1
|
Lila E, Zhang W, Rane Levendovszky S. Interpretable discriminant analysis for functional data supported on random nonlinear domains with an application to Alzheimer's disease. J R Stat Soc Series B Stat Methodol 2024; 86:1013-1044. [PMID: 39279915 PMCID: PMC11398888 DOI: 10.1093/jrsssb/qkae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 09/18/2024]
Abstract
We introduce a novel framework for the classification of functional data supported on nonlinear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer's disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem as a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally prohibitive in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from Alzheimer's Disease Neuroimaging Initiative and Parkinson's Progression Markers Initiative. Through this application, we identify discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer's disease that are consistent with the existing neuroscience literature.
Collapse
Affiliation(s)
- Eardi Lila
- Department of Biostatistics, University of Washington, Seattle, USA
| | - Wenbo Zhang
- Department of Biostatistics, University of Washington, Seattle, USA
- Department of Statistics, University of California, Irvine, USA
| | | |
Collapse
|
2
|
Chen Y, Su Y, Wu J, Chen K, Atri A, Caselli RJ, Reiman EM, Wang Y. Combining Blood-Based Biomarkers and Structural MRI Measurements to Distinguish Persons with and without Significant Amyloid Plaques. J Alzheimers Dis 2024; 98:1415-1426. [PMID: 38578889 DOI: 10.3233/jad-231162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Background Amyloid-β (Aβ) plaques play a pivotal role in Alzheimer's disease. The current positron emission tomography (PET) is expensive and limited in availability. In contrast, blood-based biomarkers (BBBMs) show potential for characterizing Aβ plaques more affordably. We have previously proposed an MRI-based hippocampal morphometry measure to be an indicator of Aβ plaques. Objective To develop and validate an integrated model to predict brain amyloid PET positivity combining MRI feature and plasma Aβ42/40 ratio. Methods We extracted hippocampal multivariate morphometry statistics from MR images and together with plasma Aβ42/40 trained a random forest classifier to perform a binary classification of participant brain amyloid PET positivity. We evaluated the model performance using two distinct cohorts, one from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and the other from the Banner Alzheimer's Institute (BAI), including prediction accuracy, precision, recall rate, F1 score, and AUC score. Results Results from ADNI (mean age 72.6, Aβ+ rate 49.5%) and BAI (mean age 66.2, Aβ+ rate 36.9%) datasets revealed the integrated multimodal (IMM) model's superior performance over unimodal models. The IMM model achieved prediction accuracies of 0.86 in ADNI and 0.92 in BAI, surpassing unimodal models based solely on structural MRI (0.81 and 0.87) or plasma Aβ42/40 (0.73 and 0.81) predictors. CONCLUSIONS Our IMM model, combining MRI and BBBM data, offers a highly accurate approach to predict brain amyloid PET positivity. This innovative multiplex biomarker strategy presents an accessible and cost-effective avenue for advancing Alzheimer's disease diagnostics, leveraging diverse pathologic features related to Aβ plaques and structural MRI.
Collapse
Affiliation(s)
- Yanxi Chen
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Kewei Chen
- College of Health Solutions, Arizona State University, Tempe, AZ, USA
| | - Alireza Atri
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, Center for Brain/Mind Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | | | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Dong Q, Li Z, Liu W, Chen K, Su Y, Wu J, Caselli RJ, Reiman EM, Wang Y, Shen J. Correlation studies of Hippocampal Morphometry and Plasma NFL Levels in Cognitively Unimpaired Subjects. IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2023; 10:3602-3608. [PMID: 38084365 PMCID: PMC10713345 DOI: 10.1109/tcss.2023.3313819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease(AD) is being the burden of society and family. Applying computing-aided strategies to reveal its pathology is one of the research highlights. Plasma neurofilament light (NFL) is an emerging noninvasive and economic biomarker for AD molecular pathology. It is valuable to reveal the correlations between the plasma NFL levels and neurodegeneration, especially hippcampal deformations at the preclinical stage. The negative correlation between plasma NFL levels and hippocampal volumes has been documented. However, the relationship between the plasma NFL levels and the hippocampal morphometry details at the preclinical stage is still elusive. This study seeks to demonstrate the capacity of our proposed surface-based hippocampal morphometry system to discern the plasma NFL positive (NFL+>41.9 pg/L) level and plasma NFL negative (NFL-<41.9pg/L) level and illustrate its superiority to the hippocampal volume measurement by drawing the cohort of 154 CU middle aged and elderly adults. We also apply this morphometry measure and a proposed sparse coding based classification algorithm to classify CU individuals with NFL+ and NFL- levels. Experimental results show that the proposed hippocampal morphometry system offers stronger statistical power to discriminate CU subjects with NFL+ and NFL- levels, comparing with the hippocampal volume measure. Furthermore, this system can discriminate plasma NFL levels in CU individuals (Accuracy=0.86). Both the group level and individual level analysis results indicate that the association between plasma NFL levels and the hippocampal shapes can be mapped at the preclinical stage.
Collapse
Affiliation(s)
- Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhigang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Weijia Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA
| | | | | | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State Univ., Tempe, AZ, USA
| | - Jian Shen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
4
|
Zheng W, Liu H, Li Z, Li K, Wang Y, Hu B, Dong Q, Wang Z. Classification of Alzheimer's disease based on hippocampal multivariate morphometry statistics. CNS Neurosci Ther 2023; 29:2457-2468. [PMID: 37002795 PMCID: PMC10401169 DOI: 10.1111/cns.14189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline, and mild cognitive impairment (MCI) is associated with a high risk of developing AD. Hippocampal morphometry analysis is believed to be the most robust magnetic resonance imaging (MRI) markers for AD and MCI. Multivariate morphometry statistics (MMS), a quantitative method of surface deformations analysis, is confirmed to have strong statistical power for evaluating hippocampus. AIMS We aimed to test whether surface deformation features in hippocampus can be employed for early classification of AD, MCI, and healthy controls (HC). METHODS We first explored the differences in hippocampus surface deformation among these three groups by using MMS analysis. Additionally, the hippocampal MMS features of selective patches and support vector machine (SVM) were used for the binary classification and triple classification. RESULTS By the results, we identified significant hippocampal deformation among the three groups, especially in hippocampal CA1. In addition, the binary classification of AD/HC, MCI/HC, AD/MCI showed good performances, and area under curve (AUC) of triple-classification model achieved 0.85. Finally, positive correlations were found between the hippocampus MMS features and cognitive performances. CONCLUSIONS The study revealed significant hippocampal deformation among AD, MCI, and HC. Additionally, we confirmed that hippocampal MMS can be used as a sensitive imaging biomarker for the early diagnosis of AD at the individual level.
Collapse
Affiliation(s)
- Weimin Zheng
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Honghong Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhigang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
5
|
Li Z, Dong Q, Hu B, Wu H. Every individual makes a difference: A trinity derived from linking individual brain morphometry, connectivity and mentalising ability. Hum Brain Mapp 2023; 44:3343-3358. [PMID: 37051692 PMCID: PMC10171537 DOI: 10.1002/hbm.26285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/01/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Mentalising ability, indexed as the ability to understand others' beliefs, feelings, intentions, thoughts and traits, is a pivotal and fundamental component of human social cognition. However, considering the multifaceted nature of mentalising ability, little research has focused on characterising individual differences in different mentalising components. And even less research has been devoted to investigating how the variance in the structural and functional patterns of the amygdala and hippocampus, two vital subcortical regions of the "social brain", are related to inter-individual variability in mentalising ability. Here, as a first step toward filling these gaps, we exploited inter-subject representational similarity analysis (IS-RSA) to assess relationships between amygdala and hippocampal morphometry (surface-based multivariate morphometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC) and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across the participants ( N = 24 $$ N=24 $$ ). In IS-RSA, we proposed a novel pipeline, that is, computing patching and pooling operations-based surface distance (CPP-SD), to obtain a decent representation for high-dimensional MMS data. On this basis, we found significant correlations (i.e., second-order isomorphisms) between these three distinct modalities, indicating that a trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. Notably, a region-related mentalising specificity emerged from these associations: self-self and self-other mentalisation are more related to the hippocampus, while other-self mentalisation shows a closer link with the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed significant interactions such that subject pairs with similar morphometry had even greater mentalising similarity if they were also similar in rs-FC. Altogether, we demonstrated the feasibility and illustrated the promise of using IS-RSA to study individual differences, deepening our understanding of how individual brains give rise to their mentalising abilities.
Collapse
Affiliation(s)
- Zhaoning Li
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| | - Qunxi Dong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Bin Hu
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haiyan Wu
- Centre for Cognitive and Brain Sciences and Department of Psychology, University of Macau, Taipa, China
| |
Collapse
|
6
|
Bachmann T, Schroeter ML, Chen K, Reiman EM, Weise CM. Longitudinal changes in surface based brain morphometry measures in amnestic mild cognitive impairment and Alzheimer's Disease. Neuroimage Clin 2023; 38:103371. [PMID: 36924681 PMCID: PMC10025277 DOI: 10.1016/j.nicl.2023.103371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/14/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with marked brain atrophy. While commonly used structural MRI imaging methods do not account for the complexity of human brain morphology, little is known about the longitudinal changes of cortical geometry and their relationship with cognitive decline in subjects with AD. METHODS Data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) were used to perform two-sample t-tests to investigate longitudinal changes of cortical thickness (CTh) and three surface-based morphometry measures: fractal dimension (i.e. cortical complexity; FD), gyrification index (GI), and sulcal depth (SD) in subjects with AD, amnestic mild cognitive impairment (aMCI) in comparison to cognitively unimpaired controls (CU) in baseline and 2-year follow-up sMRI scans. In addition, correlations of the morphological measures with two-year cognitive decline as assessed by the modified AD Assessment Scale-Cognitive Subscale (ADAS-Cog 11) were calculated via regression analyses. RESULTS Compared to CU, both AD and aMCI showed marked decreases in CTh. In contrast, analyses of FD and GI yielded a more nuanced decline of the respective measures with some areas showing increases in FD and GI. Overall changes in FD and GI were more pronounced in AD as compared to aMCI. Analyses of SD yielded widespread decreases. Interestingly, cognitive decline corresponded well with CTh declines in aMCI but not AD, whereas changes in FD corresponded with AD only but not aMCI, whereas GI and SD were associated with cognitive decline in aMCI and AD. CONCLUSION Patterns of longitudinal changes in FD, GI and SD were only partially overlapping with CTh reductions. In AD, surface-based morphometry measures for brain-surface complexity showed better correspondence than CTh with cognitive decline over a two-year period of time. Being drawn from measures reflecting changes in more intricate aspects of human brain morphology, these data provide new insight into the complexity of AD-related brain atrophy and its relationship with cognitive decline.
Collapse
Affiliation(s)
- Tobias Bachmann
- University of Leipzig Medical Center, Department of Neurology, Germany.
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Department of Neurology, Leipzig, Germany; Clinic of Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA; School of Mathematics and Statistics (KC), Neurodegenerative Disease Research Center (EMR), Arizona State University, USA; Department of Neurology, College of Medicine - Phoenix (KC), Department of Psychiatry (EMR), University of Arizona, USA
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Department of Neurology, College of Medicine - Phoenix (KC), Department of Psychiatry (EMR), University of Arizona, USA; Neurogenomics Division, Translational Genomics Research Institute, University of Arizona, and Arizona State University, Phoenix, AZ, USA; Banner-Arizona State University Neurodegenerative Disease Research Center, BioDesign Institute, Arizona State, University, Tempe, AZ, USA
| | - Christopher M Weise
- University of Leipzig Medical Center, Department of Neurology, Germany; University of Halle Medical Center, Department of Neurology, Germany
| |
Collapse
|
7
|
Wu J, Su Y, Zhu W, Mallak NJ, Lepore N, Reiman EM, Caselli RJ, Thompson PM, Chen K, Wang Y. Improved Prediction of Amyloid-β and Tau Burden Using Hippocampal Surface Multivariate Morphometry Statistics and Sparse Coding. J Alzheimers Dis 2023; 91:637-651. [PMID: 36463452 PMCID: PMC9940990 DOI: 10.3233/jad-220812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Amyloid-β (Aβ) plaques and tau protein tangles in the brain are the defining 'A' and 'T' hallmarks of Alzheimer's disease (AD), and together with structural atrophy detectable on brain magnetic resonance imaging (MRI) scans as one of the neurodegenerative ('N') biomarkers comprise the "ATN framework" of AD. Current methods to detect Aβ/tau pathology include cerebrospinal fluid (invasive), positron emission tomography (PET; costly and not widely available), and blood-based biomarkers (promising but mainly still in development). OBJECTIVE To develop a non-invasive and widely available structural MRI-based framework to quantitatively predict the amyloid and tau measurements. METHODS With MRI-based hippocampal multivariate morphometry statistics (MMS) features, we apply our Patch Analysis-based Surface Correntropy-induced Sparse coding and max-pooling (PASCS-MP) method combined with the ridge regression model to individual amyloid/tau measure prediction. RESULTS We evaluate our framework on amyloid PET/MRI and tau PET/MRI datasets from the Alzheimer's Disease Neuroimaging Initiative. Each subject has one pair consisting of a PET image and MRI scan, collected at about the same time. Experimental results suggest that amyloid/tau measurements predicted with our PASCP-MP representations are closer to the real values than the measures derived from other approaches, such as hippocampal surface area, volume, and shape morphometry features based on spherical harmonics. CONCLUSION The MMS-based PASCP-MP is an efficient tool that can bridge hippocampal atrophy with amyloid and tau pathology and thus help assess disease burden, progression, and treatment effects.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Yi Su
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Wenhui Zhu
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Negar Jalili Mallak
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | - Natasha Lepore
- CIBORG Lab, Department of Radiology Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | | | | | - Paul M. Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, USA
| | - Kewei Chen
- Banner Alzheimer’s Institute, Phoenix, AZ, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, Tempe, AZ, USA
| | | |
Collapse
|
8
|
Li S, An N, Chen N, Wang Y, Yang L, Wang Y, Yao Z, Hu B. The impact of Alzheimer's disease susceptibility loci on lateral ventricular surface morphology in older adults. Brain Struct Funct 2022; 227:913-924. [PMID: 35028746 DOI: 10.1007/s00429-021-02429-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/13/2021] [Indexed: 11/25/2022]
Abstract
The enlargement of ventricular volume is a general trend in the elderly, especially in patients with Alzheimer's disease (AD). Multiple susceptibility loci have been reported to have an increased risk for AD and the morphology of brain structures are affected by the variations in the risk loci. Therefore, we hypothesized that genes contributed significantly to the ventricular surface, and the changes of ventricular surface were associated with the impairment of cognitive functions. After the quality controls (QC) and genotyping, a lateral ventricular segmentation method was employed to obtain the surface features of lateral ventricle. We evaluated the influence of 18 selected AD susceptibility loci on both volume and surface morphology across 410 subjects from Alzheimer's Disease Neuroimaging Initiative (ADNI). Correlations were conducted between radial distance (RD) and Montreal Cognitive Assessment (MoCA) subscales. Only the C allele at the rs744373 loci in BIN1 gene significantly accelerated the atrophy of lateral ventricle, including the anterior horn, body, and temporal horn of left lateral ventricle. No significant effect on lateral ventricle was found at other loci. Our results revealed that most regions of the bilateral ventricular surface were significantly negatively correlated with cognitive scores, particularly in delayed recall. Besides, small areas of surface were negatively correlated with language, orientation, and visuospatial scores. Together, our results indicated that the genetic variation affected the localized areas of lateral ventricular surface, and supported that lateral ventricle was an important brain structure associated with cognition in the elderly.
Collapse
Affiliation(s)
- Shan Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Na An
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Nan Chen
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yin Wang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Lin Yang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China.
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, 730000, Gansu Province, People's Republic of China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, ShangHai, China.
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University and Institute of Semiconductors, Chinese Academy of Sciences, LanZhou, China.
- Engineering Research Center of Open Source Software and Real-Time System, Ministry of Education, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Zhang L, Fu Y, Zhao Z, Cong Z, Zheng W, Zhang Q, Yao Z, Hu B. Analysis of Hippocampus Evolution Patterns and Prediction of Conversion in Mild Cognitive Impairment Using Multivariate Morphometry Statistics. J Alzheimers Dis 2022; 86:1695-1710. [DOI: 10.3233/jad-215568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Mild cognitive impairment (MCI), which is generally regarded as the prodromal stage of Alzheimer’s disease (AD), is associated with morphological changes in brain structures, particularly the hippocampus. However, the indicators for characterizing the deformation of hippocampus in conventional methods are not precise enough and ignore the evolution information with the course of disease. Objective: The purpose of this study was to investigate the temporal evolution pattern of MCI and predict the conversion of MCI to AD by using the multivariate morphometry statistics (MMS) as fine features. Methods: First, we extracted MMS features from MRI scans of 64 MCI converters (MCIc), 81 MCI patients who remained stable (MCIs), and 90 healthy controls (HC). To make full use of the time information, the dynamic MMS (DMMS) features were defined. Then, the areas with significant differences between pairs of the three groups were analyzed using statistical methods and the atrophy/expansion were identified by comparing the metrics. In parallel, patch selection, sparse coding, dictionary learning and maximum pooling were used for the dimensionality reduction and the ensemble classifier GentleBoost was used to classify MCIc and MCIs. Results: The longitudinal analysis revealed that the atrophy of both MCIc and MCIs mainly distributed in dorsal CA1, then spread to subiculum and other regions gradually, while the atrophy area of MCIc was larger and more significant. And the introduction of longitudinal information promoted the accuracy to 91.76% for conversion prediction. Conclusion: The dynamic information of hippocampus holds a huge potential for understanding the pathology of MCI.
Collapse
Affiliation(s)
- Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Yu Fu
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhaoyang Cong
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Qin Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, Lanzhou, China
- College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang, China
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China
- Engineering Research Center of Open Source Software and Real-Time System (Lanzhou University), Ministry of Education, Lanzhou, China
| | | |
Collapse
|
10
|
Wu J, Dong Q, Gui J, Zhang J, Su Y, Chen K, Thompson PM, Caselli RJ, Reiman EM, Ye J, Wang Y. Predicting Brain Amyloid Using Multivariate Morphometry Statistics, Sparse Coding, and Correntropy: Validation in 1,101 Individuals From the ADNI and OASIS Databases. Front Neurosci 2021; 15:669595. [PMID: 34421510 PMCID: PMC8377280 DOI: 10.3389/fnins.2021.669595] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/15/2021] [Indexed: 01/04/2023] Open
Abstract
Biomarker assisted preclinical/early detection and intervention in Alzheimer’s disease (AD) may be the key to therapeutic breakthroughs. One of the presymptomatic hallmarks of AD is the accumulation of beta-amyloid (Aβ) plaques in the human brain. However, current methods to detect Aβ pathology are either invasive (lumbar puncture) or quite costly and not widely available (amyloid PET). Our prior studies show that magnetic resonance imaging (MRI)-based hippocampal multivariate morphometry statistics (MMS) are an effective neurodegenerative biomarker for preclinical AD. Here we attempt to use MRI-MMS to make inferences regarding brain Aβ burden at the individual subject level. As MMS data has a larger dimension than the sample size, we propose a sparse coding algorithm, Patch Analysis-based Surface Correntropy-induced Sparse-coding and Max-Pooling (PASCS-MP), to generate a low-dimensional representation of hippocampal morphometry for each individual subject. Then we apply these individual representations and a binary random forest classifier to predict brain Aβ positivity for each person. We test our method in two independent cohorts, 841 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and 260 subjects from the Open Access Series of Imaging Studies (OASIS). Experimental results suggest that our proposed PASCS-MP method and MMS can discriminate Aβ positivity in people with mild cognitive impairment (MCI) [Accuracy (ACC) = 0.89 (ADNI)] and in cognitively unimpaired (CU) individuals [ACC = 0.79 (ADNI) and ACC = 0.81 (OASIS)]. These results compare favorably relative to measures derived from traditional algorithms, including hippocampal volume and surface area, shape measures based on spherical harmonics (SPHARM) and our prior Patch Analysis-based Surface Sparse-coding and Max-Pooling (PASS-MP) methods.
Collapse
Affiliation(s)
- Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States.,Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
| | - Jie Gui
- School of Cyber Science and Engineering, Southeast University, Nanjing, China
| | - Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, University of Southern California, Marina del Rey, CA, United States
| | - Richard J Caselli
- Department of Neurology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, United States
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
11
|
Zhang J, Dong Q, Shi J, Li Q, Stonnington CM, Gutman BA, Chen K, Reiman EM, Caselli RJ, Thompson PM, Ye J, Wang Y. Predicting future cognitive decline with hyperbolic stochastic coding. Med Image Anal 2021; 70:102009. [PMID: 33711742 PMCID: PMC8049149 DOI: 10.1016/j.media.2021.102009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/10/2020] [Accepted: 02/16/2021] [Indexed: 01/18/2023]
Abstract
Hyperbolic geometry has been successfully applied in modeling brain cortical and subcortical surfaces with general topological structures. However, such approaches, similar to other surface-based brain morphology analysis methods, usually generate high dimensional features. It limits their statistical power in cognitive decline prediction research, especially in datasets with limited subject numbers. To address the above limitation, we propose a novel framework termed as hyperbolic stochastic coding (HSC). We first compute diffeomorphic maps between general topological surfaces by mapping them to a canonical hyperbolic parameter space with consistent boundary conditions and extracts critical shape features. Secondly, in the hyperbolic parameter space, we introduce a farthest point sampling with breadth-first search method to obtain ring-shaped patches. Thirdly, stochastic coordinate coding and max-pooling algorithms are adopted for feature dimension reduction. We further validate the proposed system by comparing its classification accuracy with some other methods on two brain imaging datasets for Alzheimer's disease (AD) progression studies. Our preliminary experimental results show that our algorithm achieves superior results on various classification tasks. Our work may enrich surface-based brain imaging research tools and potentially result in a diagnostic and prognostic indicator to be useful in individualized treatment strategies.
Collapse
Affiliation(s)
- Jie Zhang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Jie Shi
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | - Qingyang Li
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA
| | | | - Boris A Gutman
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | | | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging and Informatics, University of Southern California, Los Angeles, CA, USA
| | - Jieping Ye
- Department of Computational Medicine and Bioinformatics & Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, 85287 USA.
| |
Collapse
|
12
|
Wang G, Dong Q, Wu J, Su Y, Chen K, Su Q, Zhang X, Hao J, Yao T, Liu L, Zhang C, Caselli RJ, Reiman EM, Wang Y. Developing univariate neurodegeneration biomarkers with low-rank and sparse subspace decomposition. Med Image Anal 2021; 67:101877. [PMID: 33166772 PMCID: PMC7725891 DOI: 10.1016/j.media.2020.101877] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/24/2020] [Accepted: 10/13/2020] [Indexed: 01/01/2023]
Abstract
Cognitive decline due to Alzheimer's disease (AD) is closely associated with brain structure alterations captured by structural magnetic resonance imaging (sMRI). It supports the validity to develop sMRI-based univariate neurodegeneration biomarkers (UNB). However, existing UNB work either fails to model large group variances or does not capture AD dementia (ADD) induced changes. We propose a novel low-rank and sparse subspace decomposition method capable of stably quantifying the morphological changes induced by ADD. Specifically, we propose a numerically efficient rank minimization mechanism to extract group common structure and impose regularization constraints to encode the original 3D morphometry connectivity. Further, we generate regions-of-interest (ROI) with group difference study between common subspaces of Aβ+AD and Aβ-cognitively unimpaired (CU) groups. A univariate morphometry index (UMI) is constructed from these ROIs by summarizing individual morphological characteristics weighted by normalized difference between Aβ+AD and Aβ-CU groups. We use hippocampal surface radial distance feature to compute the UMIs and validate our work in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. With hippocampal UMIs, the estimated minimum sample sizes needed to detect a 25% reduction in the mean annual change with 80% power and two-tailed P=0.05are 116, 279 and 387 for the longitudinal Aβ+AD, Aβ+mild cognitive impairment (MCI) and Aβ+CU groups, respectively. Additionally, for MCI patients, UMIs well correlate with hazard ratio of conversion to AD (4.3, 95% CI = 2.3-8.2) within 18 months. Our experimental results outperform traditional hippocampal volume measures and suggest the application of UMI as a potential UNB.
Collapse
Affiliation(s)
- Gang Wang
- Ulsan Ship and Ocean College, Ludong University, Yantai, China.
| | - Qunxi Dong
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA
| | - Jianfeng Wu
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA
| | - Yi Su
- Banner Alzheimer's Institute and Banner Good Samaritan Pet Center, Phoenix, AZ, USA
| | - Kewei Chen
- Banner Alzheimer's Institute and Banner Good Samaritan Pet Center, Phoenix, AZ, USA
| | - Qingtang Su
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Xiaofeng Zhang
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Jinguang Hao
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Tao Yao
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Li Liu
- School of Information and Electrical Engineering, Ludong University, Yantai, China
| | - Caiming Zhang
- Shandong Province Key Lab of Digital Media Technology, Shandong University of Finance and Economics, Jinan, China
| | | | - Eric M Reiman
- Banner Alzheimer's Institute and Banner Good Samaritan Pet Center, Phoenix, AZ, USA
| | - Yalin Wang
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, P.O. Box 878809 Tempe, AZ 85287, USA.
| |
Collapse
|