1
|
Tomasino B, Baiano C, Ricciardi GK, Maieron M, Romano A, Guarracino I, Isola M, De Martino M, D'Agostini S, Bagatto D, Somma T, Skrap M, Ius T. A Longitudinal Multimodal Imaging Study in Patients with Temporo-Insular Diffuse Low-Grade Tumors: How the Inferior Fronto-Occipital Fasciculus Provides Information on Cognitive Outcomes. Curr Oncol 2024; 31:8075-8093. [PMID: 39727718 DOI: 10.3390/curroncol31120595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Tractography allows the in vivo study of subcortical white matter, and it is a potential tool for providing predictive indices on post-operative outcomes. We aim at establishing whether there is a relation between cognitive outcome and the status of the inferior fronto-occipital fasciculus's (IFOF's) microstructure. METHODS The longitudinal neuropsychological data of thirty young (median age: 35 years) patients operated on for DLGG in the left temporo-insular cortex along with pre-surgery tractography data were processed. RESULTS A degraded integrity of the left (vs. right) IFOF (lower fractional anisotropy and length, p < 0.001; higher mean and axial diffusivity, p < 0.01) was found, with lower microstructural variables in the infiltration (vs. dislocation) group. Significant decreases immediately post-surgery vs. pre-surgery mainly occurred in lexico-semantics (p < 0.001), with significant improvements at follow-up in all the tests (p < 0.01 to p < 0.001), despite values in the range of 44% to 47.82% of patients with below cut-off scores regarding naming verbs and making visual lexical decisions. The status of left and right IFOFs is predictive of a decrease in immediate post-surgery performance for several tests (p < 0.05); similarly, it is predictive of better recovery in the follow-up performance for naming nouns, naming verbs, making phonological fluency lexical decisions, and the token test (p < -0.05). For the ROC analysis, a significant result was obtained for the verb-naming test, with a cut-off of 79%. CONCLUSIONS This study supports the role of the predictive value of pre-operative tractography for assessing the immediate post-operative result and at follow-up the risk of developing a cognitive deficit.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, 33037 Pasian di Prato, Italy
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Giuseppe Kenneth Ricciardi
- Neuroradiology Departments, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, 37126 Verona, Italy
| | - Marta Maieron
- Department of Physics, University Hospital of Udine, 33100 Udine, Italy
| | - Andrea Romano
- NESMOS Department, U.O.C. Neuroradiology "Sant'Andrea" University Hospital, 00189 Rome, Italy
| | - Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, 33037 Pasian di Prato, Italy
| | - Miriam Isola
- Division of Medical Statistic, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Maria De Martino
- Division of Medical Statistic, Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Serena D'Agostini
- Neuroradiology Unit, Department of Diagnostic Imaging, University Hospital of Udine, 33100 Udine, Italy
| | - Daniele Bagatto
- Neuroradiology Unit, Department of Diagnostic Imaging, University Hospital of Udine, 33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, 80138 Napoli, Italy
| | - Miran Skrap
- Neurosurgery Unit, Head-Neck and NeuroSciences Department University Hospital of Udine, 33100 Udine, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroSciences Department University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
2
|
Kram L, Schroeder A, Meyer B, Krieg SM, Ille S. Function-guided differences of arcuate fascicle and inferior fronto-occipital fascicle tractography as diagnostic indicators for surgical risk stratification. Brain Struct Funct 2024; 229:2219-2235. [PMID: 38597941 PMCID: PMC11612008 DOI: 10.1007/s00429-024-02787-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Several patients with language-eloquent gliomas face language deterioration postoperatively. Persistent aphasia is frequently associated with damage to subcortical language pathways. Underlying mechanisms still need to be better understood, complicating preoperative risk assessment. This study compared qualitative and quantitative functionally relevant subcortical differences pre- and directly postoperatively in glioma patients with and without aphasia. METHODS Language-relevant cortical sites were defined using navigated transcranial magnetic stimulation (nTMS) language mapping in 74 patients between 07/2016 and 07/2019. Post-hoc nTMS-based diffusion tensor imaging tractography was used to compare a tract's pre- and postoperative visualization, volume and fractional anisotropy (FA), and the preoperative distance between tract and lesion and postoperative overlap with the resection cavity between the following groups: no aphasia (NoA), tumor- or previous resection induced aphasia persistent pre- and postoperatively (TIA_P), and surgery-induced transient or permanent aphasia (SIA_T or SIA_P). RESULTS Patients with NoA, TIA_P, SIA_T, and SIA_P showed distinct fasciculus arcuatus (AF) and inferior-fronto-occipital fasciculus (IFOF) properties. The AF was more frequently reconstructable, and the FA of IFOF was higher in NoA than TIA_P cases (all p ≤ 0.03). Simultaneously, SIA_T cases showed higher IFOF fractional anisotropy than TIA_P cases (p < 0.001) and the most considerable AF volume loss overall. While not statistically significant, the four SIA_P cases showed complete loss of ventral language streams postoperatively, the highest resection-cavity-AF-overlap, and the shortest AF to tumor distance. CONCLUSION Functionally relevant qualitative and quantitative differences in AF and IFOF provide a pre- and postoperative pathophysiological and clinically relevant diagnostic indicator that supports surgical risk stratification.
Collapse
Affiliation(s)
- Leonie Kram
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany.
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht-Karls-University, Heidelberg, Germany.
| |
Collapse
|
3
|
Denker M, Picht T, Engelhardt M, Dengler NF, Vajkoczy P, Zdunczyk A. Navigated Transcranial Magnetic Stimulation and Diffusion Tensor Imaging Tractography in Insular Glioma Surgery. Oper Neurosurg (Hagerstown) 2024:01787389-990000000-01387. [PMID: 39508607 DOI: 10.1227/ons.0000000000001414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/01/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND AND OBJECTIVES The surgical resection of insular gliomas is associated with a high rate of postoperative morbidity as they grow close to descending motor fibers and lenticulostriate arteries. It is believed that intraoperative perforator infarctions are the determining factor for patients' postoperative outcome, while the majority of patients with intraoperative ischemic events do not develop postoperative motor deficits. This study aims to evaluate whether navigated transcranial magnetic stimulation (nTMS) and nTMS-based fiber tracking could be valuable for the preoperative assessment of patients with insular gliomas. METHODS Thirty-two patients with insular gliomas were presurgically examined by nTMS. The resting motor threshold and cortical representation areas of legs, hands, and face were identified on both hemispheres. Motor evoked potential positive stimulation points were then used as a region of interest for diffusion tensor imaging tractographies. Somatotopic fiber tracking was performed enabling analyses of the spatial relation between tumor and cortico-spinal tract (CST) as well as the extraction of fiber tract integrity, measured by fractional anisotropy and the apparent diffusion coefficient. RESULTS The performance of nTMS mappings of the motor cortex and reconstruction of descending motor fibers for legs, hands, and facial functioning was successful in all patients. Higher preoperative resting motor threshold ratios and a distance between tumor and CST of <3 mm were associated with a permanent deterioration in motor function (P = .029 and P = .007). Shorter distances between CST and tumorous tissue were correlated with lowered peritumoral fractional anisotropy values, suggesting alterations in fiber tract integrity. Lower interhemispheric peritumoral fractional anisotropy ratios showed an association with new postoperative motor deficits (P = .017). CONCLUSION nTMS-based diffusion tensor imaging tractography enables somatotopic tract visualization and provides a valuable tool for preoperative planning, intraoperative orientation, and individual risk stratification. Thus, it may be beneficial to increase safety in insular glioma resection surgery.
Collapse
Affiliation(s)
- Maren Denker
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Engelhardt
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nora F Dengler
- Faculty of Health Sciences Brandenburg, Medical School Theodor Fontane, Bad Saarow, Germany
- Department of Neurosurgery, HELIOS Hospital Bad Saarow, Bad Saarow, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
4
|
Yang ZC, Yeh FC, Xue BW, Yin CD, Song XY, Li G, Deng ZH, Sun SJ, Hou ZG, Xie J. Assessing Postoperative Motor Risk in Insular Low-Grade Gliomas Patients: The Potential Role of Presurgery MRI Corticospinal Tract Shape Measures. J Magn Reson Imaging 2024; 60:1892-1901. [PMID: 38263789 DOI: 10.1002/jmri.29244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Insular low-grade gliomas (LGGs) are surgically challenging due to their proximity to critical structures like the corticospinal tract (CST). PURPOSE This study aims to determine if preoperative CST shape metrics correlate with postoperative motor complications in insular LGG patients. STUDY TYPE Retrospective. POPULATION 42 patients (mean age 40.26 ± 10.21 years, 25 male) with insular LGGs. FIELD STRENGTH/SEQUENCE Imaging was performed using 3.0 Tesla MRI, incorporating T1-weighted magnetization-prepared rapid gradient-echo, T2-weighted space dark-fluid with spin echo (SE), and diffusional kurtosis imaging (DKI) with gradient echo sequences, all integrated with echo planar imaging. ASSESSMENT Shape metrics of the CST, including span, irregularity, radius, and irregularity of end regions (RER and IER, respectively), were compared between the affected and healthy hemispheres. Total end region radius (TRER) was determined as the sum of RER 1 and RER 2. The relationships between shape metrics and postoperative short-term (4 weeks) and long-term (>8 weeks) motor disturbances assessing by British Medical Research Council grading system, was analyzed using multivariable regression models. STATISTICAL TESTING Paired t-tests compared CST metrics between hemispheres. Logistic regression identified associations between these metrics and motor disturbances. The models were developed using all available data and there was no independent validation dataset. Significance was set at P < 0.05. RESULTS Short-term motor disturbance risk was significantly related to TRER (OR = 199.57). Long-term risk significantly correlated with IER 1 (OR = 59.84), confirmed as a significant marker with an AUC of 0.78. Furthermore, the CST on the affected side significantly had the greater irregularity, larger TRER and RER 1, and smaller span compared to the healthy side. DATA CONCLUSION Preoperative evaluation of TRER and IER 1 metrics in the CST may serve as a tool for assessing the risk of postoperative motor complications in insular LGG patients. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zuo-Cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bo-Wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuan-Dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-Jun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zong-Gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Fekonja LS, Schenk R, Schröder E, Tomasello R, Tomšič S, Picht T. The digital twin in neuroscience: from theory to tailored therapy. Front Neurosci 2024; 18:1454856. [PMID: 39376542 PMCID: PMC11457707 DOI: 10.3389/fnins.2024.1454856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024] Open
Abstract
Digital twins enable simulation, comprehensive analysis and predictions, as virtual representations of physical systems. They are also finding increasing interest and application in the healthcare sector, with a particular focus on digital twins of the brain. We discuss how digital twins in neuroscience enable the modeling of brain functions and pathology as they offer an in-silico approach to studying the brain and illustrating the complex relationships between brain network dynamics and related functions. To showcase the capabilities of digital twinning in neuroscience we demonstrate how the impact of brain tumors on the brain's physical structures and functioning can be modeled in relation to the philosophical concept of plasticity. Against this technically derived backdrop, which assumes that the brain's nonlinear behavior toward improvement and repair can be modeled and predicted based on MRI data, we further explore the philosophical insights of Catherine Malabou. Malabou emphasizes the brain's dual capacity for adaptive and destructive plasticity. We will discuss in how far Malabou's ideas provide a more holistic theoretical framework for understanding how digital twins can model the brain's response to injury and pathology, embracing Malabou's concept of both adaptive and destructive plasticity which provides a framework to address such yet incomputable aspects of neuroscience and the sometimes seemingly unfavorable dynamics of neuroplasticity helping to bridge the gap between theoretical research and clinical practice.
Collapse
Affiliation(s)
- Lucius Samo Fekonja
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Schenk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Emily Schröder
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Rosario Tomasello
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Brain Language Laboratory, Department of Philosophy and Humanities, Freie Universität Berlin, Berlin, Germany
| | - Samo Tomšič
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Fine Arts of Hamburg, Hamburg, Germany
| | - Thomas Picht
- Cluster of Excellence Matters of Activity, Image Space Material, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
6
|
Yang ZC, Yin CD, Yeh FC, Xue BW, Song XY, Li G, Deng ZH, Sun SJ, Hou ZG, Xie J. A preliminary study on corticospinal tract morphology in incidental and symptomatic insular low-grade glioma: implications for post-surgical motor outcomes. Neuroimage Clin 2023; 40:103521. [PMID: 37857233 PMCID: PMC10598056 DOI: 10.1016/j.nicl.2023.103521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Our study aimed to investigate the shape and diffusion properties of the corticospinal tract (CST) in patients with insular incidental and symptomatic low-grade gliomas (LGGs), especially those in the incidental group, and evaluate their association with post-surgical motor function. METHODS We performed automatic fiber tracking on 41 LGG patients, comparing macroscopic shape and microscopic diffusion properties of CST between ipsilateral and contralateral tracts in both incidental and symptomatic groups. A correlation analysis was conducted between properties of CST and post-operative motor strength grades. RESULTS In the incidental group, no significant differences in mean diffusion properties were found between bilateral CST. While decreased anisotropy of the CST around the superior limiting sulcus and increased axial diffusivity of the CST near the midbrain level were noted, there was no significant correlation between pre-operative diffusion metrics and post-operative motor strength. In comparison, we found significant correlations between the elongation of the affected CST in the preoperative scans and post-operative motor strength in short-term and long-term follow ups (p = 1.810 × 10-4 and p = 9.560 × 10-4, respectively). CONCLUSIONS We found a significant correlation between CST shape measures and post-operative motor function outcomes in patients with incidental insular LGGs. CST morphology shows promise as a potential prognostic factor for identifying functional deficits in this patient population.
Collapse
Affiliation(s)
- Zuo-Cheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chuan-Dong Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bo-Wen Xue
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xin-Yu Song
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gen Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng-Hai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Sheng-Jun Sun
- Department of Neuroradiology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zong-Gang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Tuncer MS, Fekonja LS, Ott S, Pfnür A, Karbe AG, Engelhardt M, Faust K, Picht T, Coburger J, Dührsen L, Vajkoczy P, Onken J. Role of interhemispheric connectivity in recovery from postoperative supplementary motor area syndrome in glioma patients. J Neurosurg 2023; 139:324-333. [PMID: 36461815 DOI: 10.3171/2022.10.jns221303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Surgical resection of gliomas involving the supplementary motor area (SMA) frequently results in SMA syndrome, a symptom complex characterized by transient akinesia and mutism. Because the factors influencing patient functional outcomes after surgery remain elusive, the authors investigated network-based predictors in a multicentric cohort of glioma patients. METHODS The participants were 50 patients treated for glioma located in the SMA at one of the three centers participating in the study. Postoperative functional outcomes (motor deficits, mutism) and duration of symptoms were assessed during hospitalization. Long-term outcome was assessed 3 months after surgery. MRI-based lesion-symptom mapping was performed to estimate the severity of gray matter damage and white matter disconnection. RESULTS The median duration of acute symptoms was 3 days (range 1-42 days). Long-term deficits involving fine motor movements and speech were found at follow-up in 27 patients (54%). Disconnection of the central callosal fibers was associated with prolonged acute symptoms (p < 0.05). Postoperative mutism was significantly related to disconnection severity of the left frontopontine tract, frontal aslant tract, cingulum, and corticostriatal tract (p < 0.05). Disconnection of midposterior callosal fibers and lesion loads within the left medial Brodmann area 4 were associated with long-term motor deficits (p < 0.05). CONCLUSIONS This study provides evidence for the pathophysiology and predictive factors of postoperative SMA syndrome by demonstrating the relation of the disconnection of callosal fibers with prolonged symptom duration (central segment) and long-term motor deficits (midposterior segment). These data may be useful for presurgical risk assessment and adequate consultation for patients prior to undergoing resection of glioma located within the SMA region.
Collapse
Affiliation(s)
- Mehmet Salih Tuncer
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Lucius S Fekonja
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 2Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin
| | - Stefanie Ott
- 3Department of Neurosurgery, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Andreas Pfnür
- 4Department of Neurosurgery, Universitätsklinikum Ulm, Günzburg
| | - Anna-Gila Karbe
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Melina Engelhardt
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 5Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin; and
| | - Katharina Faust
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Thomas Picht
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 2Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin
- 5Einstein Center for Neurosciences, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin; and
| | - Jan Coburger
- 4Department of Neurosurgery, Universitätsklinikum Ulm, Günzburg
| | - Lasse Dührsen
- 3Department of Neurosurgery, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Peter Vajkoczy
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
| | - Julia Onken
- 1Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin
- 6German Cancer Consortium (DKTK), Partner Site Berlin, Germany
| |
Collapse
|
8
|
Shams B, Reisch K, Vajkoczy P, Lippert C, Picht T, Fekonja LS. Improved prediction of glioma-related aphasia by diffusion MRI metrics, machine learning, and automated fiber bundle segmentation. Hum Brain Mapp 2023. [PMID: 37318944 PMCID: PMC10365236 DOI: 10.1002/hbm.26393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/07/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.
Collapse
Affiliation(s)
- Boshra Shams
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Klara Reisch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christoph Lippert
- Digital Health - Machine Learning, Hasso Plattner Institute, University of Potsdam, Digital Engineering Faculty, Potsdam, Germany
- Hasso Plattner Institute for Digital Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| |
Collapse
|
9
|
Ntemou E, Rybka L, Lubbers J, Tuncer MS, Vajkoczy P, Rofes A, Picht T, Faust K. Lesion-symptom mapping of language impairments in people with brain tumours: The influence of linguistic stimuli. J Neuropsychol 2023; 17:400-416. [PMID: 36651346 DOI: 10.1111/jnp.12305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023]
Abstract
People with tumours in specific brain sites might face difficulties in tasks with different linguistic material. Previous lesion-symptom mapping studies (VLSM) demonstrated that people with tumours in posterior temporal regions have more severe linguistic impairments. However, to the best of our knowledge, preoperative performance and lesion location on tasks with different linguistic stimuli have not been examined. In the present study, we performed VLSM on 52 people with left gliomas to examine whether tumour distribution differs depending on the tasks of the Aachen Aphasia Test. The VLSM analysis revealed that single-word production (e.g. object naming) was associated with the inferior parietal lobe and that compound and sentence production were additionally associated with posterior temporal gyri. Word repetition was affected in people with tumours in inferior parietal areas, whereas sentence repetition was the only task to be associated with frontal regions. Subcortically, word and sentence production were found to be affected in people with tumours reaching the arcuate fasciculus, and compound production was primarily associated with tumours affecting the inferior longitudinal and inferior fronto-occipital fasciculus. Our work shows that tasks with linguistic stimuli other than single-word naming (e.g. compound and sentence production) relate to additional cortical and subcortical brain areas. At a clinical level, we show that tasks that target the same processes (e.g. repetition) can have different neural correlates depending on the linguistic stimuli used. Also, we highlight the importance of left temporoparietal areas.
Collapse
Affiliation(s)
- Effrosyni Ntemou
- International Doctorate for Approaches to Language and Brain (IDEALAB), University of Groningen, Groningen, The Netherlands
- International Doctorate for Approaches to Language and Brain (IDEALAB), University of Potsdam, Potsdam, Germany
- International Doctorate for Approaches to Language and Brain (IDEALAB), Newcastle University, Newcastle upon Tyne, UK
- International Doctorate for Approaches to Language and Brain (IDEALAB), Macquarie University, Sydney, New South Wales, Australia
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lena Rybka
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Jocelyn Lubbers
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mehmet Salih Tuncer
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Adrià Rofes
- Centre for Language and Cognition Groningen (CLCG), University of Groningen, Groningen, The Netherlands
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Katharina Faust
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Burkhardt E, Zemmoura I, Hirsch F, Lemaitre AL, Deverdun J, Moritz-Gasser S, Duffau H, Herbet G. The central role of the left inferior longitudinal fasciculus in the face-name retrieval network. Hum Brain Mapp 2023; 44:3254-3270. [PMID: 37051699 PMCID: PMC10171495 DOI: 10.1002/hbm.26279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 04/14/2023] Open
Abstract
Unsuccessful retrieval of proper names (PNs) is commonly observed in patients suffering from neurological conditions such as stroke or epilepsy. While a large body of works has suggested that PN retrieval relies on a cortical network centered on the left anterior temporal lobe (ATL), much less is known about the white matter connections underpinning this process. Sparse studies provided evidence for a possible role of the uncinate fasciculus, but the inferior longitudinal fasciculus (ILF) might also contribute, since it mainly projects into the ATL, interconnects it with the posterior lexical interface and is engaged in common name (CN) retrieval. To ascertain this hypothesis, we assessed 58 patients having undergone a neurosurgery for a left low-grade glioma by means of a famous face naming (FFN) task. The behavioural data were processed following a multilevel lesion approach, including location-based analyses, voxel-based lesion-symptom mapping (VLSM) and disconnection-symptom mapping. Different statistical models were generated to control for sociodemographic data, familiarity, biographical knowledge and control cognitive performances (i.e., semantic and episodic memory and CN retrieval). Overall, VLSM analyses indicated that damage to the mid-to-anterior part of the ventro-basal temporal cortex was especially associated with PN retrieval deficits. As expected, tract-oriented analyses showed that the left ILF was the most strongly associated pathway. Our results provide evidence for the pivotal role of the ILF in the PN retrieval network. This novel finding paves the way for a better understanding of the pathophysiological bases underlying PN retrieval difficulties in the various neurological conditions marked by white matter abnormalities.
Collapse
Affiliation(s)
- Eléonor Burkhardt
- Praxiling Laboratory, UMR5267, CNRS & Paul Valéry University, Montpellier, France
| | - Ilyess Zemmoura
- UMR1253, iBrain, University of Tours, INSERM, Tours, France
- Department of Neurosurgery, Bretonneau Hospital, CHRU de Tours, Tours, France
| | - Fabrice Hirsch
- Praxiling Laboratory, UMR5267, CNRS & Paul Valéry University, Montpellier, France
| | - Anne-Laure Lemaitre
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Jeremy Deverdun
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Sylvie Moritz-Gasser
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Hugues Duffau
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Guillaume Herbet
- Praxiling Laboratory, UMR5267, CNRS & Paul Valéry University, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
11
|
Shekari E, Nozari N. A narrative review of the anatomy and function of the white matter tracts in language production and comprehension. Front Hum Neurosci 2023; 17:1139292. [PMID: 37051488 PMCID: PMC10083342 DOI: 10.3389/fnhum.2023.1139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/24/2023] [Indexed: 03/28/2023] Open
Abstract
Much is known about the role of cortical areas in language processing. The shift towards network approaches in recent years has highlighted the importance of uncovering the role of white matter in connecting these areas. However, despite a large body of research, many of these tracts' functions are not well-understood. We present a comprehensive review of the empirical evidence on the role of eight major tracts that are hypothesized to be involved in language processing (inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, uncinate fasciculus, extreme capsule, middle longitudinal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, and frontal aslant tract). For each tract, we hypothesize its role based on the function of the cortical regions it connects. We then evaluate these hypotheses with data from three sources: studies in neurotypical individuals, neuropsychological data, and intraoperative stimulation studies. Finally, we summarize the conclusions supported by the data and highlight the areas needing further investigation.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Nazbanou Nozari
- Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition (CNBC), Pittsburgh, PA, United States
| |
Collapse
|
12
|
Prasse G, Meyer HJ, Scherlach C, Maybaum J, Hoffmann A, Kasper J, Karl Fehrenbach M, Wilhelmy F, Meixensberger J, Hoffmann KT, Wende T. Preoperative language tract integrity is a limiting factor in recovery from aphasia after glioma surgery. Neuroimage Clin 2023; 37:103310. [PMID: 36586359 PMCID: PMC9817026 DOI: 10.1016/j.nicl.2022.103310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
Aphasia can occur in a broad range of pathological conditions that affect cortical or subcortical structures. Here we test the hypothesis that white matter integrity of language pathways assessed by preoperative diffusion tensor imaging (DTI) is associated with language performance and its recovery after glioma resection. 27 patients with preoperative DTI were included. Segmentation of the arcuate fascicle (AF), the inferior fronto-occipital fascicle (IFOF), the inferior longitudinal fascicle (ILF), the superior longitudinal fascicle (SLF), and the uncinate fascicle (UF) was performed with a fully-connected neural network (FCNN, TractSeg). Median fractional anisotropy (FA) was extracted from the resulting volumes as surrogate marker for white matter integrity and tested for correlation with clinical parameters. After correction for demographic data and multiple testing, preoperative white matter integrity of the IFOF, the ILF, and the UF in the left hemisphere were independently and significantly associated with aphasia three months after surgery. Comparison between patients with and without aphasia three months after surgery revealed significant differences in preoperative white matter integrity of the left AF (p = 0.021), left IFOF (p = 0.015), left ILF (p = 0.003), left SLF (p = 0.001, p = 0.021, p = 0.043 for respective sub-bundles 1-3), left UF (p = 0.041) and the right AF (p = 0.027). Preoperative assessment of white matter integrity of the language network by time-efficient MRI protocols and FCNN-driven segmentation may assist in the evaluation of postoperative rehabilitation potential in glioma patients.
Collapse
Affiliation(s)
- Gordian Prasse
- Institute of Neuroradiology, University Hospital Leipzig, 04103 Leipzig, Germany.
| | - Hans-Jonas Meyer
- Department of Radiology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Cordula Scherlach
- Institute of Neuroradiology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Jens Maybaum
- Institute of Neuroradiology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anastasia Hoffmann
- Institute of Neuroradiology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Johannes Kasper
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | | | - Florian Wilhelmy
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | | | - Karl-Titus Hoffmann
- Institute of Neuroradiology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Tim Wende
- Department of Neurosurgery, University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
13
|
A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective. Cancers (Basel) 2022; 15:cancers15010090. [PMID: 36612085 PMCID: PMC9817716 DOI: 10.3390/cancers15010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor's margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for "PET" [All fields] AND "glioma" [All fields] AND "resection" [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.
Collapse
|
14
|
Reisch K, Böttcher F, Tuncer MS, Schneider H, Vajkoczy P, Picht T, Fekonja LS. Tractography-based navigated TMS language mapping protocol. Front Oncol 2022; 12:1008442. [PMID: 36568245 PMCID: PMC9780436 DOI: 10.3389/fonc.2022.1008442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction This study explores the feasibility of implementing a tractography-based navigated transcranial magnetic stimulation (nTMS) language mapping protocol targeting cortical terminations of the arcuate fasciculus (AF). We compared the results and distribution of errors from the new protocol to an established perisylvian nTMS protocol that stimulated without any specific targeting over the entire perisylvian cortex. Methods Sixty right-handed patients with language-eloquent brain tumors were examined in this study with one half of the cohort receiving the tractographybased protocol and the other half receiving the perisylvian protocol. Probabilistic tractography using MRtrix3 was performed for patients in the tractography-based group to identify the AF's cortical endpoints. nTMS mappings were performed and resulting language errors were classified into five psycholinguistic groups. Results Tractography and nTMS were successfully performed in all patients. The tractogram-based group showed a significantly higher median overall ER than the perisylvian group (3.8% vs. 2.9% p <.05). The median ER without hesitation errors in the tractogram-based group was also significantly higher than the perisylvian group (2.0% vs. 1.4%, p <.05). The ERs by error type showed no significant differences between protocols except in the no response ER, with a higher median ER in the tractogram-based group (0.4% vs. 0%, p <.05). Analysis of ERs based on the Corina cortical parcellation system showed especially high nTMS ERs over the posterior middle temporal gyrus (pMTG) in the perisylvian protocol and high ERs over the middle and ventral postcentral gyrus (vPoG), the opercular inferior frontal gyrus (opIFG) and the ventral precentral gyrus (vPrG) in the tractography-based protocol. Discussion By considering the white matter anatomy and performing nTMS on the cortical endpoints of the AF, the efficacy of nTMS in disrupting patients' object naming abilities was increased. The newly introduced method showed proof of concept and resulted in AF-specific ERs and noninvasive cortical language maps, which could be applied to additional fiber bundles related to the language network in future nTMS studies.
Collapse
Affiliation(s)
- Klara Reisch
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Franziska Böttcher
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Mehmet S. Tuncer
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Heike Schneider
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Peter Vajkoczy
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
| | - Thomas Picht
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| | - Lucius S. Fekonja
- Image Guidance Lab, Department of Neurosurgery, Charité – University Hospital, Berlin, Germany
- Cluster of Excellence: “Matters of Activity. Image Space Material”, Humboldt University, Berlin, Germany
| |
Collapse
|
15
|
Raffa G, Marzano G, Curcio A, Espahbodinea S, Germanò A, Angileri FF. Personalized surgery of brain tumors in language areas: the role of preoperative brain mapping in patients not eligible for awake surgery. Neurosurg Focus 2022; 53:E3. [PMID: 39264003 DOI: 10.3171/2022.9.focus22415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/19/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVE Awake surgery represents the gold standard for resection of brain tumors close to the language network. However, in some cases patients may be considered not eligible for awake craniotomy. In these cases, a personalized brain mapping of the language network may be achieved by navigated transcranial magnetic stimulation (nTMS), which can guide resection in patients under general anesthesia. Here the authors describe their tailored nTMS-based strategy and analyze its impact on the extent of tumor resection (EOR) and language outcome in a series of patients not eligible for awake surgery. METHODS The authors reviewed data from all patients harboring a brain tumor in or close to the language network who were considered not eligible for awake surgery and were operated on during asleep surgery between January 2017 and July 2022, under the intraoperative guidance of nTMS data. The authors analyzed the effectiveness of nTMS-based mapping data in relation to 1) the ability of the nTMS-based mapping to stratify patients according to surgical risks, 2) the occurrence of postoperative language deficits, and 3) the EOR. RESULTS A total of 176 patients underwent preoperative nTMS cortical language mapping and nTMS-based tractography of language fascicles. According to the nTMS-based mapping, tumors in 115 patients (65.3%) were identified as true-eloquent tumors because of a close spatial relationship with the language network. Conversely, tumors in 61 patients (34.7%) for which the nTMS mapping disclosed a location at a safer distance from the network were identified as false-eloquent tumors. At 3 months postsurgery, a permanent language deficit was present in 13 patients (7.3%). In particular, a permanent deficit was observed in 12 of 115 patients (10.4%) with true-eloquent tumors and in 1 of 61 patients (1.6%) with false-eloquent lesions. With nTMS-based mapping, neurosurgeons were able to distinguish true-eloquent from false-eloquent tumors in a significant number of cases based on the occurrence of deficits at discharge (p < 0.0008) and after 3 months from surgery (OR 6.99, p = 0.03). Gross-total resection was achieved in 80.1% of patients overall and in 69.5% of patients with true-eloquent lesions and 100% of patients with false-eloquent tumors. CONCLUSIONS nTMS-based mapping allows for reliable preoperative mapping of the language network that may be used to stratify patients according to surgical risks. nTMS-guided asleep surgery should be considered a good alternative for personalized preoperative brain mapping of the language network that may increase the possibility of safe and effective resection of brain tumors in the dominant hemisphere whenever awake mapping is not feasible.
Collapse
Affiliation(s)
- Giovanni Raffa
- 1Division of Neurosurgery, BIOMORF Department, University of Messina; and
| | - Giuseppina Marzano
- 2Division of Neurosurgery, A.O.U. Policlinico "G. Martino," Messina, Italy
| | - Antonello Curcio
- 1Division of Neurosurgery, BIOMORF Department, University of Messina; and
| | | | - Antonino Germanò
- 1Division of Neurosurgery, BIOMORF Department, University of Messina; and
| | | |
Collapse
|
16
|
Fang S, Weng S, Li L, Guo Y, Zhang Z, Fan X, Jiang T, Wang Y. Decreasing distance from tumor to the language network causes language deficit. Hum Brain Mapp 2022; 44:679-690. [PMID: 36169039 PMCID: PMC9842885 DOI: 10.1002/hbm.26092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 01/25/2023] Open
Abstract
Preoperative language deficits are associated with alterations in the language networks of patients with gliomas. This study investigated how gliomas affect language performance by altering the language network. Ninety patients with lower-grade gliomas were included, and their preoperative language performance was evaluated using the Western Aphasia Battery. We also calculated the topological properties based on resting state functional magnetic resonance imaging. All patients were classified according to aphasia quotient (AQ) into the aphasia (AQ < 93.8), mild anomia (AQ > 93.8 and naming section <9.8), and normal groups (AQ > 93.8). The shortest distance from the tumor to the language network (SDTN) was evaluated to identify the effect on language performance induced by the tumor. One-way analysis of variance and post hoc analysis with Sidak correction were used to analyze the differences in topological properties among the three groups. Causal mediation analysis was used to identify indirectly affected mediators. Compared with the mild anomia group, longer shortest path length (p = .0016), lower vulnerability (p = .0331), and weaker nodal efficiencies of three nodes (right caudal Brodmann area [BA] 45, right caudal BA 22, and left BA 41/42, all p < .05) were observed in the aphasia group. The SDTN mediated nodal degree centrality and nodal vulnerability (left rostroventral BA 39), which negatively affected the AQs. Conventional language eloquent and mirrored areas participated in the language network alterations induced by gliomas. The SDTN was a mediator that affected the preoperative language status in patients with gliomas.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Shimeng Weng
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Lianwang Li
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Yuhao Guo
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Zhong Zhang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xing Fan
- Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| | - Tao Jiang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina,Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain TumorsChinese Academy of Medical SciencesBeijingChina
| | - Yinyan Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina,Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
| |
Collapse
|
17
|
Rosenstock T, Pöser P, Wasilewski D, Bauknecht HC, Grittner U, Picht T, Misch M, Onken JS, Vajkoczy P. MRI-Based Risk Assessment for Incomplete Resection of Brain Metastases. Front Oncol 2022; 12:873175. [PMID: 35651793 PMCID: PMC9149256 DOI: 10.3389/fonc.2022.873175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Object Recent studies demonstrated that gross total resection of brain metastases cannot always be achieved. Subtotal resection (STR) can result in an early recurrence and might affect patient survival. We initiated a prospective observational study to establish a MRI-based risk assessment for incomplete resection of brain metastases. Methods All patients in whom ≥1 brain metastasis was resected were prospectively included in this study (DRKS ID: DRKS00021224; Nov 2020 - Nov 2021). An interdisciplinary board of neurosurgeons and neuroradiologists evaluated the pre- and postoperative MRI (≤48h after surgery) for residual tumor. Extensive neuroradiological analyses were performed to identify risk factors for an unintended STR which were integrated into a regression tree analysis to determine the patients' individual risk for a STR. Results We included 150 patients (74 female; mean age: 61 years), in whom 165 brain metastases were resected. A STR was detected in 32 cases (19.4%) (median residual tumor volume: 1.36ml, median EORrel: 93.6%), of which 6 (3.6%) were intended STR (median residual tumor volume: 3.27ml, median EORrel: 67.3%) - mainly due to motor-eloquent location - and 26 (15.8%) were unintended STR (uSTR) (median residual tumor volume: 0.64ml, median EORrel: 94.7%). The following risk factors for an uSTR could be identified: subcortical metastasis ≥5mm distant from cortex, diffuse contrast agent enhancement, proximity to the ventricles, contact to falx/tentorium and non-transcortical approaches. Regression tree analysis revealed that the individual risk for an uSTR was mainly associated to the distance from the cortex (distance ≥5mm vs. <5mm: OR 8.0; 95%CI: 2.7 - 24.4) and the contrast agent patterns (diffuse vs. non-diffuse in those with distance ≥5mm: OR: 4.2; 95%CI: 1.3 - 13.7). The preoperative tumor volume was not substantially associated with the extent of resection. Conclusions Subcortical metastases ≥5mm distant from cortex with diffuse contrast agent enhancement showed the highest incidence of uSTR. The proposed MRI-based assessment allows estimation of the individual risk for uSTR and can help indicating intraoperative imaging.
Collapse
Affiliation(s)
- Tizian Rosenstock
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Paul Pöser
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David Wasilewski
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Hans-Christian Bauknecht
- Institute of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Grittner
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin, Germany
| | - Martin Misch
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julia Sophie Onken
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
18
|
TMS Seeded Diffusion Tensor Imaging Tractography Predicts Permanent Neurological Deficits. Cancers (Basel) 2022; 14:cancers14020340. [PMID: 35053503 PMCID: PMC8774180 DOI: 10.3390/cancers14020340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary For brain tumor patients, surgeons must resect as much of the tumor as possible while preserving the patient’s function and quality of life. This requires preoperative imaging that accurately identifies important parts of the brain. Transcranial magnetic stimulation is a way of preoperatively finding the areas of the brain connected to motor function. However, few studies have investigated the accuracy and clinical relevance of the data. In this study, we examine the functional outcomes of patients who had TMS points resected and patients who did not. We aim to address key technical barriers to performing this analysis. We also aim to discern the appropriate role of TMS tractography in preoperative diagnostic imaging. Insights gained from this study can be used to select the right patients and plan for the optimal surgeries. Abstract Surgeons must optimize the onco-functional balance by maximizing the extent of resection and minimizing postoperative neurological morbidity. Optimal patient selection and surgical planning requires preoperative identification of nonresectable structures. Transcranial magnetic stimulation is a method of noninvasively mapping the cortical representations of the speech and motor systems. Despite recent promising data, its clinical relevance and appropriate role in a comprehensive mapping approach remains unknown. In this study, we aim to provide direct evidence regarding the clinical utility of transcranial magnetic stimulation by interrogating the eloquence of TMS points. Forty-two glioma patients were included in this retrospective study. We collected motor function outcomes 3 months postoperatively. We overlayed the postoperative MRI onto the preoperative MRI to visualize preoperative TMS points in the context of the surgical cavity. We then generated diffusion tensor imaging tractography to identify meaningful subsets of TMS points. We correlated the resection of preoperative imaging features with clinical outcomes. The resection of TMS-positive points was significantly predictive of permanent deficits (p = 0.05). However, four out of eight patients had TMS-positive points resected without a permanent deficit. DTI tractography at a 75% FA threshold identified which TMS points are essential and which are amenable to surgical resection. TMS combined with DTI tractography shows a significant prediction of postoperative neurological deficits with both a high positive predictive value and negative predictive value.
Collapse
|
19
|
Muir M, Prinsloo S, Michener H, Shetty A, de Almeida Bastos DC, Traylor J, Ene C, Tummala S, Kumar VA, Prabhu SS. Transcranial magnetic stimulation (TMS) seeded tractography provides superior prediction of eloquence compared to anatomic seeded tractography. Neurooncol Adv 2022; 4:vdac126. [PMID: 36128584 PMCID: PMC9476227 DOI: 10.1093/noajnl/vdac126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Background
For patients with brain tumors, maximizing the extent of resection while minimizing postoperative neurological morbidity requires accurate preoperative identification of eloquent structures. Recent studies have provided evidence that anatomy may not always predict eloquence. In this study, we directly compare transcranial magnetic stimulation (TMS) data combined with tractography to traditional anatomic grading criteria for predicting permanent deficits in patients with motor eloquent gliomas.
Methods
We selected a cohort of 42 glioma patients with perirolandic tumors who underwent preoperative TMS mapping with subsequent resection and intraoperative mapping. We collected clinical outcome data from their chart with the primary outcome being new or worsened motor deficit present at 3 month follow up, termed “permanent deficit”. We overlayed the postoperative resection cavity onto the preoperative MRI containing preoperative imaging features.
Results
Almost half of the patients showed TMS positive points significantly displaced from the precentral gyrus, indicating tumor induced neuroplasticity. In multivariate regression, resection of TMS points was significantly predictive of permanent deficits while the resection of the precentral gyrus was not. TMS tractography showed significantly greater predictive value for permanent deficits compared to anatomic tractography, regardless of the fractional anisotropic (FA) threshold. For the best performing FA threshold of each modality, TMS tractography provided both higher positive and negative predictive value for identifying true nonresectable, eloquent cortical and subcortical structures.
Conclusion
TMS has emerged as a preoperative mapping modality capable of capturing tumor induced plastic reorganization, challenging traditional presurgical imaging modalities.
Collapse
Affiliation(s)
- Matthew Muir
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Sarah Prinsloo
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Hayley Michener
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Arya Shetty
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | | | - Jeffrey Traylor
- Department of Neurological Surgery, The University of Texas Southwestern Medical Center , Dallas, Texas , USA
| | - Chibawanye Ene
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Sudhakar Tummala
- Department of Neuro-Oncology, The University of Texas M.D. Anderson Cancer Center , Houston, Texas, USA
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center , Houston, Texas , USA
| |
Collapse
|
20
|
Maurer S, Butenschoen VM, Meyer B, Krieg SM. Non-invasive mapping of cortical categorization function by repetitive navigated transcranial magnetic stimulation. Sci Rep 2021; 11:24480. [PMID: 34966169 PMCID: PMC8716524 DOI: 10.1038/s41598-021-04071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/08/2021] [Indexed: 12/04/2022] Open
Abstract
Over the past years navigated repetitive transcranial magnetic stimulation (nrTMS) had become increasingly important for the preoperative examination and mapping of eloquent brain areas. Among other applications it was demonstrated that the detection of neuropsychological function, such as arithmetic processing or face recognition, is feasible with nrTMS. In order to investigate the mapping of further brain functions, this study aims to investigate the cortical mapping of categorization function via nrTMS. 20 healthy volunteers purely right-handed, with German as mother tongue underwent nrTMS mapping using 5 Hz/10 pulses. 52 cortical spots spread over each hemisphere were stimulated. The task consisted of 80 pictures of living and non-living images, which the volunteers were instructed to categorize while the simulation pulses were applied. The highest error rates for all errors of all subjects were observed in the left hemisphere’s posterior middle frontal gyrus (pMFG) with an error rate of 60%, as well as in the right pMFG and posterior supra marginal gyrus (pSMG) (45%). In total the task processing of non-living objects elicited more errors in total, than the recognition of living objects. nrTMS is able to detect cortical categorization function. Moreover, the observed bihemispheric representation, as well as the higher error incidence for the recognition of non-living objects is well in accordance with current literature. Clinical applicability for preoperative mapping in brain tumor patients but also in general neuroscience has to be evaluated as the next step.
Collapse
Affiliation(s)
- Stefanie Maurer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Vicki Marie Butenschoen
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.,TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany. .,TUM-Neuroimaging Center, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Ismaningerstr. 22, 81675, Munich, Germany.
| |
Collapse
|
21
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
22
|
Predicting the Extent of Resection of Motor-Eloquent Gliomas Based on TMS-Guided Fiber Tracking. Brain Sci 2021; 11:brainsci11111517. [PMID: 34827516 PMCID: PMC8615964 DOI: 10.3390/brainsci11111517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Surgical planning with nTMS-based tractography is proven to increase safety during surgery. A preoperative risk stratification model has been published based on the M1 infiltration, RMT ratio, and tumor to corticospinal tract distance (TTD). The correlation of TTD with corticospinal tract to resection cavity distance (TRD) and outcome is needed to further evaluate the validity of the model. Aim of the study: To use the postop MRI-derived resection cavity to measure how closely the resection cavity approximated the preoperatively calculated corticospinal tract (CST) and how this correlates with the risk model and the outcome. Methods: We included 183 patients who underwent nTMS-based DTI and surgical resection for presumed motor-eloquent gliomas. TTD, TRD, and motor outcome were recorded and tested for correlations. The intraoperative monitoring documentation was available for a subgroup of 48 patients, whose responses were correlated to TTD and TRD. Results: As expected, TTD and TRD showed a good correlation (Spearman’s ρ = 0.67, p < 0.001). Both the TTD and the TRD correlated significantly with the motor outcome at three months (Kendall’s Tau-b 0.24 for TTD, 0.31 for TRD, p < 0.001). Interestingly, the TTD and TRD correlated only slightly with residual tumor volume, and only after correction for outliers related to termination of resection due to intraoperative monitoring events or the proximity of other eloquent structures (TTD ρ = 0.32, p < 0.001; TRD ρ = 0.19, p = 0.01). This reflects the fact that intraoperative monitoring (IOM) phenomena do not always correlate with preoperative structural analysis, and that additional factors influence the intraoperative decision to abort resection, such as the adjacency of other vulnerable structures. The TTD was also significantly correlated with variations in motor evoked potential (MEP) responses (no/reversible decrease vs. irreversible decrease; p = 0.03). Conclusions: The TTD approximates the TRD well, confirming the best predictive parameter and giving strength to the nTMS-based risk stratification model. Our analysis of TRD supports the use of the nTMS-based TTD measurement to estimate the resection preoperatively, also confirming the 8 mm cutoff. Nevertheless, the TRD proved to have a slightly stronger correlation with the outcome as the surgeon’s experience, anatomofunctional knowledge, and MEP observations influence the expected EOR.
Collapse
|
23
|
Ille S, Schroeder A, Hostettler IC, Wostrack M, Meyer B, Krieg SM. Impacting the Treatment of Highly Eloquent Supratentorial Cerebral Cavernous Malformations by Noninvasive Functional Mapping-An Observational Cohort Study. Oper Neurosurg (Hagerstown) 2021; 21:467-477. [PMID: 34624894 DOI: 10.1093/ons/opab318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/18/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cerebral cavernous malformations (CCM) may cause cavernoma-related epilepsy (CRE) and intracranial hemorrhage (ICH). Functional mapping has shown its usefulness during the resection of eloquent lesions including the treatment of brain arteriovenous malformations. OBJECTIVE To evaluate the impact of noninvasive functional mapping on decision-making and resection of eloquently located CCM. METHODS Of 126 patients with intracranial cavernomas, we prospectively included 40 consecutive patients (31.7%) with highly eloquent CCM between 2012 and 2020. We performed functional mapping via navigated transcranial magnetic stimulation (nTMS) motor mapping in 30 cases and nTMS language mapping in 20 cases. Twenty patients suffered from CRE. CCM caused ICH in 18 cases. RESULTS We used functional mapping data including function-based tractography in all cases. Indication toward (31 cases) or against (9 cases) CCM resection was influenced by noninvasive functional mapping in 36 cases (90%). We resected CCMs in 24 cases, and 7 patients refused the recommendation for surgery. In 19 and 4 cases, we used additional intraoperative neuromonitoring and awake craniotomy, respectively. Patients suffered from transient postoperative motor or language deficits in 2 and 2 cases, respectively. No patient suffered from permanent deficits. After 1 yr of follow-up, anti-epileptic drugs could be discontinued in all patients who underwent surgery but 1 patient. CONCLUSION Surgery-related deficit rates are low even for highly eloquent CCM and seizure outcome is excellent. The present results show that noninvasive functional mapping and function-based tractography is a useful tool for the decision-making process and during microsurgical resection of eloquently located CCM.
Collapse
Affiliation(s)
- Sebastian Ille
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Axel Schroeder
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Isabel C Hostettler
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sandro M Krieg
- Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| |
Collapse
|
24
|
Salvati LF, De Marco R, Palmieri G, Minardi M, Massara A, Pesaresi A, Cagetti B, Melcarne A, Garbossa D. The Relevant Role of Navigated Tractography in Speech Eloquent Area Glioma Surgery: Single Center Experience. Brain Sci 2021; 11:brainsci11111436. [PMID: 34827434 PMCID: PMC8616013 DOI: 10.3390/brainsci11111436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Gliomas are among the most challenging pathologies for neurosurgeons due to their infiltrative and recurrent nature in functionally relevant regions. Current knowledge confirms that gross total resection highly influence survival in patient with glioma. However, surgery performed in eloquent brain area, could seriously compromise the quality of life in patient with reduced life expectancy even more if it concerns the language function. Methods: 18 right-handed patients with perisylvian gliomas on the left hemisphere were prospectively analyzed over a period of 12 months. Standardized preoperative Diffusion-Tensor-Imaging based tractography of the five main language Tracts (Arcuate Fasciculus, Frontal Aslant Tract, Inferior Fronto-Occipital Fasciculus, Inferior Longitudinal Fasciculus, Uncinate Fasciculus) was navigated during the surgical procedure. Using a validated method, correlations were made between the pre-operative fascicles and their possible infiltration and surgical damage. The language status was assessed using the Aachen Aphasia Test. Results: In all nine patients who developed a permanent disorder there was pre-operative involvement of at least one fascicle and resection of at least one of these. In this way, areas of high risk of permanent language damage have emerged as a result of surgical injury: the temporoparietal junction, the middle portion of the FAT and the temporal stem. Conclusions: Navigated tractography has proven to be a user-friendly tool that can assess perioperative risk, guide surgical resection, and help the neurosurgeon to find that balance between tumor resection and function preservation.
Collapse
Affiliation(s)
- Luca Francesco Salvati
- Department of Neurosurgery, Santa Corona Hospital, Asl2 Liguria, 17027 Pietra Ligure, Italy;
- Correspondence:
| | - Raffaele De Marco
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Giuseppe Palmieri
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Massimiliano Minardi
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Armando Massara
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Alessandro Pesaresi
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Bernarda Cagetti
- Department of Neurosurgery, Santa Corona Hospital, Asl2 Liguria, 17027 Pietra Ligure, Italy;
| | - Antonio Melcarne
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| | - Diego Garbossa
- Neurosurgery Unit, AOC Città della Salute e della Scienza, Department of Neuroscience “Rita Levi Montalcini”, University of Turin, 10126 Turin, Italy; (R.D.M.); (G.P.); (M.M.); (A.M.); (A.P.); (A.M.); (D.G.)
| |
Collapse
|
25
|
Picht T, Calvé ML, Tomasello R, Fekonja L, Gholami MF, Bruhn M, Zwick C, Rabe JP, Müller-Birn C, Vajkoczy P, Sauer IM, Zachow S, Nyakatura JA, Ribault P, Pulvermüller F. Letter: A Note on Neurosurgical Resection and Why We Need to Rethink Cutting. Neurosurgery 2021; 89:E289-E291. [PMID: 34423823 PMCID: PMC8510846 DOI: 10.1093/neuros/nyab326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Thomas Picht
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Simulation and Training Center Charité-Universitätsmedizin Berlin, Berlin, Germany
- Einstein Center for Neurosciences Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maxime Le Calvé
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Rosario Tomasello
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Brain Language Laboratory Department of Philosophy and Humanities Freie Universität Berlin, Berlin, Germany
| | - Lucius Fekonja
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mohammad Fardin Gholami
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Physics & IRIS Adlershof Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Bruhn
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Karlsruhe University of Arts and Design, Karlsruhe, Germany
| | - Carola Zwick
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- weißensee kunsthochschule Berlin, Berlin, Germany
| | - Jürgen P Rabe
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Physics & IRIS Adlershof Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Müller-Birn
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Computer Science Freie Universität Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Igor M Sauer
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Surgery Experimental Surgery Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Stefan Zachow
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Zuse Institute Berlin, Berlin, Germany
- Department of Oral and Maxillofacial Surgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - John A Nyakatura
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Comparative Zoology Institute of Biology Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patricia Ribault
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery Charité-Universitätsmedizin Berlin, Berlin, Germany
- weißensee kunsthochschule Berlin, Berlin, Germany
- École Nationale Supérieure des Beaux-Arts de Paris, Paris, France
| | - Friedemann Pulvermüller
- Cluster of Excellence Matters of Activity. Image Space Material Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center for Neurosciences Charité-Universitätsmedizin Berlin, Berlin, Germany
- Brain Language Laboratory Department of Philosophy and Humanities Freie Universität Berlin, Berlin, Germany
- Berlin School of Mind and Brain Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
26
|
Fekonja LS, Wang Z, Doppelbauer L, Vajkoczy P, Picht T, Pulvermüller F, Dreyer FR. Lesion-symptom mapping of language impairments in patients suffering from left perisylvian gliomas. Cortex 2021; 144:1-14. [PMID: 34537591 DOI: 10.1016/j.cortex.2021.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/10/2021] [Accepted: 08/02/2021] [Indexed: 11/30/2022]
Abstract
Brain tumors cause local structural impairments of the cerebral network. Moreover, brain tumors can also affect functional brain networks more distant from the lesion. In this study, we analyzed the impact of glioma WHO grade II-IV tumors on grey and white matter in relation to impaired language function. In a retrospective analysis of 60 patients, 14 aphasic and 46 non-aphasic, voxel-based lesion-symptom mapping (VLSM) was used to identify tumor induced lesions in grey (GM) and white matter (WM) related to patients' performance in subtests of the Aachen Aphasia Test (AAT). Significant clusters were analyzed for atlas-based grey and white matter involvements in relation to different linguistic modalities. VLSM analysis indicated significant contribution of a posterior perisylvian cluster covering WM and GM to AAT performance averaged across subtests. When considering individual AAT subtests, a substantial overlap between significant clusters for analysis of the token test, picture naming and language comprehension results could be observed. The WM-cluster intersections reflect the overall importance of the perisylvian area in language function, similarly to GM participations. Especially the constant high percentages of Heschl's gyrus, superior temporal gyrus, inferior longitudinal and middle longitudinal fascicles, but also arcuate and inferior fronto-occipital fascicles highlight the importance of the posterior perisylvian area for language function.
Collapse
Affiliation(s)
- Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany.
| | - Ziqian Wang
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lea Doppelbauer
- Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany; Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany
| | - Friedemann Pulvermüller
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany; Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany
| | - Felix R Dreyer
- Cluster of Excellence: "Matters of Activity. Image Space Material", Humboldt University, Berlin, Germany; Freie Universität Berlin, Brain Language Laboratory, Department of Philosophy and Humanities, Berlin, Germany; Medical School OWL, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
27
|
Morales H. Current and Future Challenges of Functional MRI and Diffusion Tractography in the Surgical Setting: From Eloquent Brain Mapping to Neural Plasticity. Semin Ultrasound CT MR 2021; 42:474-489. [PMID: 34537116 DOI: 10.1053/j.sult.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades ago, Spetzler (1986) and Sawaya (1998) provided a rough brain segmentation of the eloquent areas of the brain, aimed to help surgical decisions in cases of vascular malformations and tumors, respectively. Currently in clinical use, their criteria are in need of revision. Defining functions (eg, sensorimotor, language and visual) that should be preserved during surgery seems a straightforward task. In practice, locating the specific areas that could cause a permanent vs transient deficit is not an easy task. This is particularly true for the associative cortex and cognitive domains such as language. The old model, with Broca's and Wernicke's areas at the forefront, has been superseded by a dual-stream model of parallel language processing; named ventral and dorsal pathways. This complicated network of cortical hubs and subcortical white matter pathways needing preservation during surgery is a work in progress. Preserving not only cortical regions but most importantly preserving the connections, or white matter fiber bundles, of core regions in the brain is the new paradigm. For instance, the arcuate fascicululs and inferior fronto-occipital fasciculus are key components of the dorsal and ventral language pathways, respectively; and their damage result in permanent language deficits. Interestedly, the damage of the temporal portions of these bundles -where there is a crossroad with other multiple bundles-, appears to be more important (permanent) than the damage of the frontal portions - where plasticity and contralateral activation could help. Although intraoperative direct cortical and subcortical stimulation have contributed largely, advanced MR techniques such as functional MRI (fMRI) and diffusion tractography (DT), are at the epi-center of our current understanding. Nevertheless, these techniques posse important challenges: such as neurovascular uncoupling or venous bias on fMRI; and appropriate anatomical validation or accurate representation of crossing fibers on DT. These limitations should be well understood and taken into account in clinical practice. Unifying multidisciplinary research and clinical efforts is desirable, so these techniques could contribute more efficiently not only to locate eloquent areas but to improve outcomes and our understanding of neural plasticity. Finally, although there are constant anatomical and functional regions at the individual level, there is a known variability at the inter-individual level. This concept should strengthen the importance of a personalized approach when evaluating these regions on fMRI and DT. It should strengthen the importance of personalized treatments as well, aimed to meet tailored needs and expectations.
Collapse
Affiliation(s)
- Humberto Morales
- Section of Neuroradiology, University of Cincinnati Medical Center, Cincinnati, OH.
| |
Collapse
|
28
|
Pulvermüller F, Tomasello R, Henningsen-Schomers MR, Wennekers T. Biological constraints on neural network models of cognitive function. Nat Rev Neurosci 2021; 22:488-502. [PMID: 34183826 PMCID: PMC7612527 DOI: 10.1038/s41583-021-00473-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 02/06/2023]
Abstract
Neural network models are potential tools for improving our understanding of complex brain functions. To address this goal, these models need to be neurobiologically realistic. However, although neural networks have advanced dramatically in recent years and even achieve human-like performance on complex perceptual and cognitive tasks, their similarity to aspects of brain anatomy and physiology is imperfect. Here, we discuss different types of neural models, including localist, auto-associative, hetero-associative, deep and whole-brain networks, and identify aspects under which their biological plausibility can be improved. These aspects range from the choice of model neurons and of mechanisms of synaptic plasticity and learning to implementation of inhibition and control, along with neuroanatomical properties including areal structure and local and long-range connectivity. We highlight recent advances in developing biologically grounded cognitive theories and in mechanistically explaining, on the basis of these brain-constrained neural models, hitherto unaddressed issues regarding the nature, localization and ontogenetic and phylogenetic development of higher brain functions. In closing, we point to possible future clinical applications of brain-constrained modelling.
Collapse
Affiliation(s)
- Friedemann Pulvermüller
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany.
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
- Cluster of Excellence 'Matters of Activity', Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Rosario Tomasello
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence 'Matters of Activity', Humboldt-Universität zu Berlin, Berlin, Germany
| | - Malte R Henningsen-Schomers
- Brain Language Laboratory, Department of Philosophy and Humanities, WE4, Freie Universität Berlin, Berlin, Germany
- Cluster of Excellence 'Matters of Activity', Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Wennekers
- School of Engineering, Computing and Mathematics, University of Plymouth, Plymouth, UK
| |
Collapse
|
29
|
Assessment of a Reliable Fractional Anisotropy Cutoff in Tractography of the Corticospinal Tract for Neurosurgical Patients. Brain Sci 2021; 11:brainsci11050650. [PMID: 34065682 PMCID: PMC8155834 DOI: 10.3390/brainsci11050650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Tractography has become a standard technique for planning neurosurgical operations in the past decades. This technique relies on diffusion magnetic resonance imaging. The cutoff value for the fractional anisotropy (FA) has an important role in avoiding false-positive and false-negative results. However, there is a wide variation in FA cutoff values. Methods: We analyzed a prospective cohort of 14 patients (six males and eight females, 50.1 ± 4.0 years old) with intracerebral tumors that were mostly gliomas. Magnetic resonance imaging (MRI) was obtained within 7 days before and within 7 days after surgery with T1 and diffusion tensor image (DTI) sequences. We, then, reconstructed the corticospinal tract (CST) in all patients and extracted the FA values within the resulting volume. Results: The mean FA in all CSTs was 0.4406 ± 0.0003 with the fifth percentile at 0.1454. FA values in right-hemispheric CSTs were lower (p < 0.0001). Postoperatively, the FA values were more condensed around their mean (p < 0.0001). The analysis of infiltrated or compressed CSTs revealed a lower fifth percentile (0.1407 ± 0.0109 versus 0.1763 ± 0.0040, p = 0.0036). Conclusion: An FA cutoff value of 0.15 appears to be reasonable for neurosurgical patients and may shorten the tractography workflow. However, infiltrated fiber bundles must trigger vigilance and may require lower cutoffs.
Collapse
|
30
|
Zemmoura I, Burkhardt E, Herbet G. The inferior longitudinal fasciculus: anatomy, function and surgical considerations. J Neurosurg Sci 2021; 65:590-604. [PMID: 33940783 DOI: 10.23736/s0390-5616.21.05391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inferior longitudinal fasciculus (ILF) is a large association white matter tract that interconnects, in a bidirectional manner, the occipital cortex to anterior temporal structures. In view of both its pattern of cortical projections and its recently evidenced multilayered anatomical organization, the ILF has been supposed to be vital for maintaining a wide range of cognitive and affective processes operating on the visual modality. As tumors commonly damage the temporal cortex, an updated knowledge of the functional anatomy of this ventral tract is needed to better map and monitor online its potential functions and thus to improve surgical outcomes. In this review, we first describe the gross anatomy of the ILF, its array of cortical terminations and its different layers. We then provide a comprehensive review of the functions that have been assigned to the tract. We successively address its role in object and face recognition, visual emotion recognition, language and semantic, including reading, and memory. It is especially shown that the ILF is critically involved in visually-guided behaviors, as its breakdown, both in sudden neurosurgical and progressive neurodegenerative diseases, is commonly associated with visual-specific neuropsychological syndromes (e.g. prosopagnosia and pure alexia, and so on). In the last section, we discuss the extent to which the ILF can reorganize in response to glioma infiltration and to surgery, and provide some reflections on how its intra-operative mapping may be refined.
Collapse
Affiliation(s)
- Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France - .,CHRU de Tours, Neurosurgery Department, Tours, France -
| | - Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS UMR5203, INSERM U1191, Montpellier, France.,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
31
|
Ius T, Somma T, Baiano C, Guarracino I, Pauletto G, Nilo A, Maieron M, Palese F, Skrap M, Tomasino B. Risk Assessment by Pre-surgical Tractography in Left Hemisphere Low-Grade Gliomas. Front Neurol 2021; 12:648432. [PMID: 33679596 PMCID: PMC7928377 DOI: 10.3389/fneur.2021.648432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Tracking the white matter principal tracts is routinely typically included during the pre-surgery planning examinations and has revealed to limit functional resection of low-grade gliomas (LGGs) in eloquent areas. Objective: We examined the integrity of the Superior Longitudinal Fasciculus (SLF) and Inferior Fronto-Occipital Fasciculus (IFOF), both known to be part of the language-related network in patients with LGGs involving the temporo-insular cortex. In a comparative approach, we contrasted the main quantitative fiber tracking values in the tumoral (T) and healthy (H) hemispheres to test whether or not this ratio could discriminate amongst patients with different post-operative outcomes. Methods: Twenty-six patients with LGGs were included. We obtained quantitative fiber tracking values in the tumoral and healthy hemispheres and calculated the ratio (HIFOF–TIFOF)/HIFOF and the ratio (HSLF–TSLF)/HSLF on the number of streamlines. We analyzed how these values varied between patients with and without post-operative neurological outcomes and between patients with different post-operative Engel classes. Results: The ratio for both IFOF and SLF significantly differed between patient with and without post-operative neurological language deficits. No associations were found between white matter structural changes and post-operative seizure outcomes. Conclusions: Calculating the ratio on the number of streamlines and fractional anisotropy between the tumoral and the healthy hemispheres resulted to be a useful approach, which can prove to be useful during the pre-operative planning examination, as it gives a glimpse on the potential clinical outcomes in patients with LGGs involving the left temporo-insular cortex.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cinzia Baiano
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Ilaria Guarracino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Annacarmen Nilo
- Clinical Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Marta Maieron
- Medical Physics, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Barbara Tomasino
- Scientific Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) E. Medea, Pordenone, Italy
| |
Collapse
|