1
|
DiPiero MA, Rodrigues PG, Justman M, Roche S, Bond E, Gonzalez JG, Davidson RJ, Planalp EM, Dean DC. Gray matter based spatial statistics framework in the 1-month brain: insights into gray matter microstructure in infancy. Brain Struct Funct 2024:10.1007/s00429-024-02853-w. [PMID: 39313671 DOI: 10.1007/s00429-024-02853-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The neurodevelopmental epoch from fetal stages to early life embodies a critical window of peak growth and plasticity in which differences believed to be associated with many neurodevelopmental and psychiatric disorders first emerge. Obtaining a detailed understanding of the developmental trajectories of the cortical gray matter microstructure is necessary to characterize differential patterns of neurodevelopment that may subserve future intellectual, behavioral, and psychiatric challenges. The neurite orientation dispersion density imaging (NODDI) Gray-Matter Based Spatial Statistics (GBSS) framework leverages information from the NODDI model to enable sensitive characterization of the gray matter microstructure while limiting partial volume contamination and misregistration errors between images collected in different spaces. However, limited contrast of the underdeveloped brain poses challenges for implementing this framework with infant diffusion MRI (dMRI) data. In this work, we aim to examine the development of cortical microstructure in infants. We utilize the NODDI GBSS framework and propose refinements to the original framework that aim to improve the delineation and characterization of gray matter in the infant brain. Taking this approach, we cross-sectionally investigate age relationships in the developing gray matter microstructural organization in infants within the first month of life and reveal widespread relationships with the gray matter architecture.
Collapse
Affiliation(s)
- Marissa A DiPiero
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | | | - McKaylie Justman
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Sophia Roche
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Elizabeth Bond
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
| | - Jose Guerrero Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard J Davidson
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Planalp
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Douglas C Dean
- Waisman Center, University of Wisconsin-Madison, Madison, 53705, WI, USA.
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Travers BG, Surgent O, Guerrero-Gonzalez J, Dean DC, Adluru N, Kecskemeti SR, Kirk GR, Alexander AL, Zhu J, Skaletski EC, Naik S, Duran M. Role of autonomic, nociceptive, and limbic brainstem nuclei in core autism features. Autism Res 2024; 17:266-279. [PMID: 38278763 PMCID: PMC10922575 DOI: 10.1002/aur.3096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Although multiple theories have speculated about the brainstem reticular formation's involvement in autistic behaviors, the in vivo imaging of brainstem nuclei needed to test these theories has proven technologically challenging. Using methods to improve brainstem imaging in children, this study set out to elucidate the role of the autonomic, nociceptive, and limbic brainstem nuclei in the autism features of 145 children (74 autistic children, 6.0-10.9 years). Participants completed an assessment of core autism features and diffusion- and T1-weighted imaging optimized to improve brainstem images. After data reduction via principal component analysis, correlational analyses examined associations among autism features and the microstructural properties of brainstem clusters. Independent replication was performed in 43 adolescents (24 autistic, 13.0-17.9 years). We found specific nuclei, most robustly the parvicellular reticular formation-alpha (PCRtA) and to a lesser degree the lateral parabrachial nucleus (LPB) and ventral tegmental parabrachial pigmented complex (VTA-PBP), to be associated with autism features. The PCRtA and some of the LPB associations were independently found in the replication sample, but the VTA-PBP associations were not. Consistent with theoretical perspectives, the findings suggest that individual differences in pontine reticular formation nuclei contribute to the prominence of autistic features. Specifically, the PCRtA, a nucleus involved in mastication, digestion, and cardio-respiration in animal models, was associated with social communication in children, while the LPB, a pain-network nucleus, was associated with repetitive behaviors. These findings highlight the contributions of key autonomic brainstem nuclei to the expression of core autism features.
Collapse
Affiliation(s)
- Brittany G. Travers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia Surgent
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jose Guerrero-Gonzalez
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, USA
| | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Gregory R. Kirk
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison, Madison, WI, USA
| | - Emily C. Skaletski
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Kinesiology, Occupational Therapy Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Sonali Naik
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Monica Duran
- Waisman Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
3
|
DiPiero M, Cordash H, Prigge MB, King CK, Morgan J, Guerrero-Gonzalez J, Adluru N, King JB, Lange N, Bigler ED, Zielinski BA, Alexander AL, Lainhart JE, Dean DC. Tract- and gray matter- based spatial statistics show white matter and gray matter microstructural differences in autistic males. Front Neurosci 2023; 17:1231719. [PMID: 37829720 PMCID: PMC10565827 DOI: 10.3389/fnins.2023.1231719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental condition commonly studied in the context of early childhood. As ASD is a life-long condition, understanding the characteristics of brain microstructure from adolescence into adulthood and associations to clinical features is critical for improving outcomes across the lifespan. In the current work, we utilized Tract Based Spatial Statistics (TBSS) and Gray Matter Based Spatial Statistics (GBSS) to examine the white matter (WM) and gray matter (GM) microstructure in neurotypical (NT) and autistic males. Methods Multi-shell diffusion MRI was acquired from 78 autistic and 81 NT males (12-to-46-years) and fit to the DTI and NODDI diffusion models. TBSS and GBSS were performed to analyze WM and GM microstructure, respectively. General linear models were used to investigate group and age-related group differences. Within the ASD group, relationships between WM and GM microstructure and measures of autistic symptoms were investigated. Results All dMRI measures were significantly associated with age across WM and GM. Significant group differences were observed across WM and GM. No significant age-by-group interactions were detected. Within the ASD group, positive relationships with WM microstructure were observed with ADOS-2 Calibrated Severity Scores. Conclusion Using TBSS and GBSS our findings provide new insights into group differences of WM and GM microstructure in autistic males from adolescence into adulthood. Detection of microstructural differences across the lifespan as well as their relationship to the level of autistic symptoms will deepen to our understanding of brain-behavior relationships of ASD and may aid in the improvement of intervention options for autistic adults.
Collapse
Affiliation(s)
- Marissa DiPiero
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Hassan Cordash
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Molly B. Prigge
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Carolyn K. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Jubel Morgan
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | | | - Nagesh Adluru
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jace B. King
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
| | - Nicholas Lange
- Department of Psychiatry, Harvard School of Medicine, Boston, MA, United States
| | - Erin D. Bigler
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Psychiatry, University of Utah, Salt Lake City, UT, United States
- Department of Psychology and Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Neurology, University of California, Davis, Davis, CA, United States
| | - Brandon A. Zielinski
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
- Department of Pediatrics, University of Utah, Salt Lake City, UT, United States
- Departments of Pediatrics and Neurology, University of Florida, Gainesville, FL, United States
- McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Andrew L. Alexander
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Janet E. Lainhart
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| | - Douglas C. Dean
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
4
|
Arai T, Kamagata K, Uchida W, Andica C, Takabayashi K, Saito Y, Tuerxun R, Mahemuti Z, Morita Y, Irie R, Kirino E, Aoki S. Reduced neurite density index in the prefrontal cortex of adults with autism assessed using neurite orientation dispersion and density imaging. Front Neurol 2023; 14:1110883. [PMID: 37638188 PMCID: PMC10450631 DOI: 10.3389/fneur.2023.1110883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/27/2023] [Indexed: 08/29/2023] Open
Abstract
Background Core symptoms of autism-spectrum disorder (ASD) have been associated with prefrontal cortex abnormalities. However, the mechanisms behind the observation remain incomplete, partially due to the challenges of modeling complex gray matter (GM) structures. This study aimed to identify GM microstructural alterations in adults with ASD using neurite orientation dispersion and density imaging (NODDI) and voxel-wise GM-based spatial statistics (GBSS) to reduce the partial volume effects from the white matter and cerebrospinal fluid. Materials and methods A total of 48 right-handed participants were included, of which 22 had ASD (17 men; mean age, 34.42 ± 8.27 years) and 26 were typically developing (TD) individuals (14 men; mean age, 32.57 ± 9.62 years). The metrics of NODDI (neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISOVF]) were compared between groups using GBSS. Diffusion tensor imaging (DTI) metrics and surface-based cortical thickness were also compared. The associations between magnetic resonance imaging-based measures and ASD-related scores, including ASD-spectrum quotient, empathizing quotient, and systemizing quotient were also assessed in the region of interest (ROI) analysis. Results After controlling for age, sex, and intracranial volume, GBSS demonstrated significantly lower NDI in the ASD group than in the TD group in the left prefrontal cortex (caudal middle frontal, lateral orbitofrontal, pars orbitalis, pars triangularis, rostral middle frontal, and superior frontal region). In the ROI analysis of individuals with ASD, a significantly positive correlation was observed between the NDI in the left rostral middle frontal, superior frontal, and left frontal pole and empathizing quotient score. No significant between-group differences were observed in all DTI metrics, other NODDI (i.e., ODI and ISOVF) metrics, and cortical thickness. Conclusion GBSS analysis was used to demonstrate the ability of NODDI metrics to detect GM microstructural alterations in adults with ASD, while no changes were detected using DTI and cortical thickness evaluation. Specifically, we observed a reduced neurite density index in the left prefrontal cortices associated with reduced empathic abilities.
Collapse
Affiliation(s)
- Takashi Arai
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Kamagata
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Rukeye Tuerxun
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Zaimire Mahemuti
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuichi Morita
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryusuke Irie
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Psychiatry, Juntendo University Shizuoka Hospital, Shizuoka, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|