1
|
Bi Y, Abrol A, Fu Z, Calhoun VD. A multimodal vision transformer for interpretable fusion of functional and structural neuroimaging data. Hum Brain Mapp 2024; 45:e26783. [PMID: 39600159 PMCID: PMC11599617 DOI: 10.1002/hbm.26783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 05/29/2024] [Accepted: 06/26/2024] [Indexed: 11/29/2024] Open
Abstract
Multimodal neuroimaging is an emerging field that leverages multiple sources of information to diagnose specific brain disorders, especially when deep learning-based AI algorithms are applied. The successful combination of different brain imaging modalities using deep learning remains a challenging yet crucial research topic. The integration of structural and functional modalities is particularly important for the diagnosis of various brain disorders, where structural information plays a crucial role in diseases such as Alzheimer's, while functional imaging is more critical for disorders such as schizophrenia. However, the combination of functional and structural imaging modalities can provide a more comprehensive diagnosis. In this work, we present MultiViT, a novel diagnostic deep learning model that utilizes vision transformers and cross-attention mechanisms to effectively fuse information from 3D gray matter maps derived from structural MRI with functional network connectivity matrices obtained from functional MRI using the ICA algorithm. MultiViT achieves an AUC of 0.833, outperforming both our unimodal and multimodal baselines, enabling more accurate classification and diagnosis of schizophrenia. In addition, using vision transformer's unique attentional maps in combination with cross-attentional mechanisms and brain function information, we identify critical brain regions in 3D gray matter space associated with the characteristics of schizophrenia. Our research not only significantly improves the accuracy of AI-based automated imaging diagnostics for schizophrenia, but also pioneers a rational and advanced data fusion approach by replacing complex, high-dimensional fMRI information with functional network connectivity, integrating it with representative structural data from 3D gray matter images, and further providing interpretative biomarker localization in a 3D structural space.
Collapse
Affiliation(s)
- Yuda Bi
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Anees Abrol
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Zening Fu
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, EmoryAtlantaGeorgiaUSA
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia Tech, EmoryAtlantaGeorgiaUSA
| |
Collapse
|
2
|
Faris P, Pischedda D, Palesi F, D’Angelo E. New clues for the role of cerebellum in schizophrenia and the associated cognitive impairment. Front Cell Neurosci 2024; 18:1386583. [PMID: 38799988 PMCID: PMC11116653 DOI: 10.3389/fncel.2024.1386583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Schizophrenia (SZ) is a complex neuropsychiatric disorder associated with severe cognitive dysfunction. Although research has mainly focused on forebrain abnormalities, emerging results support the involvement of the cerebellum in SZ physiopathology, particularly in Cognitive Impairment Associated with SZ (CIAS). Besides its role in motor learning and control, the cerebellum is implicated in cognition and emotion. Recent research suggests that structural and functional changes in the cerebellum are linked to deficits in various cognitive domains including attention, working memory, and decision-making. Moreover, cerebellar dysfunction is related to altered cerebellar circuit activities and connectivity with brain regions associated with cognitive processing. This review delves into the role of the cerebellum in CIAS. We initially consider the major forebrain alterations in CIAS, addressing impairments in neurotransmitter systems, synaptic plasticity, and connectivity. We then focus on recent findings showing that several mechanisms are also altered in the cerebellum and that cerebellar communication with the forebrain is impaired. This evidence implicates the cerebellum as a key component of circuits underpinning CIAS physiopathology. Further studies addressing cerebellar involvement in SZ and CIAS are warranted and might open new perspectives toward understanding the physiopathology and effective treatment of these disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Doris Pischedda
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Digital Neuroscience Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
3
|
Kuang LD, Li HQ, Zhang J, Gui Y, Zhang J. Dynamic functional network connectivity analysis in schizophrenia based on a spatiotemporal CPD framework. J Neural Eng 2024; 21:016032. [PMID: 38335544 DOI: 10.1088/1741-2552/ad27ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/09/2024] [Indexed: 02/12/2024]
Abstract
Objective.Dynamic functional network connectivity (dFNC), based on data-driven group independent component (IC) analysis, is an important avenue for investigating underlying patterns of certain brain diseases such as schizophrenia. Canonical polyadic decomposition (CPD) of a higher-way dynamic functional connectivity tensor, can offer an innovative spatiotemporal framework to accurately characterize potential dynamic spatial and temporal fluctuations. Since multi-subject dFNC data from sliding-window analysis are also naturally a higher-order tensor, we propose an innovative sparse and low-rank CPD (SLRCPD) for the three-way dFNC tensor to excavate significant dynamic spatiotemporal aberrant changes in schizophrenia.Approach.The proposed SLRCPD approach imposes two constraints. First, the L1regularization on spatial modules is applied to extract sparse but significant dynamic connectivity and avoid overfitting the model. Second, low-rank constraint is added on time-varying weights to enhance the temporal state clustering quality. Shared dynamic spatial modules, group-specific dynamic spatial modules and time-varying weights can be extracted by SLRCPD. The strength of connections within- and between-IC networks and connection contribution are proposed to inspect the spatial modules. K-means clustering and classification are further conducted to explore temporal group difference.Main results.82 subject resting-state functional magnetic resonance imaging (fMRI) dataset and opening Center for Biomedical Research Excellence (COBRE) schizophrenia dataset both containing schizophrenia patients (SZs) and healthy controls (HCs) were utilized in our work. Three typical dFNC patterns between different brain functional regions were obtained. Compared to the spatial modules of HCs, the aberrant connections among auditory network, somatomotor, visual, cognitive control and cerebellar networks in 82 subject dataset and COBRE dataset were detected. Four temporal states reveal significant differences between SZs and HCs for these two datasets. Additionally, the accuracy values for SZs and HCs classification based on time-varying weights are larger than 0.96.Significance.This study significantly excavates spatio-temporal patterns for schizophrenia disease.
Collapse
Affiliation(s)
- Li-Dan Kuang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| | - He-Qiang Li
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| | - Jianming Zhang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| | - Yan Gui
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| | - Jin Zhang
- School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha, People's Republic of China
| |
Collapse
|
4
|
Niu L, Fang K, Han S, Xu C, Sun X. Resolving heterogeneity in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder through individualized structural covariance network analysis. Cereb Cortex 2024; 34:bhad391. [PMID: 38142281 DOI: 10.1093/cercor/bhad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 12/25/2023] Open
Abstract
Disruptions in large-scale brain connectivity are hypothesized to contribute to psychiatric disorders, including schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. However, high inter-individual variation among patients with psychiatric disorders hinders achievement of unified findings. To this end, we adopted a newly proposed method to resolve heterogeneity of differential structural covariance network in schizophrenia, bipolar I disorder, and attention-deficit/hyperactivity disorder. This method could infer individualized structural covariance aberrance by assessing the deviation from healthy controls. T1-weighted anatomical images of 114 patients with psychiatric disorders (schizophrenia: n = 37; bipolar I disorder: n = 37; attention-deficit/hyperactivity disorder: n = 37) and 110 healthy controls were analyzed to obtain individualized differential structural covariance network. Patients exhibited tremendous heterogeneity in profiles of individualized differential structural covariance network. Despite notable heterogeneity, patients with the same disorder shared altered edges at network level. Moreover, individualized differential structural covariance network uncovered two distinct psychiatric subtypes with opposite differences in structural covariance edges, that were otherwise obscured when patients were merged, compared with healthy controls. These results provide new insights into heterogeneity and have implications for the nosology in psychiatric disorders.
Collapse
Affiliation(s)
- Lianjie Niu
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Keke Fang
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450008, China
| | - Chunmiao Xu
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| | - Xianfu Sun
- Department of Breast Disease, Henan Breast Cancer Center. The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou 450008, China
| |
Collapse
|
5
|
Wulaer B, Holtz MA, Nagai J. Homeostasis to Allostasis: Prefrontal Astrocyte Roles in Cognitive Flexibility and Stress Biology. ADVANCES IN NEUROBIOLOGY 2024; 39:137-163. [PMID: 39190074 DOI: 10.1007/978-3-031-64839-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In the intricate landscape of neurophysiology, astrocytes have been traditionally cast as homeostatic cells; however, their mechanistic involvement in allostasis-particularly how they modulate the adaptive response to stress and its accumulative impact that disrupts cognitive functions and precipitates psychiatric disorders-is now starting to be unraveled. Here, we address the gap by positing astrocytes as crucial allostatic players whose molecular adaptations underlie cognitive flexibility in stress-related neuropsychiatric conditions. We review how astrocytes, responding to stress mediators such as glucocorticoid and epinephrine/norepinephrine, undergo morphological and functional transformations that parallel the maladaptive changes. Our synthesis of recent findings reveals that these glial changes, especially in the metabolically demanding prefrontal cortex, may underlie some of the neuropsychiatric mechanisms characterized by the disruption of energy metabolism and astrocytic networks, compromised glutamate clearance, and diminished synaptic support. We argue that astrocytes extend beyond their homeostatic role, actively participating in the brain's allostatic response, especially by modulating energy substrates critical for cognitive functions.
Collapse
Affiliation(s)
- Bolati Wulaer
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mika A Holtz
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Jun Nagai
- Laboratory for Glia-Neuron Circuit Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|
6
|
Cai YH, Huang X. Abnormal functional connectivity strength in age-related macular degeneration patients: a fMRI study. Neuroreport 2023; 34:845-852. [PMID: 37942735 DOI: 10.1097/wnr.0000000000001962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
OBJECTIVE Age-related macular degeneration (AMD) is a serious blinding eye disease. Previous neuroimaging studies reported that AMD were accompanied by abnormalities of the brain. However, whether AMD patients were associated with functional connectivity strength (FCS) or not remains unknown. In our study, the purpose of the study was to assess FCS changes in AMD patients. METHODS In our study, 20 AMD patients and 20 healthy controls (HCs), matched closely by sex, age, and educational level were underwent MRI scanning. FCS method and seed-based functional connectivity (FC) method were applied to investigate the functional network changes between two groups. Moreover, support vector machine (SVM) method was applied to assess the FCS maps as a feature to classification of AMD diseases. RESULTS Our study reported that AMD patients showed decreased FCS values in the bilateral calcarine, left supplementary motor area, left superior parietal lobule and left paracentral lobule (ParaL) relative to the HC group. Meanwhile, our study found that the AMD patients showed abnormal FC within visual network, sensorimotor network and default mode network. Moreover, the SVM method showed that FCS maps as machine learning features shows good classification efficiency (area under curve = 0.82) in the study. CONCLUSION Our study demonstrated that AMD patients showed abnormal FCS with the visual network, sensorimotor network and default mode network, which might reflect the impaired vision, cognition and motor function in AMD patients. In addition, FCS indicator can be used as an effective biological marker to assist the clinical diagnosis of AMD.
Collapse
Affiliation(s)
- Yue-Hong Cai
- Department of Ophthalmology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | | |
Collapse
|
7
|
Zarghami TS. A new causal centrality measure reveals the prominent role of subcortical structures in the causal architecture of the extended default mode network. Brain Struct Funct 2023; 228:1917-1941. [PMID: 37658184 DOI: 10.1007/s00429-023-02697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Network representation has been an incredibly useful concept for understanding the behavior of complex systems in social sciences, biology, neuroscience, and beyond. Network science is mathematically founded on graph theory, where nodal importance is gauged using measures of centrality. Notably, recent work suggests that the topological centrality of a node should not be over-interpreted as its dynamical or causal importance in the network. Hence, identifying the influential nodes in dynamic causal models (DCM) remains an open question. This paper introduces causal centrality for DCM, a dynamics-sensitive and causally-founded centrality measure based on the notion of intervention in graphical models. Operationally, this measure simplifies to an identifiable expression using Bayesian model reduction. As a proof of concept, the average DCM of the extended default mode network (eDMN) was computed in 74 healthy subjects. Next, causal centralities of different regions were computed for this causal graph, and compared against several graph-theoretical centralities. The results showed that the subcortical structures of the eDMN were more causally central than the cortical regions, even though the graph-theoretical centralities unanimously favored the latter. Importantly, model comparison revealed that only the pattern of causal centrality was causally relevant. These results are consistent with the crucial role of the subcortical structures in the neuromodulatory systems of the brain, and highlight their contribution to the organization of large-scale networks. Potential applications of causal centrality-to study causal models of other neurotypical and pathological functional networks-are discussed, and some future lines of research are outlined.
Collapse
Affiliation(s)
- Tahereh S Zarghami
- Bio-Electric Department, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| |
Collapse
|