1
|
Ortega-Robles E, de Celis Alonso B, Cantillo-Negrete J, Carino-Escobar RI, Arias-Carrión O. Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sci 2025; 15:79. [PMID: 39851446 PMCID: PMC11763950 DOI: 10.3390/brainsci15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques are transforming the study of movement disorders by providing valuable insights into disease mechanisms. This narrative review presents a comprehensive overview of their applications in this field, offering an updated perspective on their potential for early diagnosis, disease monitoring, and therapeutic evaluation. Emerging MRI modalities such as neuromelanin-sensitive imaging, diffusion-weighted imaging, magnetization transfer imaging, and relaxometry provide sensitive biomarkers that can detect early microstructural degeneration, iron deposition, and connectivity disruptions in key regions like the substantia nigra. These techniques enable earlier and more accurate differentiation of movement disorders, including Parkinson's disease, progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration, Lewy body and frontotemporal dementia, Huntington's disease, and dystonia. Furthermore, MRI provides objective metrics for tracking disease progression and assessing therapeutic efficacy, making it an indispensable tool in clinical trials. Despite these advances, the absence of standardized protocols limits their integration into routine clinical practice. Addressing this gap and incorporating these techniques more systematically could bring the field closer to leveraging advanced MRI for personalized treatment strategies, ultimately improving outcomes for individuals with movement disorders.
Collapse
Affiliation(s)
- Emmanuel Ortega-Robles
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico;
| | - Benito de Celis Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Jessica Cantillo-Negrete
- Technological Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Ruben I. Carino-Escobar
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico;
| |
Collapse
|
2
|
Li G, Hsu LM, Wu Y, Bozoki AC, Shih YYI, Yap PT. Revealing excitation-inhibition imbalance in Alzheimer's disease using multiscale neural model inversion of resting-state functional MRI. COMMUNICATIONS MEDICINE 2025; 5:17. [PMID: 39814858 PMCID: PMC11735810 DOI: 10.1038/s43856-025-00736-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a serious neurodegenerative disorder without a clear understanding of pathophysiology. Recent experimental data have suggested neuronal excitation-inhibition (E-I) imbalance as an essential element of AD pathology, but E-I imbalance has not been systematically mapped out for either local or large-scale neuronal circuits in AD, precluding precise targeting of E-I imbalance in AD treatment. METHOD In this work, we apply a Multiscale Neural Model Inversion (MNMI) framework to the resting-state functional MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) to identify brain regions with disrupted E-I balance in a large network during AD progression. RESULTS We observe that both intra-regional and inter-regional E-I balance is progressively disrupted from cognitively normal individuals, to mild cognitive impairment (MCI) and to AD. Also, we find that local inhibitory connections are more significantly impaired than excitatory ones and the strengths of most connections are reduced in MCI and AD, leading to gradual decoupling of neural populations. Moreover, we reveal a core AD network comprised mainly of limbic and cingulate regions. These brain regions exhibit consistent E-I alterations across MCI and AD, and thus may represent important AD biomarkers and therapeutic targets. Lastly, the E-I balance of multiple brain regions in the core AD network is found to be significantly correlated with the cognitive test score. CONCLUSIONS Our study constitutes an important attempt to delineate E-I imbalance in large-scale neuronal circuits during AD progression, which may facilitate the development of new treatment paradigms to restore physiological E-I balance in AD.
Collapse
Affiliation(s)
- Guoshi Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrea C Bozoki
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Markett S, Boeken OJ, Wudarczyk OA. Multimodal imaging investigation of structural rich club alterations in Alzheimer's disease and mild cognitive impairment: Amyloid deposition, structural atrophy, and functional activation differences. Eur J Neurosci 2024; 60:4169-4181. [PMID: 38779858 DOI: 10.1111/ejn.16384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Alzheimer's disease (AD) is characterized by significant cerebral dysfunction, including increased amyloid deposition, gray matter atrophy, and changes in brain function. The involvement of highly connected network hubs, known as the "rich club," in the pathology of the disease remains inconclusive despite previous research efforts. In this study, we aimed to systematically assess the link between the rich club and AD using a multimodal neuroimaging approach. We employed network analyses of diffusion magnetic resonance imaging (MRI), longitudinal assessments of gray matter atrophy, amyloid deposition measurements using positron emission tomography (PET) imaging, and meta-analytic data on functional activation differences. Our study focused on evaluating the role of both the structural brain network's core and extended rich club regions in individuals with mild cognitive impairment (MCI) and those diagnosed with AD. Our findings revealed that structural rich club regions exhibited accelerated gray matter atrophy and increased amyloid deposition in both MCI and AD. Importantly, these regions remained unaffected by altered functional activation patterns observed outside the core rich club regions. These results shed light on the connection between two major AD biomarkers and the rich club, providing valuable insights into AD as a potential disconnection syndrome.
Collapse
Affiliation(s)
| | - Ole J Boeken
- Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin, Berlin, Germany
| | | |
Collapse
|
4
|
Zheng J, Cheng Y, Wu X, Li X, Fu Y, Yang Z. Rich-club organization of whole-brain spatio-temporal multilayer functional connectivity networks. Front Neurosci 2024; 18:1405734. [PMID: 38855440 PMCID: PMC11157044 DOI: 10.3389/fnins.2024.1405734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective In this work, we propose a novel method for constructing whole-brain spatio-temporal multilayer functional connectivity networks (FCNs) and four innovative rich-club metrics. Methods Spatio-temporal multilayer FCNs achieve a high-order representation of the spatio-temporal dynamic characteristics of brain networks by combining the sliding time window method with graph theory and hypergraph theory. The four proposed rich-club scales are based on the dynamic changes in rich-club node identity, providing a parameterized description of the topological dynamic characteristics of brain networks from both temporal and spatial perspectives. The proposed method was validated in three independent differential analysis experiments: male-female gender difference analysis, analysis of abnormality in patients with autism spectrum disorders (ASD), and individual difference analysis. Results The proposed method yielded results consistent with previous relevant studies and revealed some innovative findings. For instance, the dynamic topological characteristics of specific white matter regions effectively reflected individual differences. The increased abnormality in internal functional connectivity within the basal ganglia may be a contributing factor to the occurrence of repetitive or restrictive behaviors in ASD patients. Conclusion The proposed methodology provides an efficacious approach for constructing whole-brain spatio-temporal multilayer FCNs and conducting analysis of their dynamic topological structures. The dynamic topological characteristics of spatio-temporal multilayer FCNs may offer new insights into physiological variations and pathological abnormalities in neuroscience.
Collapse
Affiliation(s)
- Jianhui Zheng
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China
| | - Yuhao Cheng
- Huaxi Molecular Imaging Research Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Wu
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Xiaojie Li
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Ying Fu
- Department of Computer Science, Chengdu University of Information Technology, Chengdu, China
| | - Zhipeng Yang
- College of Electronic Engineering, Chengdu University of Information Technology, Chengdu, China
| |
Collapse
|
5
|
Wang Z, Xiang L, Zhang R. P300 intention recognition based on phase lag index (PLI)-rich-club brain functional network. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:045116. [PMID: 38624364 DOI: 10.1063/5.0202770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024]
Abstract
Brain-computer interface (BCI) technology based on P300 signals has a broad application prospect in the assessment and diagnosis of clinical diseases and game control. The paper of selecting key electrodes to realize a wearable intention recognition system has become a hotspot for scholars at home and abroad. In this paper, based on the rich-club phenomenon that exists in the process of intention generation, a phase lag index (PLI)-rich-club-based intention recognition method for P300 is proposed. The rich-club structure is a network consisting of electrodes that are highly connected with other electrodes in the process of P300 generation. To construct the rich-club network, this paper uses PLI to construct the brain functional network, calculates rich-club coefficients of the network in the range of k degrees, initially identifies rich-club nodes based on the feature of node degree, and then performs a descending order of betweenness centrality and identifies the nodes with larger betweenness centrality as the specific rich-club nodes, extracts the non-linear features and frequency domain features of Rich-club nodes, and finally uses support vector machine for classification. The experimental results show that the range of rich-club coefficients is smaller with intent compared to that without intent. Validation was performed on the BCI Competition III dataset by reducing the number of channels to 17 and 16 for subject A and subject B, with recognition quasi-departure rates of 96.93% and 94.93%, respectively, and on the BCI Competition II dataset by reducing the number of channels to 17 for subjects, with a recognition accuracy of 95.50%.
Collapse
Affiliation(s)
- Zhongmin Wang
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Xi'an Key Laboratory of Big Data and Intelligent Computing, Xi'an 710121, Shaanxi, China
| | - Leihua Xiang
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
| | - Rong Zhang
- School of Computer Science and Technology, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, Xi'an University of Posts and Telecommunications, Xi'an, Shaanxi 710121, China
- Xi'an Key Laboratory of Big Data and Intelligent Computing, Xi'an 710121, Shaanxi, China
| |
Collapse
|
6
|
Zuo Q, Hu J, Zhang Y, Pan J, Jing C, Chen X, Meng X, Hong J. Brain Functional Network Generation Using Distribution-Regularized Adversarial Graph Autoencoder with Transformer for Dementia Diagnosis. COMPUTER MODELING IN ENGINEERING & SCIENCES : CMES 2023; 137:2129-2147. [PMID: 38566839 PMCID: PMC7615791 DOI: 10.32604/cmes.2023.028732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The topological connectivity information derived from the brain functional network can bring new insights for diagnosing and analyzing dementia disorders. The brain functional network is suitable to bridge the correlation between abnormal connectivities and dementia disorders. However, it is challenging to access considerable amounts of brain functional network data, which hinders the widespread application of data-driven models in dementia diagnosis. In this study, a novel distribution-regularized adversarial graph auto-Encoder (DAGAE) with transformer is proposed to generate new fake brain functional networks to augment the brain functional network dataset, improving the dementia diagnosis accuracy of data-driven models. Specifically, the label distribution is estimated to regularize the latent space learned by the graph encoder, which can make the learning process stable and the learned representation robust. Also, the transformer generator is devised to map the node representations into node-to-node connections by exploring the long-term dependence of highly-correlated distant brain regions. The typical topological properties and discriminative features can be preserved entirely. Furthermore, the generated brain functional networks improve the prediction performance using different classifiers, which can be applied to analyze other cognitive diseases. Attempts on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset demonstrate that the proposed model can generate good brain functional networks. The classification results show adding generated data can achieve the best accuracy value of 85.33%, sensitivity value of 84.00%, specificity value of 86.67%. The proposed model also achieves superior performance compared with other related augmented models. Overall, the proposed model effectively improves cognitive disease diagnosis by generating diverse brain functional networks.
Collapse
Affiliation(s)
- Qiankun Zuo
- School of Information Engineering, Hubei University of Economics, Wuhan, 430205, China
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junhua Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Yudong Zhang
- School of Computing and Mathematic Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Junren Pan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xuhang Chen
- Faculty of Science and Technology, University of Macau, Macau, 999078, China
| | - Xiaobo Meng
- School of Geophysics, Chengdu University of Technology, Chengdu, 610059, China
| | - Jin Hong
- Laboratory of Artificial Intelligence and 3D Technologies for Cardiovascular Diseases, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041, China
- Medical Research Institute, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 519041, China
| |
Collapse
|
7
|
Hu Q, Li Y, Wu Y, Lin X, Zhao X. Brain network hierarchy reorganization in Alzheimer's disease: A resting‐state functional magnetic resonance imaging study. Hum Brain Mapp 2022; 43:3498-3507. [PMID: 35426973 PMCID: PMC9248302 DOI: 10.1002/hbm.25863] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Hierarchy is a fundamental organizational principle of the human brain network. Whether and how the network hierarchy changes in Alzheimer's disease (AD) remains unclear. To explore brain network hierarchy alterations in AD and their clinical relevance. Forty‐nine healthy controls (HCs), 49 patients with mild cognitive impairment (MCI), and 49 patients with AD were included. The brain network hierarchy of each group was depicted by connectome gradient analyses. We assessed the network hierarchy changes by comparing the gradient values in each network across the AD, MCI, and HC groups. Whole‐brain voxel‐level gradient values were compared across the AD, MCI, and HC groups to identify abnormal brain regions. Finally, we examined the relationships between altered gradient values and clinical features. In the secondary gradient, the posterior default mode network (DMN) gradient values decreased significantly in patients with AD compared with HCs. Regionally, compared with HCs, both MCI and AD groups showed that most of the brain regions with increased gradient values were located in anterior DMN, while most of the brain regions with decreased gradient values were located in posterior DMN. The decrease of gradients in the left middle occipital gyrus was associated with better logical memory performance. The increase of gradients in the right middle frontal gyrus was associated with lower rates of dementia. The network hierarchy changed characteristically in patients with AD and was closely related to memory function and disease severity. These results provide a novel view for further understanding the underlying neuro‐mechanisms of AD.
Collapse
Affiliation(s)
- Qili Hu
- Department of Imaging The Fifth People's Hospital of Shanghai, Fudan University Shanghai China
| | - Yunfei Li
- Department of Imaging The Fifth People's Hospital of Shanghai, Fudan University Shanghai China
| | - Yunying Wu
- Bio‐X Laboratory, Department of Physics Zhejiang University Hangzhou China
- Center for Cognition and Brain Disorders The Affiliated Hospital of Hangzhou Normal University Hangzhou China
| | - Xiaomei Lin
- Department of Imaging The Fifth People's Hospital of Shanghai, Fudan University Shanghai China
| | - Xiaohu Zhao
- Department of Imaging The Fifth People's Hospital of Shanghai, Fudan University Shanghai China
| |
Collapse
|