1
|
Vernikouskaya I, Müller HP, Ludolph AC, Kassubek J, Rasche V. AI-assisted automatic MRI-based tongue volume evaluation in motor neuron disease (MND). Int J Comput Assist Radiol Surg 2024; 19:1579-1587. [PMID: 38536565 PMCID: PMC11329588 DOI: 10.1007/s11548-024-03099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/04/2024] [Indexed: 08/17/2024]
Abstract
PURPOSE Motor neuron disease (MND) causes damage to the upper and lower motor neurons including the motor cranial nerves, the latter resulting in bulbar involvement with atrophy of the tongue muscle. To measure tongue atrophy, an operator independent automatic segmentation of the tongue is crucial. The aim of this study was to apply convolutional neural network (CNN) to MRI data in order to determine the volume of the tongue. METHODS A single triplanar CNN of U-Net architecture trained on axial, coronal, and sagittal planes was used for the segmentation of the tongue in MRI scans of the head. The 3D volumes were processed slice-wise across the three orientations and the predictions were merged using different voting strategies. This approach was developed using MRI datasets from 20 patients with 'classical' spinal amyotrophic lateral sclerosis (ALS) and 20 healthy controls and, in a pilot study, applied to the tongue volume quantification to 19 controls and 19 ALS patients with the variant progressive bulbar palsy (PBP). RESULTS Consensus models with softmax averaging and majority voting achieved highest segmentation accuracy and outperformed predictions on single orientations and consensus models with union and unanimous voting. At the group level, reduction in tongue volume was not observed in classical spinal ALS, but was significant in the PBP group, as compared to controls. CONCLUSION Utilizing single U-Net trained on three orthogonal orientations with consequent merging of respective orientations in an optimized consensus model reduces the number of erroneous detections and improves the segmentation of the tongue. The CNN-based automatic segmentation allows for accurate quantification of the tongue volumes in all subjects. The application to the ALS variant PBP showed significant reduction of the tongue volume in these patients and opens the way for unbiased future longitudinal studies in diseases affecting tongue volume.
Collapse
Affiliation(s)
- Ina Vernikouskaya
- Department of Internal Medicine II, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany.
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Volker Rasche
- Department of Internal Medicine II, Ulm University Medical Center, Albert-Einstein-Allee 23, 89081, Ulm, Germany
- Core Facility Small Animal MRI, University of Ulm, Ulm, Germany
| |
Collapse
|
2
|
Müller HP, Abrahao A, Beaulieu C, Benatar M, Dionne A, Genge A, Frayne R, Graham SJ, Gibson S, Korngut L, Luk C, Welsh RC, Zinman L, Kassubek J, Kalra S. Temporal and spatial progression of microstructural cerebral degeneration in ALS: A multicentre longitudinal diffusion tensor imaging study. Neuroimage Clin 2024; 43:103633. [PMID: 38889523 PMCID: PMC11231599 DOI: 10.1016/j.nicl.2024.103633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVE The corticospinal tract (CST) reveals progressive microstructural alterations in ALS measurable by DTI. The aim of this study was to evaluate fractional anisotropy (FA) along the CST as a longitudinal marker of disease progression in ALS. METHODS The study cohort consisted of 114 patients with ALS and 110 healthy controls from the second prospective, longitudinal, multicentre study of the Canadian ALS Neuroimaging Consortium (CALSNIC-2). DTI and clinical data from a harmonized protocol across 7 centres were collected. Thirty-nine ALS patients and 61 controls completed baseline and two follow-up visits and were included for longitudinal analyses. Whole brain-based spatial statistics and hypothesis-guided tract-of-interest analyses were performed for cross-sectional and longitudinal analyses. RESULTS FA was reduced at baseline and longitudinally in the CST, mid-corpus callosum (CC), frontal lobe, and other ALS-related tracts, with alterations most evident in the CST and mid-CC. CST and pontine FA correlated with functional impairment (ALSFRS-R), upper motor neuron function, and clinical disease progression rate. Reduction in FA was largely located in the upper CST; however, the longitudinal decline was greatest in the lower CST. Effect sizes were dependent on region, resulting in study group sizes between 17 and 31 per group over a 9-month interval. Cross-sectional effect sizes were maximal in the upper CST; whereas, longitudinal effect sizes were maximal in mid-callosal tracts. CONCLUSIONS Progressive microstructural alterations in ALS are most prominent in the CST and CC. DTI can provide a biomarker of cerebral degeneration in ALS, with longitudinal changes in white matter demonstrable over a reasonable observation period, with a feasible number of participants, and within a multicentre framework.
Collapse
Affiliation(s)
| | - Agessandro Abrahao
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Benatar
- Neuromuscular Division, Department of Neurology, University of Miami, Miami, FL, United States
| | - Annie Dionne
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Angela Genge
- Department of Neurology, McGill University, Montreal, Quebec, Canada
| | - Richard Frayne
- Departments of Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Simon J Graham
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Summer Gibson
- Neuromuscular Medicine Division, University of Utah, Salt Lake City, Utah, United States
| | - Lawrence Korngut
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Collin Luk
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Divison of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Robert C Welsh
- Department of Psychiatry and Biobehavioral Science, UCLA, Los Angeles, CA, United States
| | - Lorne Zinman
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany; German Centre of Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Sanjay Kalra
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada; Divison of Neurology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Goyal NA, Bonar K, Savic N, Beau Lejdstrom R, Wright J, Mellor J, McDermott C. Misdiagnosis of amyotrophic lateral sclerosis in clinical practice in Europe and the USA: a patient chart review and physician survey. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:16-25. [PMID: 37794794 DOI: 10.1080/21678421.2023.2260808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE Delays in amyotrophic lateral sclerosis (ALS) diagnosis can result in compromised disease management and unnecessary costs. We examined the extent of ALS misdiagnosis in the US and Europe. METHODS Data were collected via the Adelphi ALS Disease Specific Programme™, a cross-sectional survey of physicians and a medical chart review of their consulting patients with ALS in France, Germany, Italy, Spain, the UK (EU5), and the US. Between July 2020 and March 2021, eligible physicians (primary speciality neurology, active involvement in managing patients with ALS) abstracted data from patients (≥18 years old) with confirmed ALS. RESULTS Overall, 138 physicians completed the survey (EU5 107, US 31), with data reviewed from 795 patient medical charts (EU5 568, US 227); 278 (35.0%) patients (EU5 183 [32.2%], US 95 [41.9%]) had received ≥1 initial misdiagnosis based on symptoms later attributed to ALS. Mean (SD) time from symptom onset to first healthcare professional consultation was 3.8 (5.2) months (EU5 4.3 [4.8] months, US 2.6 [5.8] months). Mean (SD) time from symptom onset to ALS diagnosis was 8.2 (12.5) months (EU5 9.6 [14.0] months, US 5.0 [6.8] months) and increased to 10.4 (17.9) for patients with a misdiagnosis (compared with 6.9 [7.2] for patients with no misdiagnosis). Physician-identified barriers to timely ALS diagnosis included the similarity of symptoms to other conditions and delayed referral to neurologists. CONCLUSIONS Misdiagnosis of ALS is frequent, with a protracted diagnostic pathway. Targeted education of patients and physicians about signs and symptoms and benefits of prompt referral to multidisciplinary care are needed.
Collapse
Affiliation(s)
- Namita A Goyal
- Department of Neurology, UC Irvine MDA-ALS and Neuromuscular Center, University of California, Irvine, USA
| | | | | | | | | | | | - Christopher McDermott
- Department of Neurology, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Juengling FD, Wuest F, Kalra S, Agosta F, Schirrmacher R, Thiel A, Thaiss W, Müller HP, Kassubek J. Simultaneous PET/MRI: The future gold standard for characterizing motor neuron disease-A clinico-radiological and neuroscientific perspective. Front Neurol 2022; 13:890425. [PMID: 36061999 PMCID: PMC9428135 DOI: 10.3389/fneur.2022.890425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/20/2022] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging assessment of motor neuron disease has turned into a cornerstone of its clinical workup. Amyotrophic lateral sclerosis (ALS), as a paradigmatic motor neuron disease, has been extensively studied by advanced neuroimaging methods, including molecular imaging by MRI and PET, furthering finer and more specific details of the cascade of ALS neurodegeneration and symptoms, facilitated by multicentric studies implementing novel methodologies. With an increase in multimodal neuroimaging data on ALS and an exponential improvement in neuroimaging technology, the need for harmonization of protocols and integration of their respective findings into a consistent model becomes mandatory. Integration of multimodal data into a model of a continuing cascade of functional loss also calls for the best attempt to correlate the different molecular imaging measurements as performed at the shortest inter-modality time intervals possible. As outlined in this perspective article, simultaneous PET/MRI, nowadays available at many neuroimaging research sites, offers the perspective of a one-stop shop for reproducible imaging biomarkers on neuronal damage and has the potential to become the new gold standard for characterizing motor neuron disease from the clinico-radiological and neuroscientific perspectives.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine, University Bern, Bern, Switzerland
| | - Frank Wuest
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Sanjay Kalra
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
- Department of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Federica Agosta
- Division of Neuroscience, San Raffaele Scientific Institute, University Vita Salute San Raffaele, Milan, Italy
| | - Ralf Schirrmacher
- Division of Oncologic Imaging, University of Alberta, Edmonton, AB, Canada
- Medical Isotope and Cyclotron Facility, University of Alberta, Edmonton, AB, Canada
| | - Alexander Thiel
- Lady Davis Institute for Medical Research, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Wolfgang Thaiss
- Department of Nuclear Medicine, University of Ulm Medical Center, Ulm, Germany
- Department of Diagnostic and Interventional Radiology, University of Ulm Medical Center, Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
5
|
Kocar TD, Müller HP, Ludolph AC, Kassubek J. Feature selection from magnetic resonance imaging data in ALS: a systematic review. Ther Adv Chronic Dis 2021; 12:20406223211051002. [PMID: 34729157 PMCID: PMC8521429 DOI: 10.1177/20406223211051002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Background: With the advances in neuroimaging in amyotrophic lateral sclerosis (ALS), it has been speculated that multiparametric magnetic resonance imaging (MRI) is capable to contribute to early diagnosis. Machine learning (ML) can be regarded as the missing piece that allows for the useful integration of multiparametric MRI data into a diagnostic classifier. The major challenges in developing ML classifiers for ALS are limited data quantity and a suboptimal sample to feature ratio which can be addressed by sound feature selection. Methods: We conducted a systematic review to collect MRI biomarkers that could be used as features by searching the online database PubMed for entries in the recent 4 years that contained cross-sectional neuroimaging data of subjects with ALS and an adequate control group. In addition to the qualitative synthesis, a semi-quantitative analysis was conducted for each MRI modality that indicated which brain regions were most commonly reported. Results: Our search resulted in 151 studies with a total of 221 datasets. In summary, our findings highly resembled generally accepted neuropathological patterns of ALS, with degeneration of the motor cortex and the corticospinal tract, but also in frontal, temporal, and subcortical structures, consistent with the neuropathological four-stage model of the propagation of pTDP-43 in ALS. Conclusions: These insights are discussed with respect to their potential for MRI feature selection for future ML-based neuroimaging classifiers in ALS. The integration of multiparametric MRI including DTI, volumetric, and texture data using ML may be the best approach to generate a diagnostic neuroimaging tool for ALS.
Collapse
Affiliation(s)
- Thomas D Kocar
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Ulm, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081 Ulm, Germany
| |
Collapse
|
6
|
Rosenbohm A, Del Tredici K, Braak H, Huppertz HJ, Ludolph AC, Müller HP, Kassubek J. Involvement of cortico-efferent tracts in flail arm syndrome: a tract-of-interest-based DTI study. J Neurol 2021; 269:2619-2626. [PMID: 34676447 PMCID: PMC9021061 DOI: 10.1007/s00415-021-10854-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023]
Abstract
Background Flail arm syndrome is a restricted phenotype of motor neuron disease that is characterized by progressive, predominantly proximal weakness and atrophy of the upper limbs. Objective The study was designed to investigate specific white matter alterations in diffusion tensor imaging (DTI) data from flail arm syndrome patients using a hypothesis-guided tract-of-interest-based approach to identify in vivo microstructural changes according to a neuropathologically defined amyotrophic lateral sclerosis (ALS)-related pathology of the cortico-efferent tracts. Methods DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the neuropathological ALS-propagation pattern for 43 flail arm syndrome patients vs 43 ‘classical’ ALS patients vs 40 matched controls. Results The analysis of white matter integrity demonstrated regional FA reductions for the flail arm syndrome group predominantly along the CST. In the tract-specific analysis according to the proposed sequential cerebral pathology pattern of ALS, the flail arm syndrome patients showed significant alterations of the specific tract systems that were identical to ‘classical’ ALS if compared to controls. Conclusions The DTI study including the tract-of-interest-based analysis showed a microstructural involvement pattern in the brains of flail arm syndrome patients, supporting the hypothesis that flail arm syndrome is a phenotypical variant of ALS. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10854-6.
Collapse
Affiliation(s)
- Angela Rosenbohm
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Kelly Del Tredici
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Heiko Braak
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | | | - Albert C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany
| | - Hans-Peter Müller
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany. .,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm, Germany.
| |
Collapse
|
7
|
Bublitz SK, Weck C, Egger-Rainer A, Lex K, Paal P, Lorenzl S. Palliative Care Challenges of Patients With Progressive Bulbar Palsy: A Retrospective Case Series of 14 Patients. Front Neurol 2021; 12:700103. [PMID: 34630279 PMCID: PMC8497697 DOI: 10.3389/fneur.2021.700103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023] Open
Abstract
Progressive bulbar palsy (PBP) is a form of motoneuron disease and is widely classified as a subtype of amyotrophic lateral sclerosis (ALS) with a shorter time of survival and female predominance. In this retrospective case series of 14 patients with PBP, we focus on challenges in palliative care for this patient cohort, including symptom control, gastrostomy, non-invasive ventilation, and end-of-life phase. We show that rapid physical decline at the end of life is associated with bronchopulmonary infection and excessive oral secretion leading to a high level of symptom burden. Early and regular advance care planning discussions with a focus on oral secretion management with patients and caregivers are crucial.
Collapse
Affiliation(s)
- Sarah K Bublitz
- Palliative Care Research Hub at the Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria.,Department of Neurology, Agatharied Hospital, Hausham, Germany
| | - Christiane Weck
- Palliative Care Research Hub at the Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria.,Department of Neurology, Agatharied Hospital, Hausham, Germany
| | - Andrea Egger-Rainer
- Palliative Care Research Hub at the Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
| | - Katharina Lex
- Palliative Care Research Hub at the Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
| | - Piret Paal
- Palliative Care Research Hub at the Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria
| | - Stefan Lorenzl
- Palliative Care Research Hub at the Institute of Nursing Science and Practice, Paracelsus Medical University, Salzburg, Austria.,Department of Neurology, Agatharied Hospital, Hausham, Germany
| |
Collapse
|
8
|
Müller HP, Del Tredici K, Lulé D, Müller K, Weishaupt JH, Ludolph AC, Kassubek J. In vivo histopathological staging in C9orf72-associated ALS: A tract of interest DTI study. Neuroimage Clin 2020; 27:102298. [PMID: 32505118 PMCID: PMC7270604 DOI: 10.1016/j.nicl.2020.102298] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/23/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) can identify amyotrophic lateral sclerosis (ALS)-associated patterns of brain alterations at the group level according to a neuropathological staging system. OBJECTIVE The study was designed to investigate the in vivo staging in ALS patients with the C9orf72 expansion and potential differences to ALS patients with the SOD1 mutation. METHODS DTI-based white matter mapping was performed both by an unbiased voxel-wise statistical comparison and by a hypothesis-guided tract-wise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern for 27 ALS patients with C9orf72 expansion vs 15 ALS patients with SOD1 mutation vs 32 matched healthy controls. Clinical and neuropsychological data were acquired and correlated to DTI data. RESULTS The analysis of white matter integrity demonstrated regional FA reductions along the CST and also in frontal and prefrontal brain areas according to the proposed propagation pattern for the ALS patients with C9orf72 expansion and sporadic patients. This pattern could not be identified for the SOD1 mutation at the group level. In contrast, in the tract-specific analysis according to the neuropathological ALS-staging pattern, C9orf72 expansion ALS patients showed significant alterations of ALS-related tract systems similar to sporadic patients. CONCLUSIONS The DTI study including the tract-of-interest-based analysis showed a microstructural corticoefferent involvement pattern according to the staging scheme in C9orf72-associated ALS patients but not in the SOD1 mutation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany.
| |
Collapse
|
9
|
Kassubek J, Müller HP. Advanced neuroimaging approaches in amyotrophic lateral sclerosis: refining the clinical diagnosis. Expert Rev Neurother 2020; 20:237-249. [PMID: 31937156 DOI: 10.1080/14737175.2020.1715798] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: In the last decade, multiparametric magnetic resonance imaging (MRI) has achieved tremendous advances in applications to amyotrophic lateral sclerosis (ALS) to increase the understanding of the associated pathophysiology. The aim of this review is to summarize recent progress in the development of MRI-based techniques aiming to support the clinical diagnosis in ALS.Areas covered: The review of structural and functional MRI applications to ALS and its variants (restricted phenotypes) is focused on the potential of MRI techniques which contribute to the diagnostic work-up of patients with the clinical presentation of a motor neuron disease. The potential of specific MRI methods for patient diagnosis and monitoring is discussed, and the future design of clinical MRI applications to ALS is conceptualized.Expert opinion: Current multiparametric MRI allows for the use as a clinical biological marker and a technical instrument in the clinical diagnosis of patients with ALS and also of patients with ALS variants. Composite neuroimaging indices of specific anatomical areas derived from different MRI techniques might guide in the diagnostic applications to ALS. Such a development of ALS-specific MRI-based composite scores with sufficient discriminative power versus ALS mimics at an individual level requires standardized advanced protocols and comprehensive analysis approaches.
Collapse
Affiliation(s)
- Jan Kassubek
- Department of Neurology, University of Ulm, Ulm, Germany
| | | |
Collapse
|