovascular disease (FHS-CVD) risk score, and each group was further divided into high and low risk subgroups. Two-way ANOVA was performed to explore the main effects of diagnosis and vascular risk and their interaction on ALFF. Results: The main effect of diagnosis on ALFF was found in left middle temporal gyrus (LMTG) and left superior parietal gyrus (LSPG), and the main effect of risk on ALFF was detected in left fusiform gyrus (LFFG), left precuneus (LPCUN), and left cerebellum posterior lobe (LCPL). Patients with MCI exhibited increased ALFF in the LMTG and LSPG than HCs, and participants with high vascular risk showed increased ALFF in the LFFG and LCPL, while decreased ALFF in the LPCUN. An interaction between diagnosis (MCI vs. HC) and FHS-CVD risk (high vs. low) regarding ALFF was observed in the left hippocampus (LHIP). HCs with high vascular risk showed significantly increased ALFF in the LHIP than those with low vascular risk, while MCI patients with high vascular risk showed decreased ALFF in the LHIP than HCs with high vascular risk. Interestingly, the mean ALFF of LHIP positively correlated with word recall test in HCs with high vascular risk (rho = 0.630, P = 0.016), while negatively correlated with the same test in MCI patients with high vascular risk (rho = −0.607, P = 0.001). Conclusions: This study provides preliminary evidence highlighting that the aggregation of vascular risk factors modulates the spontaneous brain activity in MCI patients, and this may serve as a potential imaging mechanism underlying vascular contribution to AD.
Collapse
Affiliation(s)
- Liying Zhuang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Huafu Ni
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Beilun People's Hospital, Ningbo, China
| | - Junyang Wang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyan Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yajie Lin
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujie Su
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Zhang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaguo Li
- Department of Neurology, Zhejiang Hospital, Hangzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Benyan Luo
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Xi S, Yao J, Zhang S, Liu R, Wu L, Ye X, Zhang P, Wen W, Zhao C. Disrupted neural signals in patients with concomitant exotropia. Ophthalmic Physiol Opt 2020; 40:650-659. [PMID: 32672862 DOI: 10.1111/opo.12715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE Decreased binocular and oculomotor function in strabismics has recently been considered as cortical in origin. This study aimed to investigate functional abnormalities using a frequency-specific neuroimaging method in patients with concomitant exotropia (XT), and to demonstrate the clinical implications. METHODS Resting-state functional magnetic resonance imaging data were collected in 26 XT patients and 26 matched controls. To evaluate the local spontaneous neural activity, the amplitude of low frequency fluctuations (ALFF) was calculated in the typical frequency band (0.01-0.08 Hz) as well as five narrowly-defined frequency bands (slow-6: 0-0.01 Hz, slow-5: 0.01-0.027 Hz, slow-4: 0.027-0.073 Hz, slow-3: 0.073-0.167 Hz, and slow-2: 0.167-0.25 Hz), respectively. RESULTS Patients with XT showed decreased ALFF in the bilateral parieto-occipital sulcus (POS), and increased ALFF in the bilateral thalamus within the typical frequency band. Frequency-dependent ALFF alterations were found in the higher visual areas such as the right lateral occipital complex (LOC). Furthermore, ALFF in the right LOC in the slow-5 band was positively correlated with fusion control score (r = 0.70, p < 0.0001) and binocular function score (r = 0.67, p = 0.0002). Regression analyses showed that early age of onset remained the only significant explanatory factor for ALFF reduction in the right POS in the typically-measured frequency band (also referred to as the typical frequency band) (Odds ratio, 0.038; 95% confidence interval, 0.001 to 0.075). CONCLUSIONS Our findings provide spatial information regarding the functionally disrupted regions in XT. Moreover, the frequency-dependent ALLF alteration in the right LOC might reflect a potential plastic capacity in binocular function, which could be a potential objective index for evaluating disease severity.
Collapse
Affiliation(s)
- Sida Xi
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jing Yao
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Shujie Zhang
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Rui Liu
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lianqun Wu
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xinpei Ye
- Department of Radiology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wen Wen
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chen Zhao
- Eye Research Institute and Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
17
|
Loss of nucleus accumbens low-frequency fluctuations is a signature of chronic pain. Proc Natl Acad Sci U S A 2020; 117:10015-10023. [PMID: 32312809 PMCID: PMC7211984 DOI: 10.1073/pnas.1918682117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of chronic pain has reached epidemic levels. In addition to personal suffering, chronic pain is associated with psychiatric and medical comorbidities, notably substance misuse. Chronic pain does not have a cure or quantitative diagnostic or prognostic tools. Here we show that brain imaging can provide such measures. First, we show that the brain limbic system of patients with subacute back pain at risk for becoming chronic back pain patients exhibits limbic system structural alterations, which predate the onset of chronic pain. Second, we show that the nucleus accumbens activity shows loss of low-frequency fluctuations only when patients transition to the chronic phase, an observation that was reproduced in multiple datasets collected at different sites. Chronic pain is a highly prevalent disease with poorly understood pathophysiology. In particular, the brain mechanisms mediating the transition from acute to chronic pain remain largely unknown. Here, we identify a subcortical signature of back pain. Specifically, subacute back pain patients who are at risk for developing chronic pain exhibit a smaller nucleus accumbens volume, which persists in the chronic phase, compared to healthy controls. The smaller accumbens volume was also observed in a separate cohort of chronic low-back pain patients and was associated with dynamic changes in functional connectivity. At baseline, subacute back pain patients showed altered local nucleus accumbens connectivity between putative shell and core, irrespective of the risk of transition to chronic pain. At follow-up, connectivity changes were observed between nucleus accumbens and rostral anterior cingulate cortex in the patients with persistent pain. Analysis of the power spectral density of nucleus accumbens resting-state activity in the subacute and chronic back pain patients revealed loss of power in the slow-5 frequency band (0.01 to 0.027 Hz) which developed only in the chronic phase of pain. This loss of power was reproducible across two cohorts of chronic low-back pain patients obtained from different sites and accurately classified chronic low-back pain patients in two additional independent datasets. Our results provide evidence that lower nucleus accumbens volume confers risk for developing chronic pain and altered nucleus accumbens activity is a signature of the state of chronic pain.
Collapse
|
18
|
Zhang Y, Zhu Y, Pei Y, Zhao Y, Zhou F, Huang M, Wu L, Zhang D, Gong H. Disrupted interhemispheric functional coordination in patients with chronic low back-related leg pain: a multiscale frequency-related homotopic connectivity study. J Pain Res 2019; 12:2615-2626. [PMID: 31695477 PMCID: PMC6718063 DOI: 10.2147/jpr.s213526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/06/2019] [Indexed: 12/12/2022] Open
Abstract
Objective Chronic low back pain has been observed to decrease movement coordination. However, it is unclear whether the existing alteration of inter-hemispheric synchrony of intrinsic activity in patients with chronic low back-related leg pain (cLBLP). The present study aims to investigate the alteration of homotopic connectivity and its clinical association with the cLBLP patients. Participants and methods A cohort of cLBLP patients (n=25) and well-matched healthy controls (HCs) (n=27) were recruited and underwent MRI scanning and a battery of clinical tests. The voxel-mirrored homotopic connectivity (VMHC) was used to analyze the interhemispheric coordination in the typical (0.01–0.1 Hz) as well as five specific (slow-6 to slow-2) frequency bands and associated with clinical index in cLBLP patients. Results We observed that cLBLP patients with lower homotopic connectivity than HCs in the inferior temporal gyrus, the superior temporal gyrus, the basal ganglia, the middle frontal gyrus, and the medial prefrontal cortex in the typical and five specific frequency bands, respectively. In the typical and five specific frequency bands, significant positive correlations were observed between the VMHC values of medial prefrontal cortex and the visual analogue scale scores, while the VMHC values of basal ganglia negative correlated with the values of two-point tactile discrimination (2PD) test for the right hand in cLBLP patients, etc. Further receiver operating characteristic curve analysis revealed that VMHC in the above regions with decreased could be used to differentiate the cerebral functional plasticity of cLBLP from healthy individuals with high sensitivity and specificity. Conclusion Our results imply that multiscale frequency-related interhemispheric disconnectivity may underlie the central pathogenesis of functional coordination in patients with cLBLP.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Yanyan Zhu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Yixiu Pei
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Yanlin Zhao
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Muhua Huang
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| | - Daying Zhang
- Department of Pain Clinic, The First Affiliated Hospital, Nanchang University, Nanchang, Jiangxi Province 330006, People's Republic of China
| | - Honghan Gong
- Department of Radiology, The First Affiliated Hospital, Nanchang University, Nanchang 330006, People's Republic of China.,Neuroradiology Lab, Jiangxi Province Medical Imaging Research Institute, Nanchang 330006, People's Republic of China
| |
Collapse
|
19
|
Guo L, Zhou F, Zhang N, Kuang H, Feng Z. Frequency-Specific Abnormalities Of Functional Homotopy In Alcohol Dependence: A Resting-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2019; 15:3231-3245. [PMID: 31819451 PMCID: PMC6875289 DOI: 10.2147/ndt.s221010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Alcohol dependence (AD) is a relapsing mental disorder, typically occurring with concurrent tobacco misuse. Studies have reported disruption of the structural connectivity between hemispheres in the brain of individuals with AD. However, alterations in interhemispheric interactions and the specificity of frequency bands in individuals with AD remain unknown. Voxel-mirrored homotopic connectivity (VMHC) allows examination of functional interactions between mirrored interhemispheric voxels. Here, we use VMHC to investigate homotopic connectivity in AD and alcohol and nicotine co-dependence (AND) subjects. PATIENTS AND METHODS VMHC and seed-based functional connectivity (FC) in 24 AD, 30 AND, and 35 sex-, age-, and education-matched healthy control (HC) subjects were calculated for different frequency bands (slow-5, slow-4, and typical bands). RESULTS Individuals with AD demonstrated significantly reduced VMHC in bilateral cerebellum posterior lobe (CPL) and increased VMHC in bilateral middle frontal gyrus (MFG) compared to that in HCs in the typical and slow-4 bands; higher VMHC in the MFG was positively correlated with the dependence-severity score. In all bands of the VMHC analysis, no significant differences were found between the AND and other groups. Subsequent seed-based FC analysis demonstrated all regions with abnormal VMHC exhibited altered FC with its counterpart in the contralateral hemisphere in the typical and slow-4 frequency bands. The FC value between bilateral CPL within AD subjects negatively correlated with alcohol intake. CONCLUSION Our findings provide further evidence of the role of disruptions within the brain circuitry supporting cognitive control in the development of AD. Alterations in neural activities in the CPL and MFG might be a biomarker of dependence severity in AD patients as assessed using clinical questionnaire and features. Because of the frequency specificity in VMHC, we must consider frequency effects in future AD functional magnetic resonance imaging studies.
Collapse
Affiliation(s)
- Linghong Guo
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Ning Zhang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Hongmei Kuang
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Zhen Feng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|