1
|
Feng S, Wang J, Peng Q, Zhang P, Jiang Y, Zhang H, Song X, Li Y, Huang W, Zhang D, Deng C. Schisandra sphenanthera extract modulates sweet taste receptor pathway, IRS/PI3K, AMPK/mTOR pathway and endogenous metabolites against T2DM. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156348. [PMID: 39740377 DOI: 10.1016/j.phymed.2024.156348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/20/2024] [Accepted: 12/24/2024] [Indexed: 01/02/2025]
Abstract
BACKGROUND Southern Schisandra is the dried and matured fruit of Schisandra sphenanthera Rehd. et Wils. in the family of Magnoliaceae; Traditional medicine reports that Schisandra sphenanthera has astringent and astringent properties, benefiting qi and promoting the production of body fluid, tranquilising the heart and calming the mind; it is clinically utilized for prolonged cough, thirst due to injury of the body fluid, internal heat and thirst, palpitation and insomnia, etc., and thirst belongs to the category of diabetes mellitus; the literature reports and the preliminary study of our team showed that Schisandra sphenanthera can be used to prevent and control diabetes mellitus. PURPOSE In the research, we investigated the mechanism of action of SDP against T2DM by integrating pharmacodynamics, endogenous metabolite assays and signalling pathways. MATERIALS AND METHODS UPLC-MS/MS was used to identify the chemical constituents. HPLC was utilized to determine the content of eight lignan-like components in SDP. A T2DM rat model was established by the combined induction of high-fat and high-sugar feed and STZ, and the mechanism of action of SDP on T2DM was investigated by using biochemical indices, Western blot analysis of protein expression, mRNA expression, immunohistochemistry and endogenous metabolites. RESULTS The chemical components in SDP were determined by UPLC-MS/MS and HPLC, and biochemical indicators determined that SDP has the effects of lowering blood glucose, anti-glycolipid metabolism, and anti-oxidative stress, and is able to restore pathological damage in the liver and pancreas, activate the PI3K/AKT, AMPK/mTOR, and sweetness receptor signalling pathways, restore the sweetness receptor mRNAs, and modulate the urinary compounds such as malic acid, γ-aminobutyric acid, leucine, N-acetylaspartic acid and other compounds thereby achieving the therapeutic effect of T2DM. CONCLUSION SDP can ameliorate diabetes-induced symptoms related to elevated blood glucose, dyslipidaemia, elevated fasting insulin levels and impaired glucose tolerance in rats; the anti-T2DM of SDP may be through the regulation of the sweet taste receptor pathway, the PI3K/AKT/mTOR and the AMPK/mTOR signalling pathway, which leads to the development of a normal level and exerts an antidiabetic effect.
Collapse
Affiliation(s)
- Shibo Feng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Jiaojiao Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Qin Peng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Panpan Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China
| | - Yi Jiang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Huawei Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; College of Pharmacy and Shaanxi Qinling Application Development and Engineering Center of Chinese Herbal Medicine, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamics and Material Basis of Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xi'an 712046, PR China; Shaanxi Key Laboratory of Research and Application of"Taibai Qi Yao", Xianyang 712046, PR China.
| |
Collapse
|
2
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Okuyama T, Nakatake R, Ito K, Ishizaki M, Yanagida H, Kitade H, Yoshizawa K, Ikeya Y, Nishizawa M, Sekimoto M. Hepatoprotective effects of baicalein against liver ischemia-reperfusion injury and partial hepatectomy in a rat model. Mol Biol Rep 2024; 51:643. [PMID: 38727775 DOI: 10.1007/s11033-024-09548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 01/05/2025]
Abstract
BACKGROUND Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1β (IL-1β)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1β-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.
Collapse
Affiliation(s)
- Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| | - Richi Nakatake
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan.
| | - Kentaro Ito
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Shiga, Japan
| | - Morihiko Ishizaki
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| | - Hidesuke Yanagida
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Kitade
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women's University, 6-46 Ikebiraki-cho, Nishinomiya, 663-8558, Hyogo, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka, 815-8511, Fukuoka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, 525-8577, Shiga, Japan
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, 2-5-1 Shinmachi, Hirakata, 573-1010, Osaka, Japan
| |
Collapse
|
4
|
Nakatake R, Okuyama T, Hashimoto Y, Ishizaki M, Yanagida H, Kitade H, Yoshizawa K, Nishizawa M, Sekimoto M. Sulforaphane Is Protective against Warm Ischemia/Reperfusion Injury and Partial Hepatectomy in Rats. Int J Mol Sci 2024; 25:579. [PMID: 38203749 PMCID: PMC10778753 DOI: 10.3390/ijms25010579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Sulforaphane (SFN) has various beneficial effects on organ metabolism. However, whether SFN affects inflammatory mediators induced by warm hepatic ischemia/reperfusion injury (HIRI) is unclear. To investigate the hepatoprotective effects of SFN using an in vivo model of HIRI and partial hepatectomy (HIRI + PH), rats were subjected to 15 min of hepatic ischemia with blood inflow occlusion, followed by 70% hepatectomy and release of the inflow occlusion. SFN (5 mg/kg) or saline was randomly injected intraperitoneally 1 and 24 h before ischemia. Alternatively, ischemia was prolonged for 30 min to evaluate the effect on mortality. The influence of SFN on the associated signaling pathways was analyzed using the interleukin 1β (IL-1β)-treated primary cultured rat hepatocytes. In the HIRI + PH-treated rats, SFN reduced serum liver enzyme activities and the frequency of pathological liver injury, such as apoptosis and neutrophil infiltration. SFN suppressed tumor necrosis factor-alpha (TNF-α) mRNA expression and inhibited nuclear factor-kappa B (NF-κB) activation by HIRI + PH. Mortality was significantly reduced by SFN. In IL-1β-treated hepatocytes, SFN suppressed the expression of inflammatory cytokines and NF-κB activation. Taken together, SFN may have hepatoprotective effects in HIRI + PH in part by inhibiting the induction of inflammatory mediators, such as TNF-α, via the suppression of NF-κB in hepatocytes.
Collapse
Affiliation(s)
- Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Yuki Hashimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Morihiko Ishizaki
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Hidesuke Yanagida
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Hiroaki Kitade
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| | - Katsuhiko Yoshizawa
- Department of Innovative Food Sciences, School of Food Sciences and Nutrition, Mukogawa Women’s University, 6-46 Ikebiraki-cho, Nishinomiya 663-8558, Hyogo, Japan;
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Shiga, Japan
| | - Mitsugu Sekimoto
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan; (T.O.); (Y.H.)
| |
Collapse
|
5
|
Ozaki H, Nishidono Y, Fujii A, Okuyama T, Nakamura K, Maesako T, Shirako S, Nakatake R, Tanaka K, Ikeya Y, Nishizawa M. Identification of Anti-Inflammatory Compounds from Peucedanum praeruptorum Roots by Using Nitric Oxide-Producing Rat Hepatocytes Stimulated by Interleukin 1β. Molecules 2023; 28:5076. [PMID: 37446738 DOI: 10.3390/molecules28135076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The roots of Peucedanum praeruptorum Dunn and Angelica decursiva Franchet et Savatier are designated Zenko, which is a crude drug defined by the Japanese Pharmacopoeia. This crude drug is used as an antitussive and an expectorant and is included in the Kampo formula Jinsoin, which improves cough, fever, and headache. Although the anti-inflammatory effects of this crude drug have been determined, the constituents responsible for this effect remain unknown. To investigate biologically active compounds, rat hepatocytes were used, which produce proinflammatory mediator nitric oxide (NO) in response to proinflammatory cytokine interleukin 1β (IL-1β). A methanol extract of P. praeruptorum roots, which suppressed IL-1β-induced NO production, was fractionated into three crude fractions (ethyl acetate (EtOAc)-soluble, n-butanol-soluble, and water-soluble fractions) based on hydrophobicity. The EtOAc-soluble fraction markedly inhibited NO production. After this fraction was purified, three biologically active compounds were identified as praeruptorins A, B, and E, the contents of which were high. A comparison of their activities indicated that praeruptorin B exhibited the highest potency to inhibit NO production by decreasing inducible NO synthase expression and suppressed the expression of mRNAs encoding proinflammatory cytokines. Collectively, the three praeruptorins may primarily contribute to the anti-inflammatory effects of P. praeruptorum roots.
Collapse
Affiliation(s)
- Hiromu Ozaki
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Airi Fujii
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Kaito Nakamura
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Takanori Maesako
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Saki Shirako
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata 573-1010, Osaka, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| | - Yukinobu Ikeya
- Faculty of Pharmacy, Daiichi University of Pharmacy, Fukuoka 815-8511, Fukuoka, Japan
- Asia-Japan Research Institute, Ritsumeikan Asia-Japan Research Organization, Ritsumeikan University, Ibaraki 567-8570, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Shiga, Japan
| |
Collapse
|
6
|
Yi X, Xu X, Chen Y, Xu G, Zhu Z, Li H, Shen H, Lin M, Zhao W, Zheng J, Jiang X. Genetic analysis of Vibrio alginolyticus challenged by Fructus schisandrae reveals the mechanism of virulence genes. Gene 2023; 870:147421. [PMID: 37031882 DOI: 10.1016/j.gene.2023.147421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Due to the abusive use of antibiotics, bacterial resistance has become a global problem and poses severe threats to aquaculture. The drug-resistant diseases caused by Vibrio alginolyticus have caused significant economic losses to cultured marine fish. Fructus schisandrae is used to treat inflammatory diseases in China and Japan. There have been no reports of bacterial molecular mechanisms associated with F. schisandrae stress. In this study, the inhibiting effect of F. schisandrae on the growth of V. alginolyticus was detected to understand response mechanisms at the molecular level. The antibacterial tests were analyzed via next-generation deep sequencing technology (RNA sequencing, RNA-seq). Wild V. alginolyticus (CK) was compared with V. alginolyticus, F. schisandrae incubated for 2 h, and V. alginolyticus, F. schisandrae incubated for 4 h. Our results revealed that there were 582 genes (236 upregulated and 346 downregulated) and 1068 genes (376 upregulated and 692 downregulated), respectively. Differentially expressed genes (DEGs) were involved in the following functional categories: metabolic process, single-organism process, catalytic activity, cellular process, binding, membrane, cell part, cell, and localization. FS_2 h was compared with FS_4 h, and 21 genes (14 upregulated and 7 downregulated) were obtained. The RNA-seq results were validated by detecting the expression levels of 13 genes using quantitative real-time polymerase chain reaction (qRT-PCR). The qRT-PCR results matched those of the sequencing, which reinforced the reliability of the RNA-seq. The results revealed the transcriptional response of V. alginolyticus to F. schisandrae, which will provide new ideas for studying V. alginolyticus' complex virulence molecular mechanism and the possibility of developing Schisandra to prevent and treat drug-resistant diseases.
Collapse
Affiliation(s)
- Xin Yi
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XiaoJin Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - YuNong Chen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed(Fujian Tianma Science and Technology Group Co., Ltd.)
| | - Genhuang Xu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - ZhiQin Zhu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Huiyao Li
- Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - HaoYang Shen
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Wenyu Zhao
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China
| | - XingLong Jiang
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fujian Province, Xiamen 361021, China.
| |
Collapse
|
7
|
Yang K, Qiu J, Huang Z, Yu Z, Wang W, Hu H, You Y. A comprehensive review of ethnopharmacology, phytochemistry, pharmacology, and pharmacokinetics of Schisandra chinensis (Turcz.) Baill. and Schisandra sphenanthera Rehd. et Wils. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114759. [PMID: 34678416 DOI: 10.1016/j.jep.2021.114759] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (called bei-wuweizi in Chinese, S. chinensis) and Schisandra sphenanthera (called nan-wuweizi in Chinese, S. sphenanthera) are two highly similar plants in the Magnoliaceae family. Their dried ripe fruits are commonly used as traditional Chinese medicine in the treatment of coughs, palpitation, spermatorrhea, and insomnia. They also are traditionally used as tonics in Russia, Japan, and Korea. AIM OF THE REVIEW S. chinensis and S. sphenanthera are similar in appearance, traditional applications, ingredient compositions, and therapeutic effects. This review, therefore, aims to provide a systematic insight into the botanical background, ethnopharmacology, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicology of S. chinensis and S. sphenanthera, and to explore and present the similarities and differences between S. chinensis and S. sphenanthera. MATERIALS AND METHODS A comprehensive literature search regarding S. chinensis and S. sphenanthera was collected by using electronic databases including PubMed, SciFinder, Science Direct, Web of Science, CNKI, and the online ethnobotanical database. RESULTS In the 2020 Edition of Chinese Pharmacopoeia (ChP), there were 100 prescriptions containing S. chinensis, while only 11 contained S. sphenanthera. Totally, 306 and 238 compounds have been isolated and identified from S. chinensis and S. sphenanthera, respectively. Among these compounds, lignans, triterpenoids, essential oils, phenolic acid, flavonoids, phytosterols are the major composition. Through investigation of pharmacological activities, S. chinensis and S. sphenanthera have similar therapeutic effects including hepatoprotection, neuroprotection, cardioprotection, anticancer, antioxidation, anti-inflammation, and hypoglycemic effect. Besides, S. chinensis turns out to have more effects including reproductive regulation and immunomodulatory, antimicrobial, antitussive and antiasthmatic, anti-fatigue, antiarthritic, and bone remodeling effects. Both S. chinensis and S. sphenanthera have inhibitory effects on CYP3A and P-gp, which can mediate metabolism or efflux of substrates, and therefore interact with many drugs. CONCLUSIONS S. chinensis and S. sphenanthera have great similarities. Dibenzocyclooctadiene lignans are regarded to contribute to most of the bioactivities. Schisandrin A-C, schisandrol A-B, and schisantherin A, existing in both S. chinensis and S. sphenanthera but differing in the amount, are the main active components, which may contribute to the similarities and differences. Study corresponding to the traditional use is needed to reveal the deep connotation of the use of S. chinensis and S. sphenanthera as traditional Chinese medicine. In addition, a joint study of S. chinensis and S. sphenanthera can better show the difference between them, which can provide a reference for clinical application. It is worth mentioning that the inhibition of S. chinensis and S. sphenanthera on CYP3A and P-gp may lead to undesirable drug-drug interactions.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Jing Qiu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Zecheng Huang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Ziwei Yu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Wenjun Wang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Huiling Hu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| | - Yu You
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China,College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Wenjiang, Chengdu, 611137, China.
| |
Collapse
|
8
|
Ningsih FN, Okuyama T, To S, Nishidono Y, Okumura T, Tanaka K, Ikeya Y, Nishizawa M. Comparative Analysis of Anti-inflammatory Activity of the Constituents of the Rhizome of Cnidium officinale Using Rat Hepatocytes. Biol Pharm Bull 2021; 43:1867-1875. [PMID: 33268704 DOI: 10.1248/bpb.b20-00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rhizome of Cnidium officinale (Umbelliferae) (known as Senkyu in Japan; COR) has been used as a crude drug in Japanese Kampo formulas, such as Jumihaidokuto (to treat eczema and urticaria) and Kakkontokasenkyushin'i (to treat rhinitis). COR contains phthalides, which are thought to be potent principal constituents. Few studies have been reported about the comparison of anti-inflammatory activity of COR constituents. We aimed to identify the constituents in COR and compare their anti-inflammatory activity. COR was extracted with methanol and fractionated into ethyl acetate (EtOAc)-soluble, n-butanol-soluble, and water-soluble fractions. Primary cultured rat hepatocytes were used to assess anti-inflammatory activity by monitoring the interleukin (IL)-1β-induced production of nitric oxide (NO), an inflammatory mediator. The EtOAc-soluble fraction significantly suppressed NO production without showing cytotoxicity in IL-1β-treated hepatocytes, whereas the n-butanol-soluble fraction showed less potency, and the water-soluble fraction did not significantly affect the NO levels. Four constituents were isolated from the EtOAc-soluble fraction and identified as senkyunolide A, (3S)-butylphthalide, neocnidilide, and cnidilide. Among these phthalides and (Z)-ligustilide, senkyunolide A and (Z)-ligustilide efficiently suppressed NO production in hepatocytes, whereas the others showed less potency in the suppression of NO production. Furthermore, senkyunolide A decreased the levels of the inducible nitric oxide synthase (iNOS) protein and mRNA, as well as the levels of mRNAs encoding proinflammatory cytokines (e.g., tumor necrosis factor α) and chemokine C-C motif ligand 20. These results suggest that senkyunolide A may cause the anti-inflammatory and hepatoprotective effects of COR by suppressing the genes involved in inflammation.
Collapse
Affiliation(s)
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University
| | - Shoko To
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University.,Department of Surgery, Kansai Medical University
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University
| | - Yukinobu Ikeya
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University
| |
Collapse
|
9
|
Li T, Cao Y, Li B, Dai R. The biological effects of radiation-induced liver damage and its natural protective medicine. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:87-95. [PMID: 34216638 DOI: 10.1016/j.pbiomolbio.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/27/2022]
Abstract
The biological damage caused by the environmental factors such as radiation and its control methods are one of the frontiers of life science research that has received widespread attention. Ionizing radiation can directly interact with target molecules (such as DNA, proteins and lipids) or decomposed by radiation from water, leading to changes in oxidative events and biological activities in cells. Liver is a radiation-sensitive organ, and its radiosensitivity is second only to bone marrow, lymph, gastrointestinal tissue, gonads, embryos and kidneys. In addition, as a key organ of mammals, liver performs a series of functions, including the production of bile, the metabolism of nutrients, the elimination of waste, the storage of glycogen, and the synthesis of proteins. Therefore, liver is prone to various pathophysiological changes. In this review, the effects of radiation on liver injury, its pathogenesis, bystander effect and the natural traditional Chinese medicine to protect the radiation induced liver damage are discussed.
Collapse
Affiliation(s)
- Tianmei Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yanlu Cao
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Li
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Rongji Dai
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
10
|
Xu M, Yan T, Gong G, Wu B, He B, Du Y, Xiao F, Jia Y. Purification, structural characterization, and cognitive improvement activity of a polysaccharides from Schisandra chinensis. Int J Biol Macromol 2020; 163:497-507. [DOI: 10.1016/j.ijbiomac.2020.06.275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/28/2023]
|
11
|
Dehydroepiandrosterone resisted E. Coli O157:H7-induced inflammation via blocking the activation of p38 MAPK and NF-κB pathways in mice. Cytokine 2019; 127:154955. [PMID: 31864092 DOI: 10.1016/j.cyto.2019.154955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/24/2019] [Accepted: 12/10/2019] [Indexed: 11/23/2022]
Abstract
Dehydroepiandrosterone (DHEA), a critical metabolite in cholesterol metabolism, can regulate the inflammatory responses in humans or animals. However, the precise mechanisms of these beneficial actions remains poorly understood. Present study aims to clarify the anti-inflammatory function of DHEA and its possible mechanisms in the E. coli O157:H7-stimulated mice. The results indicated that DHEA reduced the mortality of mice and bacterial concentration in the peritoneal fluid in the E. coli-stimulated mice. DHEA increased the spleen index, the activity of lactate dehydrogenase and acid phosphatase; while it decreased the nitric oxide (NO) content and inducible nitric oxide synthase (iNOS) activity in mice. The mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) and interferon gamma (IFN-γ) were decreased, whereas the interleukin-4 (IL-4) and interleukin-10 (IL-10) mRNA levels were increased in the E. coli-stimulated mice treated with DHEA. Moreover, DHEA treatment reversed the increasing of IFN-γ/IL-4 ratio in mice caused by E. coli infection. Importantly, DHEA blocked the nuclear translocation of p65 through down-regulation the IκB-α protein phosphorylation level in the mice stimulated with E. coli O157:H7. No statically changes were showed on the phospho (p)-ERK1/2 and p-JNK1/2 protein level, while DHEA significantly suppressed the p-p38 protein level in mice. The above results indicated that DHEA alleviated inflammatory responses by suppressing NO secretion and promoting Th2-associated anti-inflammatory cytokines production in mice; and this action might relate to the blocking of p38 MAPK and NF-κB signaling pathways activation. All the above results provide substantial information for understanding the anti-inflammatory function of DHEA and further support it as a potential immunomodulatory in prevention inflammatory and bacterial infection diseases.
Collapse
|
12
|
Xu M, Zhang X, Ren F, Yan T, Wu B, Bi K, Bi W, Jia Y. Essential oil of Schisandra chinensis ameliorates cognitive decline in mice by alleviating inflammation. Food Funct 2019; 10:5827-5842. [PMID: 31463498 DOI: 10.1039/c9fo00058e] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, we aim to assess possible impacts of essential oil (SEO) from Schisandra chinensis (Turcz.) Baill. (S. chinensis) on mice with cognition impairment. Our data showed that SEO improved the cognitive ability of mice with Aβ1-42 or lipopolysaccharides (LPS)-induced Alzheimer's disease (AD) and suppressed the production of tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in the hippocampus. Furthermore, SEO inhibited p38 activation, but had little effect on other signaling proteins in the MAPK family, such as extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2 (JNK). The SEO and BV-2 microglia co-culture was performed to further confirm the anti-inflammatory activity of SEO. The data showed that SEO decreased nitric oxide (NO) levels in LPS-stimulated BV-2 microglia and significantly blocked LPS-induced MAPKs activation. Taken together, these findings suggested that SEO produces anti-AD effects on AD mice partly by modulating neuroinflammation through the NF-κB/MAPK signaling pathway.
Collapse
Affiliation(s)
- Mengjie Xu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Xiaoying Zhang
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Fangyi Ren
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Traditional Chinese MateriaMedica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Bo Wu
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Kaishun Bi
- The Engineering Laboratory of National and Local Union of Quality Control for Traditional Chinese Medicine, School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Wenchuan Bi
- School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Ying Jia
- Key Laboratory of Active Components of Chinese Medicine Screening and Evaluation, School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
13
|
Ishii T, Okuyama T, Noguchi N, Nishidono Y, Okumura T, Kaibori M, Tanaka K, Terabayashi S, Ikeya Y, Nishizawa M. Antiinflammatory constituents of Atractylodes chinensis rhizome improve glomerular lesions in immunoglobulin A nephropathy model mice. J Nat Med 2019; 74:51-64. [PMID: 31270736 PMCID: PMC7176606 DOI: 10.1007/s11418-019-01342-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/26/2019] [Indexed: 11/06/2022]
Abstract
The crude drug Sojutsu, as defined by the Japanese Pharmacopoeia, is the rhizome of Atractylodes lancea De Candolle, Atractylodes chinensis Koidzumi, or their interspecific hybrids (Asteraceae). Sojutsu is one of the traditional Kampo formulas, which are administered to patients suffering from stomach disorders, edema, and nephrotic syndrome. Although antiinflammatory effects of Sojutsu have been reported, its effects on the liver and kidney have not been extensively investigated. Here, we used a Sojutsu sample identified as A. chinensis rhizome and isolated several constituents from its ethyl acetate (EtOAc)-soluble fraction that decreased production of the proinflammatory mediator nitric oxide (NO) in interleukin 1β-treated rat hepatocytes. Among the constituents in this fraction, atractylodin showed the highest activity to suppress NO production, whereas hinesol, β-eudesmol, and α-bisabolol showed low activity. Atractylodin decreased the levels of inducible nitric oxide synthase, tumor necrosis factor α, and lipocalin 2 messenger RNAs (mRNAs). The EtOAc-soluble fraction of the A. chinensis rhizome extract was administered daily for 20 weeks to high immunoglobulin A (HIGA) mice, whose pathological findings resemble human immunoglobulin A nephropathy. This fraction decreased the weight of white adipose tissue and decreased mesangial proliferation and immunoglobulin A deposition in glomeruli. These results indicate that the EtOAc-soluble fraction, which included antiinflammatory constituents, may be responsible for improvement of the mesangial lesions in HIGA mice.
Collapse
Affiliation(s)
- Toshinari Ishii
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Nao Noguchi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.,Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Susumu Terabayashi
- Laboratory of Pharmacognosy and Medicinal Resources, Yokohama University of Pharmacy, Totsuka-ku, Yokohama, Japan
| | - Yukinobu Ikeya
- Center for Supporting Pharmaceutical Education, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan.
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| |
Collapse
|
14
|
Feng Y, Chen Y, Yang B, Lan Q, Wang T, Cui G, Ren Z, Choi IC, Leung GPH, Yan F, Chen D, Yu HH, Lee SMY. Hepatoprotective Effect of Jianpi Huoxue Formula on Nonalcoholic Fatty Liver Disease Induced by Methionine-Choline-Deficient Diet in Rat. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7465272. [PMID: 31355279 PMCID: PMC6634080 DOI: 10.1155/2019/7465272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/07/2019] [Accepted: 04/17/2019] [Indexed: 12/23/2022]
Abstract
In parallel with the prevalence metabolic syndrome, nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in most countries. It features a constellation of simple steatosis, nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and even hepatocellular carcinoma. There are no approved drugs for effective management of NAFLD and NASH. Jianpi Huoxue formula (JPHX) mainly consists of Atractylodes macrocephal (Baizhu), Salvia miltiorrhiza (Danshen), Rasux Paeonia Alba (Baishao), Rhizoma Alismatis (Zexie), and Fructus Schisandrae Chinensis (Wuweizi), which may have beneficial effects on NAFLD. The aim of the study was to identify the effect of JPHX on NAFLD. A NAFLD model was induced by methionine-choline-deficient food (MCD) in Wistar rats and orally administered with simultaneous JPHX, once a day for 8 weeks. Hepatocellular injury, lipid profile, inflammation, fibrosis, and apoptosis were evaluated. The results showed that JPHX significantly decreased the abnormal serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels compared with the MCD model (P<0.05). Furthermore, JPHX protected MCD diet-fed rats from accumulation of hepatic triglycerides (TG) and total cholesterol (TC). Histological examination demonstrated that JPHX noticeably normalized the NAFLD activity score (NAS). Moreover, JPHX ameliorated liver inflammation by decreasing TNF-α levels and reduced collagen and matrix metalloproteinases in MCD diet-fed rats. In addition, JPHX prevented rats from MCD-induced cellular apoptosis, as suggested by TUNEL staining, and suppressed the activation of caspase 3 and 7 proteins. JPHX also inhibited the phosphorylation of JNK. In conclusion, JPHX exhibited a hepatoprotective effect against NAFLD in an MCD experimental model.
Collapse
Affiliation(s)
- Yu Feng
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Yan Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Binrui Yang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Qingping Lan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Tao Wang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Zhitao Ren
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| | - I. Cheong Choi
- Department of Gastroenterology, Kiang Wu Hospital, Macau
| | | | - Fenggen Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dacan Chen
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hon Ho Yu
- Department of Gastroenterology, Kiang Wu Hospital, Macau
| | - Simon Ming Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macau
| |
Collapse
|
15
|
Zhu P, Li J, Fu X, Yu Z. Schisandra fruits for the management of drug-induced liver injury in China: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152760. [PMID: 31004881 DOI: 10.1016/j.phymed.2018.11.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND With increasing use of pharmaceuticals, drug-induced liver injury (DILI) has become a significant therapeutic challenge to physicians all over the world. Drugs based on Schisandra fruits (SF for short, the fruits of Schisandra chinensis or Schisandra sphenanthera) or synthetic analogues of schisandrin C, are commonly prescribed for treating DILI in China. PURPOSE This review summarizes the literature regarding the application of SF-derived drugs in patients with DILI and current understanding of mechanisms underlying the protective effects of SF against liver injury. METHODS Keywords related to drug-induced liver injury and Schisandra fruits were searched in the following databases: Pubmed, Cochrane Library, Google Scholar, LiverTox, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal database (VIP), and Wanfang database. All studies, published in English or Chinese, were included. Clinical study exclusion criteria: if patients received other Chinese herbal medicines in a study, the study will not be included in this review. RESULTS Clinical studies have shown that SF-derived drugs are effective in inhibiting drug-induced elevation of serum levels of alanine aminotransferase, aspartate transaminase and total bilirubin. Cellular and animal studies have demonstrated that crude SF extracts, lignan compounds found in SF, and SF-derived drugs are effective in protecting the liver against xenobiotic-induced injury. Regulation of cytochrome P450 enzyme activity, anti-oxidation, anti-inflammation and acceleration of liver regeneration are involved in the hepatoprotective mechanisms of SF. CONCLUSION SF-derived drugs are effective in ameliorating DILI in China. To verify the clinical efficacy of these drugs, high-quality clinical studies are needed.
Collapse
Affiliation(s)
- Peili Zhu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Junkui Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiuqiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
16
|
Luo G, Cheng BCY, Zhao H, Fu XQ, Xie R, Zhang SF, Pan SY, Zhang Y. Schisandra Chinensis Lignans Suppresses the Production of Inflammatory Mediators Regulated by NF-κB, AP-1, and IRF3 in Lipopolysaccharide-Stimulated RAW264.7 Cells. Molecules 2018; 23:molecules23123319. [PMID: 30558163 PMCID: PMC6320760 DOI: 10.3390/molecules23123319] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/04/2022] Open
Abstract
Schisandra Fructus (SF) is a traditional Chinese herb used in the treatment of inflammatory disorders like hepatitis. One of the main anti-inflammatory components of SF is the lignans. However, the underlying anti-inflammatory mechanism of Schisandra Chinensis lignans (SCL) remains unclear. This study aims to investigate the effects of SCL on inflammatory mediators in lipopolysaccharide-stimulated RAW264.7 cells and explore the underlying mechanism. The production of nitric oxide (NO) was determined by Griess reaction. ELISA was used to determine cytokine levels and chemokines secretion. To estimate protein levels and enzyme activities, we employed Western blotting. Nuclear localization of NF-κB, AP-1, and IRF3 was detected using immunofluorescence analyses. The results showed that SCL significantly reduced the release of inflammatory mediators, including NO and PGE2, which may be related to down-regulation of iNOS and COX-2 expression. The production of cytokines and chemokines was suppressed by SCL treatment. SCL also decreased the phosphorylation of IKKα/β, IκB-α, Akt, TBK1, ERK, p38, JNK, NF-κB (p65), AP-1 (c-Jun), and IRF3 in RAW264.7 macrophages activated with LPS. The nuclear protein levels and nuclear translocation of AP-1, NF-κB and IRF3 were suppressed by SCL. These results indicated that SCL suppressed the IKKα/β/NF-κB, MAPKs/AP-1 and TBK1/IRF3 signaling pathways in LPS-stimulated RAW264.7 macrophages.
Collapse
Affiliation(s)
- Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Brian Chi-Yan Cheng
- College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong 999077, China.
- Quality Healthcare Medical Services, Hong Kong 999077, China.
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Xiu-Qiong Fu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Ran Xie
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Shuo-Feng Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Si-Yuan Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
17
|
Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J Nat Med 2018; 73:353-368. [PMID: 30467676 DOI: 10.1007/s11418-018-1267-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Pruni Cortex is a herbal drug from the bark of the Japanese flowering cherries, Prunus jamasakura or Prunus verecunda, and is included in the traditional Japanese herbal (Kampo) formula Jumihaidokuto, which is administered orally to patients suffering from inflammatory skin diseases. The flavanones contained in Pruni Cortex (e.g., sakuranetin and naringenin) have potent anti-inflammatory, anti-allergic, and anti-microbial activities. Although the effects of Pruni Cortex on skin disease have been well studied, reports regarding its pharmacological effects on the liver are limited. In this study, we extracted the bark of Prunus jamasakura and purified it to isolate the pharmacologically active constituents by monitoring nitric oxide (NO) production in rat hepatocytes that were treated with the pro-inflammatory cytokine, interleukin (IL)-1β. Sakuranetin and (-)-naringenin, which were present in an ethyl acetate-soluble fraction of the bark extract, significantly inhibited NO induction and inducible nitric oxide synthase (iNOS) expression. These two flavanones decreased the expression of type 1 IL-1 receptor gene and phosphorylation of Akt, also known as protein kinase B, which is regulated by phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, sakuranetin decreased the phosphorylation of the activator isoforms of CCAAT/enhancer-binding protein β (C/EBPβ), which synergistically activates the transcription of the iNOS gene with nuclear factor κB (NF-κB). Therefore, sakuranetin inhibited the co-activating activity of C/EBPβ with NF-κB, leading to the suppression of iNOS gene expression in hepatocytes. Taken together, sakuranetin in Pruni Cortex downregulated the iNOS gene by inhibiting PI3K/Akt signal transduction and the phosphorylation of C/EBPβ. These results imply that sakuranetin may be primarily responsible for the anti-inflammatory effects of Pruni Cortex in the liver.
Collapse
|
18
|
Fang Y, Kang Y, Zou H, Cheng X, Xie T, Shi L, Zhang H. β-elemene attenuates macrophage activation and proinflammatory factor production via crosstalk with Wnt/β-catenin signaling pathway. Fitoterapia 2017; 124:92-102. [PMID: 29066299 DOI: 10.1016/j.fitote.2017.10.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 10/10/2017] [Accepted: 10/20/2017] [Indexed: 11/27/2022]
Abstract
β-elemene, extracted from Rhizoma zedoariae, has been widely used as a traditional medicine for its antitumor activity against a broad range of cancers. However, the effect of β-elemene in inflammation disorders has yet to be determined. The present study was designed to investigate the anti-inflammatory effects and potential molecular mechanisms of β-elemene in lipopolysaccharide (LPS)-induced murine macrophage cells RAW264.7. We found that the production of pro-inflammatory mediators, including interleukin-6(IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), induced by LPS was significantly suppressed by β-elemene in a dose-dependent manner in RAW264.7 macrophage cell line. Also, β-elemene inhibited LPS-induced nitric oxide synthase (iNOS) and interleukin-10 (IL-10) expression by RAW264.7, which was related to the down-regulation of Wnt/β-catenin signaling pathway. Importantly, this study demonstrates that β-catenin was significantly inhibited by β-elemene, which appeared to be largely responsible for the down-regulation of Wnt/β-catenin signaling pathway. Accordingly, the deletion of β-catenin in primary macrophages reversed β-catenin-elicited inhibition of immune response. Furthermore, β-catenin expression and Wnt/β-catenin signaling pathway induced by LPS in RAW264.7 was also significantly inhibited by α-humulene, one isomeric sesquiterpene of β-elemene. α-humulene was also found to significantly inhibit LPS-induced production of proinflammatory cytokines. However, α-humulene showed more cytotoxic ability than β-elemene. Collectively, our data illustrated that β-elemene exerted a potent inhibitory effect on pro-inflammatory meditator and cytokines production via the inactivation of β-catenin, and also demonstrated the protective functions of β-elemene in endotoxin-induced inflammation. β-elemene may serve as potential nontoxic modulatory agents for the prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Yangyi Fang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yanhua Kang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zou
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaxuan Cheng
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Biochemistry and Molecular Biology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Tian Xie
- Institute of Holistic Integrative Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liyun Shi
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Department of Immunology, School of Basic Medical Science, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Hang Zhang
- Key Laboratory of Immunology and Molecular Medicine, Division of Basical Medicine, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China; Institute of Holistic Integrative Oncology, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| |
Collapse
|
19
|
Identification of anti-inflammatory constituents in Phellodendri Cortex and Coptidis Rhizoma by monitoring the suppression of nitric oxide production. J Nat Med 2017; 71:745-756. [DOI: 10.1007/s11418-017-1107-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023]
|
20
|
Schisandrae Fructus Reduces Symptoms of 4-Vinylcyclohexene Diepoxide-Induced Ovarian Failure in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:2564787. [PMID: 28584559 PMCID: PMC5443995 DOI: 10.1155/2017/2564787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/20/2017] [Indexed: 11/18/2022]
Abstract
Menopause is associated with a decrease in the level of sex hormones such as ovarian estradiol and progesterone and can cause various symptoms such as depression, hot flash, fatigue, heart palpitations, and headache. Furthermore, there is a risk of developing complications such as osteoporosis, cardiovascular diseases, Alzheimer’s disease, and ovarian cancer. Schisandrae Fructus (SF) is widely used in Korean medicine as a cure for such complications. This study was conducted to evaluate the therapeutic effects of SF against menopause symptoms associated with follicle depletion caused by the industrial chemical 4-vinylcyclohexene diepoxide (VCD) in mice. VCD directly targets the preantral follicles. Mice were injected with VCD (160 mg/kg intraperitoneally) daily for 15 days and then with SF dosage 3 times/week for six weeks. To evaluate the effects of SF, body weight, tail skin temperature, uterine weight, lipid profile, and osteocalcin levels were measured. A decrease in body weight and tail skin temperature and an increase in uterine weight were observed upon SF treatment. Moreover, SF treatment significantly decreased total cholesterol, triglyceride, osteocalcin, and low-density lipoprotein levels and low-density/high-density lipoprotein ratio. These results suggest the potential use of SF in the treatment of menopausal symptoms in women.
Collapse
|
21
|
Yun YR, Kim JH, Kim JH, Jung MH. Protective effects of gomisin N against hepatic steatosis through AMPK activation. Biochem Biophys Res Commun 2016; 482:1095-1101. [PMID: 27914812 DOI: 10.1016/j.bbrc.2016.11.164] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Gomisin N (GN) is a phytochemical derived from Schisandra chinensis. It has been reported to exert a protective effect against hepatic steatosis by attenuating endoplasmic reticulum (ER) stress. However, the detailed mechanism by which GN inhibits hepatic steatosis remains to be elucidated. In this study, we examined whether GN activates AMP-activated protein kinase (AMPK) and exerts therapeutic effects on liver X receptor (LXR)- or palmitic acid (PA)-induced triglyceride (TG) accumulation in HepG2 cells. Furthermore, in vivo protective effects of GN against hepatic steatosis were assessed in high-fat diet (HFD)-induced obese mice. GN stimulated the phosphorylation of AMPK, acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1c (SREBP1c) in HepG2 cells. It decreased the expression of lipogenesis genes, but increased the expression of fatty acid oxidation genes. Additionally, GN decreased the expression of lipogenesis genes induced by the LXR agonist T0901317 or PA in HepG2 cells, resulting in reduced intracellular TG content. However, preincubation with compound C, an AMPK inhibitor, prevented GN-mediated effects. Administration of GN to HFD-induced obese mice decreased HFD-induced liver weight, hepatic TG accumulation, and cytoplasmic lipid droplet. These findings demonstrate that GN activates the AMPK pathway and ameliorates HFD-induced hepatic steatosis.
Collapse
Affiliation(s)
- Ye-Rang Yun
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Ji-Hyun Kim
- Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Ji Ha Kim
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea
| | - Myeong Ho Jung
- Healthy Aging Korean Medical Research Center, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea; Division of Longevity and Biofunctional Medicine, School of Korean Medicine, Pusan National University, Yangsan 626-870, Republic of Korea.
| |
Collapse
|
22
|
Nakano Y, Nasu M, Kano M, Kameoka H, Okuyama T, Nishizawa M, Ikeya Y. Lignans from guaiac resin decrease nitric oxide production in interleukin 1β-treated hepatocytes. J Nat Med 2016; 71:190-197. [DOI: 10.1007/s11418-016-1048-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/21/2016] [Indexed: 02/02/2023]
|
23
|
Zhu H, Zhang L, Wang G, He Z, Zhao Y, Xu Y, Gao Y, Zhang L. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice. J Food Drug Anal 2016; 24:831-838. [PMID: 28911622 PMCID: PMC9337287 DOI: 10.1016/j.jfda.2016.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/22/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
| | | | | | | | | | | | | | - Lianxue Zhang
- Corresponding author. College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China. E-mail address: (L. Zhang)
| |
Collapse
|
24
|
Yan T, Shang L, Wang M, Zhang C, Zhao X, Bi K, Jia Y. Lignans from Schisandra chinensis ameliorate cognition deficits and attenuate brain oxidative damage induced by D-galactose in rats. Metab Brain Dis 2016; 31:653-61. [PMID: 26847610 DOI: 10.1007/s11011-016-9804-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/29/2016] [Indexed: 01/30/2023]
Abstract
The aim of this study was to explore the neuroprotective effects of active compounds from Schisandra chinensis (Trucz.) Baill. (Magnoliaceae) against the D-galactose (D-gal)-induced neurotoxicity in rat. The Wistar rats were subcutaneously injected with D-gal (150 mg/(kg day)) for six weeks and orally administered with water extract or 95 % ethanol extract (partitioned with petroleum ether (PE), chloroform (CF), ethyl acetate (EA) and n-Butanol (NB), respectively) of the fruits of Schisandra chinensis simultaneously. The alteration of cognitive functions was assessed by using Morris water maze and Step-down type passive avoidance test. The results demonstrated that PE fraction was the most effective fraction to ameliorate cognitive deficits. Further biochemical examination indicated that PE could attenuate the activities decreasing of superoxide dismutase (SOD), catalase (CAT), the total antioxidant (T-AOC) induced by D-gal, and maintain the normal levels of glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) in the serum, prefrontal cortex, striatum and hippocampus of the brain of related rat, selectively. Meanwhile, the compounds of PE fraction were also identified as mainly lignans, thus, these results suggest that lignans from the PE fraction of Schisandra chinensis represented a potential source of medicine for the treatment of the aging-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- Tingxu Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, People's Republic China
| | - Lei Shang
- The first hospital of China Medical University, Shenyang, 110001, People's Republic China
| | - Mengshi Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, People's Republic China
| | - Chenning Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, People's Republic China
| | - Xu Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, People's Republic China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, People's Republic China
| | - Ying Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang, People's Republic China.
| |
Collapse
|
25
|
Kamino T, Shimokura T, Morita Y, Tezuka Y, Nishizawa M, Tanaka K. Comparative analysis of the constituents in Saposhnikoviae Radix and Glehniae Radix cum Rhizoma by monitoring inhibitory activity of nitric oxide production. J Nat Med 2016; 70:253-9. [DOI: 10.1007/s11418-016-0969-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/15/2016] [Indexed: 11/30/2022]
|
26
|
Tanemoto R, Okuyama T, Matsuo H, Okumura T, Ikeya Y, Nishizawa M. The constituents of licorice ( Glycyrrhiza uralensis) differentially suppress nitric oxide production in interleukin-1β-treated hepatocytes. Biochem Biophys Rep 2015; 2:153-159. [PMID: 29124157 PMCID: PMC5668654 DOI: 10.1016/j.bbrep.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/30/2015] [Accepted: 06/12/2015] [Indexed: 10/25/2022] Open
Abstract
Licorice (Glycyrrhizae radix) is the roots and stolons of Glycyrrhiza uralensis Fischer or Glycyrrhiza glabra Linnaeus in the Japanese Pharmacopoeia. Glycyrrhizae radix has been widely used as a sweetener and a traditional medicine. A Glycyrrhizae radix extract contains many constituents and has antispasmodic, antitussive, anti-ulcer, and anti-inflammatory effects. However, reports comparing the anti-inflammatory effects of these constituents are very few. Here, we purified several constituents from the roots and stolons of G. uralensis and examined and compared their anti-inflammatory effects by monitoring the levels of the inflammatory mediator, nitric oxide (NO), in interleukin (IL)-1β-treated rat hepatocytes. From the G. uralensis extract, we purified the main constituent glycyrrhizin and the constituents that are characteristic of G. uralensis (chalcones and flavanones). These constituents suppressed NO production in IL-1β-treated rat hepatocytes, and isoliquiritigenin showed the greatest suppression activity. Isoliquiritigenin, isoliquiritin, and liquiritigenin significantly decreased both protein and mRNA for the inducible nitric oxide synthase. These constituents reduced the levels of mRNAs encoding tumor necrosis factor α and IL-6. In contrast, although glycyrrhizin is abundant, it showed a 100-fold lower potency in NO suppression. Therefore, both glycyrrhizin and the minor constituents (isoliquiritigenin, isoliquiritin, and liquiritigenin) may be responsible for the anti-inflammatory effects of G. uralensis. It is also implied that these constituents may have a therapeutic potential for inflammatory hepatic disorders.
Collapse
Affiliation(s)
- Ryunosuke Tanemoto
- Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga, Japan.,Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga, Japan
| | - Hirotaka Matsuo
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.,Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yukinobu Ikeya
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga, Japan
| |
Collapse
|
27
|
Nakajima A, Yamamoto Y, Yoshinaka N, Namba M, Matsuo H, Okuyama T, Yoshigai E, Okumura T, Nishizawa M, Ikeya Y. A new flavanone and other flavonoids from green perilla leaf extract inhibit nitric oxide production in interleukin 1β-treated hepatocytes. Biosci Biotechnol Biochem 2015; 79:138-46. [DOI: 10.1080/09168451.2014.962474] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
A new flavanone, shisoflavanone A (1), and several flavonoids were purified from the ethyl acetate-soluble fraction of green perilla leaves (Perilla frutescens Britton var. crispa form viridis), and their structures were identified. Shisoflavanone A was elucidated as 8-hydroxy-6,7-dimethoxyflavanone based on its spectral data. Other constituents of the ethyl acetate-soluble fraction, i.e. 5,8-dihydroxy-7-methoxyflavanone (2), negletein (5,6-dihydroxy-7-methoxyflavone) (3), luteolin (4), apigenin (5), esculetin (6), and protocatechuic acid (7), were identified. This is the first time that constituents 2, 3, and 6 have been found in green perilla. Shisoflavanone A and the other constituents (except 7) significantly inhibited nitric oxide production in interleukin 1β-stimulated rat hepatocytes, which have been used to monitor the anti-inflammatory effects of herbal constituents. The present findings suggest that these constituents, including shisoflavanone A, may be involved in the anti-inflammatory effects of green perilla leaves.
Collapse
Affiliation(s)
- Ayaka Nakajima
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yuka Yamamoto
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Nao Yoshinaka
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Mayuri Namba
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Hirotaka Matsuo
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Yukinobu Ikeya
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
28
|
Inaba H, Yoshigai E, Okuyama T, Murakoshi M, Sugiyama K, Nishino H, Nishizawa M. Antipyretic analgesic drugs have different mechanisms for regulation of the expression of inducible nitric oxide synthase in hepatocytes and macrophages. Nitric Oxide 2014; 44:61-70. [PMID: 25499030 DOI: 10.1016/j.niox.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 12/25/2022]
Abstract
Antipyretic analgesic drugs (including non-steroidal anti-inflammatory drugs) inhibit cyclooxygenase-2 and inducible nitric oxide synthase (iNOS), resulting in decreases of the proinflammatory mediators prostaglandin E2 and nitric oxide (NO), respectively. Both mediators are regulated by nuclear factor-kappa B (NF-κB), a key transcription factor in inflammation. Few reports have compared the efficacy and potency of anti-inflammatory drugs as NO inhibitors. In our study, we examined the effects of four popular antipyretic analgesic drugs on NO production induced in hepatocytes and macrophages. Mouse RAW264.7 macrophages treated with bacterial lipopolysaccharide showed the highest efficacy with regard to NO production; aspirin, loxoprofen, ibuprofen, and acetaminophen dose-dependently suppressed NO induction. Ibuprofen showed the highest potency in suppressing the induced production of NO. In rat hepatocytes, all the drugs inhibited interleukin 1β-induced NO production and ibuprofen and loxoprofen inhibited NO induction effectively. Unexpectedly, the potency of NO suppression of each drug in hepatocytes did not always correlate with that observed in RAW264.7 cells. Microarray analyses of mRNA expression in hepatocytes revealed that the effects of the four antipyretic analgesic drugs modulated the NF-κB signaling pathway in a similar manner to the regulation of the expression of genes associated with inflammation, including the iNOS gene. However, the affected signal-transducing molecules in the NF-κB pathway were different for each drug. Therefore, antipyretic analgesic drugs may decrease NO production by modulating the NF-κB pathway in different ways, which could confer different efficacies and potencies with regard to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Hiroyuki Inaba
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan; Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keikichi Sugiyama
- Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hoyoku Nishino
- Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
29
|
Sung M, Park SS, Kim SS, Han CK, Hur JM. Antioxidant activity and hepatoprotective effect of Schizandra chinensis Baill. Extracts containing active components in alcohol-induced HepG2 cells. Food Sci Biotechnol 2014. [DOI: 10.1007/s10068-014-0220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
30
|
Zhang C, Mao X, Zhao X, Liu Z, Liu B, Li H, Bi K, Jia Y. Gomisin N isolated from Schisandra chinensis augments pentobarbital-induced sleep behaviors through the modification of the serotonergic and GABAergic system. Fitoterapia 2014; 96:123-30. [DOI: 10.1016/j.fitote.2014.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022]
|
31
|
Wang XY, Yu ZL, Pan SY, Zhang Y, Sun N, Zhu PL, Jia ZH, Zhou SF, Ko KM. Supplementation with the extract of schisandrae fructus pulp, seed, or their combination influences the metabolism of lipids and glucose in mice fed with normal and hypercholesterolemic diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:472638. [PMID: 24876871 PMCID: PMC4021675 DOI: 10.1155/2014/472638] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 02/07/2023]
Abstract
SCHISANDRAE FRUCTUS (SF), WHICH POSSESSES FIVE TASTES sweet (fruit skin), sour (pulp), bitter/pungent (seed core), and saltiness (all parts), can produce a wide spectrum of biological activities in the body. Here, we investigated the effects of the ethanolic extract of SF pulp, seed, or their combination (namely, EtSF-P, EtSF-S, or EtSF-P/S, resp.; collectively called EtSF) on the metabolism of lipids and glucose in normal diet- (ND-) and hypercholesterolemic diet- (HCLD-) fed mice. Supplementation with EtSF significantly reduced hepatic triglyceride and cholesterol levels by 18-47% in both ND- and HCLD-fed mice. EtSF supplementation reduced serum triglyceride levels (approximately 29%), whereas EtSF-P and EtSF-S/P elevated serum cholesterol (up to 26 and 44%, resp.) in HCLD-fed mice. Treatment with EtSF decreased hepatic glucose levels (by 9-44%) in both ND- and HCLD-fed mice. Supplementation with EtSF-S or EtSF-S/P (at 1 and 3%) increased biliary or fecal TC contents in HCLD-fed mice. However, supplementation with EtSF-S/P at 9% reduced biliary TC levels in HCLD-fed mice. EtSF-P or EtSF-S/P supplementation reduced serum alanine aminotransferase activity in HCLD-fed mice. The findings suggested that supplementation with EtSF lowered lipid and glucose accumulation in the liver and increased fecal cholesterol contents in mice. Dietary supplementation with EtSF-P or EtSF-S/P attenuated liver damage in HCLD-fed mice.
Collapse
Affiliation(s)
- Xiao-Yan Wang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhi-Ling Yu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Si-Yuan Pan
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Yi Zhang
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Nan Sun
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Pei-Li Zhu
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Zhan-Hong Jia
- Department of Pharmacology, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, FL 33612, USA
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science & Technology, Hong Kong
| |
Collapse
|
32
|
Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, Machida T, Okumura T, Nishizawa M. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 2014; 9:e93818. [PMID: 24705335 PMCID: PMC3976307 DOI: 10.1371/journal.pone.0093818] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
Abstract
Flavanol (flavan-3-ol)-rich lychee fruit extract (FRLFE) is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and the proinflammatory mediator nitric oxide (NO), which is synthesized by inducible nitric oxide synthase (iNOS). Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β)-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB). Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α). FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Ryota Yamanishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masatoshi Mori
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromitsu Murase
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toru Machida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
33
|
Tian J, Liu W, Zhen Z, Tong X. Successful treatment of latent autoimmune diabetes in adults with Traditional Chinese Medicine: a case report. J TRADIT CHIN MED 2013; 33:766-9. [DOI: 10.1016/s0254-6272(14)60010-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Chu C, Zhang S, Tong S, Li X, Yan J. An efficient strategy for the extraction and purification of lignans fromSchisandra chinensisby a combination of supercritical fluid extraction and high-speed counter-current chromatography. J Sep Sci 2013; 36:3958-64. [DOI: 10.1002/jssc.201300896] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/13/2013] [Accepted: 10/14/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Chu Chu
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Shidi Zhang
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Shengqiang Tong
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Xingnuo Li
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| | - Jizhong Yan
- College of Pharmaceutical Science; Zhejiang University of Technology; Hangzhou P. R. China
| |
Collapse
|
35
|
A survey of chinese medicinal herbal treatment for chemotherapy-induced oral mucositis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:284959. [PMID: 24285975 PMCID: PMC3830834 DOI: 10.1155/2013/284959] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023]
Abstract
Oral mucositis is one of the common side effects of chemotherapy treatment with potentially severe implications. Despite several treatment approaches by conventional and complementary western medicine, the therapeutic outcome is often not satisfactory. Traditional Chinese Medicine (TCM) offers empirical herbal formulas for the treatment of oral ulceration which are used in adaptation to chemotherapy-induced mucositis. While standard concepts for TCM treatment do not exist and acceptance by conventional oncologists is still low, we conducted a review to examine the evidence of Chinese herbal treatment in oral mucositis. Eighteen relevant studies on 4 single herbs, 2 combinations of 2 herbs, and 11 multiherbal prescriptions involving 3 or more compounds were included. Corresponding molecular mechanisms were investigated. The knowledge about detailed herbal mechanisms, especially in multi-herbal prescriptions is still limited. The quality of clinical trials needs further improvement. Meta-analysis on the existent database is not possible but molecular findings on Chinese medicinal herbs indicate that further research is still promising for the treatment of chemotherapy-induced oral mucositis.
Collapse
|
36
|
Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes. Biochem Biophys Res Commun 2013; 439:54-9. [PMID: 23958298 DOI: 10.1016/j.bbrc.2013.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. METHODS A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. RESULTS High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. CONCLUSIONS The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.
Collapse
|
37
|
Natural antisense transcript-targeted regulation of inducible nitric oxide synthase mRNA levels. Nitric Oxide 2013; 30:9-16. [DOI: 10.1016/j.niox.2013.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/26/2012] [Accepted: 01/14/2013] [Indexed: 12/27/2022]
|