1
|
Kebaya LMN, Tang L, Altamimi T, Kowalczyk A, Musabi M, Roychaudhuri S, Vahidi H, Meyerink P, de Ribaupierre S, Bhattacharya S, de Moraes LTAR, Lawrence KS, Duerden EG. Altered functional connectivity in preterm neonates with intraventricular hemorrhage assessed using functional near-infrared spectroscopy. Sci Rep 2024; 14:22300. [PMID: 39333278 PMCID: PMC11437059 DOI: 10.1038/s41598-024-72515-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
Intraventricular hemorrhage (IVH) is a common neurological injury following very preterm birth. Resting-state functional connectivity (RSFC) using functional magnetic resonance imaging (fMRI) is associated with injury severity; yet, fMRI is impractical for use in intensive care settings. Functional near-infrared spectroscopy (fNIRS) measures RSFC through cerebral hemodynamics and has greater bedside accessibility than fMRI. We evaluated RSFC in preterm neonates with IVH using fNIRS and fMRI at term-equivalent age, and compared fNIRS connectivity between healthy newborns and those with IVH. Sixteen very preterm born neonates were scanned with fMRI and fNIRS. Additionally, fifteen healthy newborns were scanned with fNIRS. In preterms with IVH, fNIRS and fMRI connectivity maps were compared using Euclidean and Jaccard distances. The severity of IVH in relation to fNIRS-RSFC strength was examined using generalized linear models. fNIRS and fMRI RSFC maps showed good correspondence. Connectivity strength was significantly lower in healthy newborns (p-value = 0.023) and preterm infants with mild IVH (p-value = 0.026) compared to infants with moderate/severe IVH. fNIRS has potential to be a new bedside tool for assessing brain injury and monitoring cerebral hemodynamics, as well as a promising biomarker for IVH severity in very preterm born infants.
Collapse
Affiliation(s)
- Lilian M N Kebaya
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Department of Paediatrics, Division of Neonatal-Perinatal Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Lingkai Tang
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
| | - Talal Altamimi
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Alexandra Kowalczyk
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Melab Musabi
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sriya Roychaudhuri
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Homa Vahidi
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Paige Meyerink
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Sandrine de Ribaupierre
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
- Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Soume Bhattacharya
- Neonatal-Perinatal Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | | - Keith St Lawrence
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada
- Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Emma G Duerden
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Biomedical Engineering, Faculty of Engineering, Western University, London, ON, Canada.
- Applied Psychology, Faculty of Education, Western University, 1137 Western Road, London, ON, N6G 1G7, Canada.
| |
Collapse
|
2
|
Barnes-Davis ME, Williamson BJ, Kline JE, Kline-Fath BM, Tkach J, He L, Yuan W, Parikh NA. Structural connectivity at term equivalent age and language in preterm children at 2 years corrected. Brain Commun 2024; 6:fcae126. [PMID: 38665963 PMCID: PMC11043656 DOI: 10.1093/braincomms/fcae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
We previously reported interhemispheric structural hyperconnectivity bypassing the corpus callosum in children born extremely preterm (<28 weeks) versus term children. This increased connectivity was positively associated with language performance at 4-6 years of age in our prior work. In the present study, we aim to investigate whether this extracallosal connectivity develops in extremely preterm infants at term equivalent age by leveraging a prospective cohort study of 350 very and extremely preterm infants followed longitudinally in the Cincinnati Infant Neurodevelopment Early Prediction Study. For this secondary analysis, we included only children born extremely preterm and without significant brain injury (n = 95). We use higher-order diffusion modelling to assess the degree to which extracallosal pathways are present in extremely preterm infants and predictive of later language scores at 22-26 months corrected age. We compare results obtained from two higher-order diffusion models: generalized q-sampling imaging and constrained spherical deconvolution. Advanced MRI was obtained at term equivalent age (39-44 weeks post-menstrual age). For structural connectometry analysis, we assessed the level of correlation between white matter connectivity at the whole-brain level at term equivalent age and language scores at 2 years corrected age, controlling for post-menstrual age, sex, brain abnormality score and social risk. For our constrained spherical deconvolution analyses, we performed connectivity-based fixel enhancement, using probabilistic tractography to inform statistical testing of the hypothesis that fibre metrics at term equivalent age relate to language scores at 2 years corrected age after adjusting for covariates. Ninety-five infants were extremely preterm with no significant brain injury. Of these, 53 had complete neurodevelopmental and imaging data sets that passed quality control. In the connectometry analyses adjusted for covariates and multiple comparisons (P < 0.05), the following tracks were inversely correlated with language: bilateral cerebellar white matter and middle cerebellar peduncles, bilateral corticospinal tracks, posterior commissure and the posterior inferior fronto-occipital fasciculus. No tracks from the constrained spherical deconvolution/connectivity-based fixel enhancement analyses remained significant after correction for multiple comparisons. Our findings provide critical information about the ontogeny of structural brain networks supporting language in extremely preterm children. Greater connectivity in more posterior tracks that include the cerebellum and connections to the regions of the temporal lobes at term equivalent age appears to be disadvantageous for language development.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Julia E Kline
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Beth M Kline-Fath
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Jean Tkach
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Lili He
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, Imaging Research Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Weihong Yuan
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Cincinnati Children’s Hospital Medical Center, Pediatric Neuroimaging Research Consortium, Cincinnati, OH, USA
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
3
|
Fu TT, Barnes-Davis ME, Fujiwara H, Folger AT, Merhar SL, Kadis DS, Poindexter BB, Parikh NA. Correlation of NICU anthropometry in extremely preterm infants with brain development and language scores at early school age. Sci Rep 2023; 13:15273. [PMID: 37714903 PMCID: PMC10504298 DOI: 10.1038/s41598-023-42281-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
Growth in preterm infants in the neonatal intensive care unit (NICU) is associated with increased global and regional brain volumes at term, and increased postnatal linear growth is associated with higher language scores at age 2. It is unknown whether these relationships persist to school age or if an association between growth and cortical metrics exists. Using regression analyses, we investigated relationships between the growth of 42 children born extremely preterm (< 28 weeks gestation) from their NICU hospitalization, standardized neurodevelopmental/language assessments at 2 and 4-6 years, and multiple neuroimaging biomarkers obtained from T1-weighted images at 4-6 years. We found length at birth and 36 weeks post-menstrual age had positive associations with language scores at 2 years in multivariable linear regression. No growth metric correlated with 4-6 year assessments. Weight and head circumference at 36 weeks post-menstrual age positively correlated with total brain volume and negatively with global cortical thickness at 4-6 years of age. Head circumference relationships remained significant after adjusting for age, sex, and socioeconomic status. Right temporal cortical thickness was related to receptive language at 4-6 years in the multivariable model. Results suggest growth in the NICU may have lasting effects on brain development in extremely preterm children.
Collapse
Affiliation(s)
- Ting Ting Fu
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Maria E Barnes-Davis
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hisako Fujiwara
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alonzo T Folger
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stephanie L Merhar
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Brenda B Poindexter
- Division of Neonatology, Department of Pediatrics, Emory University School of Medicine and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Nehal A Parikh
- Division of Neonatology, Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, MLC 7009, Cincinnati, OH, 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
4
|
Kelly KJ, Hutton JS, Parikh NA, Barnes-Davis ME. Neuroimaging of brain connectivity related to reading outcomes in children born preterm: A critical narrative review. Front Pediatr 2023; 11:1083364. [PMID: 36937974 PMCID: PMC10014573 DOI: 10.3389/fped.2023.1083364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
Premature children are at high risk for delays in language and reading, which can lead to poor school achievement. Neuroimaging studies have assessed structural and functional connectivity by diffusion MRI, functional MRI, and magnetoencephalography, in order to better define the "reading network" in children born preterm. Findings point to differences in structural and functional connectivity compared to children born at term. It is not entirely clear whether this discrepancy is due to delayed development or alternative mechanisms for reading, which may have developed to compensate for brain injury in the perinatal period. This narrative review critically appraises the existing literature evaluating the neural basis of reading in preterm children, summarizes the current findings, and suggests future directions in the field.
Collapse
Affiliation(s)
- Kaitlyn J. Kelly
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - John S. Hutton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of General & Community Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Nehal A. Parikh
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Maria E. Barnes-Davis
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
5
|
Barnes-Davis ME, Williamson BJ, Merhar SL, Nagaraj UD, Parikh NA, Kadis DS. Extracallosal Structural Connectivity Is Positively Associated With Language Performance in Well-Performing Children Born Extremely Preterm. Front Pediatr 2022; 10:821121. [PMID: 35372163 PMCID: PMC8971711 DOI: 10.3389/fped.2022.821121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 01/29/2023] Open
Abstract
Children born extremely preterm (<28 weeks gestation) are at risk for language delay or disorders. Decreased structural connectivity in preterm children has been associated with poor language outcome. Previously, we used multimodal imaging techniques to demonstrate that increased functional connectivity during a stories listening task was positively associated with language scores for preterm children. This functional connectivity was supported by extracallosal structural hyperconnectivity when compared to term-born children. Here, we attempt to validate this finding in a distinct cohort of well-performing extremely preterm children (EPT, n = 16) vs. term comparisons (TC, n = 28) and also compare this to structural connectivity in a group of extremely preterm children with a history of language delay or disorder (EPT-HLD, n = 8). All participants are 4-6 years of age. We perform q-space diffeomorphic reconstruction and functionally-constrained structural connectometry (based on fMRI activation), including a novel extension enabling between-groups comparisons with non-parametric ANOVA. There were no significant differences between groups in age, sex, race, ethnicity, parental education, family income, or language scores. For EPT, tracks positively associated with language scores included the bilateral posterior inferior fronto-occipital fasciculi and bilateral cerebellar peduncles and additional cerebellar white matter. Quantitative anisotropy in these pathways accounted for 55% of the variance in standardized language scores for the EPT group specifically. Future work will expand this cohort and follow longitudinally to investigate the impact of environmental factors on developing language networks and resiliency in the preterm brain.
Collapse
Affiliation(s)
- Maria E Barnes-Davis
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Brady J Williamson
- Department of Radiology, University of Cincinnati, Cincinnati, OH, United States
| | - Stephanie L Merhar
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States
| | - Usha D Nagaraj
- Department of Radiology, University of Cincinnati, Cincinnati, OH, United States
| | - Nehal A Parikh
- Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, United States.,Pediatric Neuroimaging Research Consortium, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Darren S Kadis
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Functional Hyperconnectivity during a Stories Listening Task in Magnetoencephalography Is Associated with Language Gains for Children Born Extremely Preterm. Brain Sci 2021; 11:brainsci11101271. [PMID: 34679336 PMCID: PMC8534020 DOI: 10.3390/brainsci11101271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 01/25/2023] Open
Abstract
Extreme prematurity (EPT, <28 weeks gestation) is associated with language problems. We previously reported hyperconnectivity in EPT children versus term children (TC) using magnetoencephalography (MEG). Here, we aim to ascertain whether functional hyperconnectivity is a marker of language resiliency for EPT children, validating our earlier work with a distinct sample of contemporary well-performing EPT and preterm children with history of language delay (EPT-HLD). A total of 58 children (17 EPT, 9 EPT-HLD, and 32 TC) participated in stories listening during MEG and functional magnetic resonance imaging (fMRI) at 4–6 years. We compared connectivity in EPT and EPT-HLD, investigating relationships with language over time. We measured fMRI activation during stories listening and parcellated the activation map to obtain “nodes” for MEG connectivity analysis. There were no significant group differences in age, sex, race, ethnicity, parental education, income, language scores, or language representation on fMRI. MEG functional connectivity (weighted phase lag index) was significantly different between groups. Preterm children had increased connectivity, replicating our earlier work. EPT and EPT-HLD had hyperconnectivity versus TC at 24–26 Hz, with EPT-HLD exhibiting greatest connectivity. Network strength correlated with change in standardized scores from 2 years to 4–6 years of age, suggesting hyperconnectivity is a marker of advancing language development.
Collapse
|