1
|
Herbet G, Duffau H, Mandonnet E. Predictors of cognition after glioma surgery: connectotomy, structure-function phenotype, plasticity. Brain 2024; 147:2621-2635. [PMID: 38573324 DOI: 10.1093/brain/awae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024] Open
Abstract
Determining preoperatively the maximal extent of resection that would preserve cognitive functions is the core challenge of brain tumour surgery. Over the past decade, the methodological framework to achieve this goal has been thoroughly renewed: the population-level topographically-focused voxel-based lesion-symptom mapping has been progressively overshadowed by machine learning (ML) algorithmics, in which the problem is framed as predicting cognitive outcomes in a patient-specific manner from a typically large set of variables. However, the choice of these predictors is of utmost importance, as they should be both informative and parsimonious. In this perspective, we first introduce the concept of connectotomy: instead of parameterizing resection topography through the status (intact/resected) of a huge number of voxels (or parcels) paving the whole brain in the Cartesian 3D-space, the connectotomy models the resection in the connectivity space, by computing a handful number of networks disconnection indices, measuring how the structural connectivity sustaining each network of interest was hit by the resection. This connectivity-informed reduction of dimensionality is a necessary step for efficiently implementing ML tools, given the relatively small number of patient-examples in available training datasets. We further argue that two other major sources of interindividual variability must be considered to improve the accuracy with which outcomes are predicted: the underlying structure-function phenotype and neuroplasticity, for which we provide an in-depth review and propose new ways of determining relevant predictors. We finally discuss the benefits of our approach for precision surgery of glioma.
Collapse
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Praxiling lab, UMR5267 CNRS & Paul Valéry University, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Institut Universitaire de France, Paris 75000, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier 34090, France
- Department of Medicine, University of Montpellier, Montpellier 34090, France
- Team 'Plasticity of Central Nervous System, Stem Cells and Glial Tumors', U1191 Laboratory, Institute of Functional Genomics, National Institute for Health and Medical Research (INSERM), University of Montpellier, Montpellier 34000, France
| | - Emmanuel Mandonnet
- Department of Neurosurgery, Lariboisière Hospital, AP-HP, Paris 75010, France
- Frontlab, CNRS UMR 7225, INSERM U1127, Paris Brain Institute (ICM), Paris 75013, France
- Université de Paris Cité, UFR de médecine, Paris 75005, France
| |
Collapse
|
2
|
Jankowski M, Goroncy A. Anatomical variants of acne differ in their impact on social perception. J Eur Acad Dermatol Venereol 2024; 38:1628-1636. [PMID: 38379351 DOI: 10.1111/jdv.19798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 02/22/2024]
Abstract
BACKGROUND Acne negatively affects quality of life, however quality-of-life scores poorly correlate with disease severity scores. Previous research demonstrated existence of facial areas in which skin lesions have greater impact on gaze patterns. Therefore, we hypothesized that anatomical variants of acne may be perceived differently. OBJECTIVES The aim was to investigate effect of anatomical variants of acne on natural gaze patterns and resulting impact on social perception of acne patients. METHODS We tracked eye movements of participants viewing neutral and emotional faces with acne. Images were rated for acne-related visual disturbance, and emotional faces were rated for valence intensity. Respondents of an online survey were asked to rate their perception of pictured individuals' personality traits. RESULTS All faces with acne were perceived as less attractive and received poorer personality judgements with mid-facial acne presenting smallest deviation from healthy faces. T-zone and mixed acne exhibited the least significant difference in respondents gaze behaviour pattern from each other. In addition, there was no significant difference in respondents' grading of acne visual disturbance or ratings for attractiveness, success and trustworthiness. U-zone adult female acne was rated as the most visually disturbing and received the lowest scores for attractiveness. Happy faces with adult female acne were rated as less happy compared to other acne variants and clear-skin faces. CONCLUSIONS Anatomic variants of acne have a distinct impact on gaze patterns and social perception. Adult female acne has the strongest negative effect on recognition of positive emotions in affected individuals, attractiveness ratings and forming social impressions. If perioral acne lesions are absent, frontal lesions determine impact of acne on social perception irrespective of the presence of mid-facial lesions. This perceptive hierarchy should be taken into consideration while deciding treatment goals in acne patients, prioritizing achieving remission in perioral and frontal area.
Collapse
Affiliation(s)
- Marek Jankowski
- Department of Dermatology and Venereology, Faculty of Medicine in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Agnieszka Goroncy
- Department of Mathematical Statistics and Data Mining, Faculty of Mathematics and Computer Science, Nicolaus Copernicus University in Torun, Torun, Poland
| |
Collapse
|
3
|
Proverbio AM, Cesati F. Neural correlates of recalled sadness, joy, and fear states: a source reconstruction EEG study. Front Psychiatry 2024; 15:1357770. [PMID: 38638416 PMCID: PMC11024723 DOI: 10.3389/fpsyt.2024.1357770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction The capacity to understand the others' emotional states, particularly if negative (e.g. sadness or fear), underpins the empathic and social brain. Patients who cannot express their emotional states experience social isolation and loneliness, exacerbating distress. We investigated the feasibility of detecting non-invasive scalp-recorded electrophysiological signals that correspond to recalled emotional states of sadness, fear, and joy for potential classification. Methods The neural activation patterns of 20 healthy and right-handed participants were studied using an electrophysiological technique. Analyses were focused on the N400 component of Event-related potentials (ERPs) recorded during silent recall of subjective emotional states; Standardized weighted Low-resolution Electro-magnetic Tomography (swLORETA) was employed for source reconstruction. The study classified individual patterns of brain activation linked to the recollection of three distinct emotional states into seven regions of interest (ROIs). Results Statistical analysis (ANOVA) of the individual magnitude values revealed the existence of a common emotional circuit, as well as distinct brain areas that were specifically active during recalled sad, happy and fearful states. In particular, the right temporal and left superior frontal areas were more active for sadness, the left limbic region for fear, and the right orbitofrontal cortex for happy affective states. Discussion In conclusion, this study successfully demonstrated the feasibility of detecting scalp-recorded electrophysiological signals corresponding to internal and subjective affective states. These findings contribute to our understanding of the emotional brain, and have potential applications for future BCI classification and identification of emotional states in LIS patients who may be unable to express their emotions, thus helping to alleviate social isolation and sense of loneliness.
Collapse
Affiliation(s)
- Alice Mado Proverbio
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Milan, Italy
- NEURO-MI Milan Center for Neuroscience, Milan, Italy
| | - Federico Cesati
- Cognitive Electrophysiology Lab, Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
4
|
Shi W, Meisner OC, Blackmore S, Jadi MP, Nandy AS, Chang SWC. The orbitofrontal cortex: A goal-directed cognitive map framework for social and non-social behaviors. Neurobiol Learn Mem 2023; 203:107793. [PMID: 37353191 PMCID: PMC10527225 DOI: 10.1016/j.nlm.2023.107793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/28/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
The orbitofrontal cortex (OFC) is regarded as one of the core brain areas in a variety of value-based behaviors. Over the past two decades, tremendous knowledge about the OFC function was gained from studying the behaviors of single subjects. As a result, our previous understanding of the OFC's function of encoding decision variables, such as the value and identity of choices, has evolved to the idea that the OFC encodes a more complex representation of the task space as a cognitive map. Accumulating evidence also indicates that the OFC importantly contributes to behaviors in social contexts, especially those involved in cooperative interactions. However, it remains elusive how exactly OFC neurons contribute to social functions and how non-social and social behaviors are related to one another in the computations performed by OFC neurons. In this review, we aim to provide an integrated view of the OFC function across both social and non-social behavioral contexts. We propose that seemingly complex functions of the OFC may be explained by its role in providing a goal-directed cognitive map to guide a wide array of adaptive reward-based behaviors in both social and non-social domains.
Collapse
Affiliation(s)
- Weikang Shi
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Olivia C Meisner
- Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Sylvia Blackmore
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA
| | - Monika P Jadi
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Anirvan S Nandy
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Steve W C Chang
- Wu Tsai Institute, Yale University, New Haven, CT 06510, USA; Department of Psychology, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
5
|
Zangrossi A, Silvestri E, Bisio M, Bertoldo A, De Pellegrin S, Vallesi A, Della Puppa A, D'Avella D, Denaro L, Scienza R, Mondini S, Semenza C, Corbetta M. Presurgical predictors of early cognitive outcome after brain tumor resection in glioma patients. Neuroimage Clin 2022; 36:103219. [PMID: 36209618 PMCID: PMC9668620 DOI: 10.1016/j.nicl.2022.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Gliomas are commonly characterized by neurocognitive deficits that strongly impact patients' and caregivers' quality of life. Surgical resection is the mainstay of therapy, and it can also cause cognitive impairment. An important clinical problem is whether patients who undergo surgery will show post-surgical cognitive impairment above and beyond that present before surgery. The relevant rognostic factors are largely unknown. This study aims to quantify the cognitive impairment in glioma patients 1-week after surgery and to compare different pre-surgical information (i.e., cognitive performance, tumor volume, grading, and lesion topography) towards predicting early post-surgical cognitive outcome. We retrospectively recruited a sample of N = 47 patients affected by high-grade and low-grade glioma undergoing brain surgery for tumor resection. Cognitive performance was assessed before and immediately after (∼1 week) surgery with an extensive neurocognitive battery. Multivariate linear regression models highlighted the combination of predictors that best explained post-surgical cognitive impairment. The impact of surgery on cognitive functioning was relatively small (i.e., 85% of test scores across the whole sample indicated no decline), and pre-operative cognitive performance was the main predictor of early post-surgical cognitive outcome above and beyond information from tumor topography and volume. In fact, structural lesion information did not significantly improve the accuracy of prediction made from cognitive data before surgery. Our findings suggest that post-surgery neurocognitive deficits are only partially explained by preoperative brain damage. The present results suggest the possibility to make reliable, individualized, and clinically relevant predictions from relatively easy-to-obtain information.
Collapse
Affiliation(s)
- Andrea Zangrossi
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Corresponding author at: Padova Neuroscience Center (PNC), University of Padova, Italy.
| | - Erica Silvestri
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Biomedical Sciences, University of Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | | | | | - Alessandro Della Puppa
- Neurosurgery Clinical Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Domenico D'Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Renato Scienza
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Sara Mondini
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, University of Padova, Padova, Italy
| | - Carlo Semenza
- Padova Neuroscience Center (PNC), University of Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Neurology Clinical Unit, University Hospital of Padova, Padova, Italy,Venetian Institute of Molecular Medicine, VIMM, Foundation for Advanced Biomedical Research, Padova, Italy
| |
Collapse
|