1
|
Li J, Tian W, Chen T, Liu QY, Wu HW, Liu CH, Fang YY, Guo HS, Zhao JH. N 6-methyladenosine on the natural antisense transcript of NIA1 stabilizes its mRNA to boost NO biosynthesis and modulate stomatal movement. MOLECULAR PLANT 2025; 18:151-165. [PMID: 39696818 DOI: 10.1016/j.molp.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 12/20/2024]
Abstract
Nitric oxide (NO) is a crucial signaling molecule that regulates a wide range of metabolic pathways in different strata of organisms. In plants, nitrate reductase (NR) is a key enzyme for NO biosynthesis. There are two NR-encoding genes in Arabidopsis genome, NIA1 and NIA2, which are precisely regulated and expressed in a tissue-specific manner. In this study, we found that the natural antisense transcript as-NIA1, transcribed from the 3' UTR of NIA1, stabilizes NIA1 mRNA to maintain its circadian oscillation in plants grown under the light/dark cycle. Importantly, as-NIA1-dependent NIA1 mRNA stability is indispensable for NIA1-mediated NO biosynthesis in guard cells and natural stomatal closure. Moreover, we revealed that polypyrimidine tract-binding 3 (PTB3) regulates the stabilization of NIA1 mRNA by directly binding to UC-rich elements of as-NIA1. We further found that MTA deposits N6-methyladenosine (m6A) on as-NIA1, facilitating the as-NIA1-PTB3 interaction in vivo, in agreement with RNA structure prediction in that m6A-mediated structural alterations expose the UC-rich elements to enhance the accessibility of PTB3. Taken together, these findings reveal a novel molecular mechanism by which plants precisely manipulate NO biosynthesis to modulate light/dark-regulated stomatal movement, highlighting the coupling of RNA epigenetic modifications and structures shaping RNA-protein interactions in the regulation of hormone biosynthesis.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wen Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ting Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Yan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hua-Wei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Chuan-Hui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Arlt J, Vlaic S, Feuer R, Thomas M, Settmacher U, Dahmen U, Dirsch O. Selective gene expression profiling contributes to a better understanding of the molecular pathways underlying the histological changes observed after RHMVL. BMC Med Genomics 2022; 15:211. [PMID: 36207717 PMCID: PMC9547442 DOI: 10.1186/s12920-022-01364-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Background In previous studies, five vasoactive drugs were investigated for their effect on the recovery process after extended liver resection without observing relevant improvements. We hypothesized that an analysis of gene expression could help to identify potentially druggable pathways and could support the selection of promising drug candidates. Methods Liver samples obtained from rats after combined 70% partial hepatectomy and right median hepatic vein ligation (n = 6/group) sacrificed at 0 h, 24 h, 48 h, and 7days were selected for this study. Liver samples were collected from differentially perfused regions of the median lobe (obstruction-zone, border-zone, normal-zone). Gene expression profiling of marker genes regulating hepatic hemodynamics, vascular remodeling, and liver regeneration was performed with microfluidic chips. We used 3 technical replicates from each sample. Raw data were normalized using LEMming and differentially expressed genes were identified using LIMMA. Results The strongest differences were found in obstruction-zone at 24 h and 48 h postoperatively compared to all other groups. mRNA expression of marker genes from hepatic hemodynamics pathways (iNOS,Ptgs2,Edn1) was most upregulated. Conclusion These upregulated genes suggest a strong vasoconstrictive effect promoting arterial hypoperfusion in the obstruction-zone. Reducing iNOS expression using selective iNOS inhibitors seems to be a promising approach to promote vasodilation and liver regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01364-z.
Collapse
Affiliation(s)
- Janine Arlt
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany
| | - Sebastian Vlaic
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Ronny Feuer
- Institute for System Dynamics, University of Stuttgart, Pfaffenwaldring 9, 70569, Stuttgart, Germany
| | - Maria Thomas
- Dr. Magarete Fischer-Bosch Institute for Clinical Pharmacology, Auerbachstr. 112, 70376, Stuttgart, Germany
| | - Utz Settmacher
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Erlanger Allee 101, 07747, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Drackendorfer Str. 1, 07747, Jena, Germany.
| | - Olaf Dirsch
- Institute of Pathology, Jena University Hospital, Ziegelmühlenweg 1, 07743, Jena, Germany
| |
Collapse
|
3
|
Ueyama Y, Tokuhara K, Miki H, Nakatake R, Sakaguchi T, Nishizawa M, Kaibori M, Okumura T. Active Hexose Correlated Compound Has Protective Effects in Ischemia–Reperfusion Injury of the Rat Small Intestine. J Surg Res 2019; 243:265-273. [DOI: 10.1016/j.jss.2019.05.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/17/2019] [Accepted: 05/29/2019] [Indexed: 12/29/2022]
|
4
|
Basavappa M, Cherry S, Henao-Mejia J. Long noncoding RNAs and the regulation of innate immunity and host-virus interactions. J Leukoc Biol 2019; 106:83-93. [PMID: 30817056 DOI: 10.1002/jlb.3mir0918-354r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Immune responses are both pathogen and cell type-specific. The innate arm of immunity is characterized by rapid intracellular signaling cascades resulting in the production of hundreds of antimicrobial effectors that protect the host organism. Long noncoding RNAs have been shown to operate as potent modulators of both RNA and protein function throughout cell biology. Emerging data suggest that this is also true within innate immunity. LncRNAs have been shown to regulate both innate immune cell identity and the transcription of gene expression programs critical for innate immune responses. Here, we review the diverse roles of lncRNAs within innate defense with a specific emphasis on host-virus interactions.
Collapse
Affiliation(s)
- Megha Basavappa
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jorge Henao-Mejia
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
A natural antisense lncRNA controls breast cancer progression by promoting tumor suppressor gene mRNA stability. PLoS Genet 2018; 14:e1007802. [PMID: 30496290 PMCID: PMC6289468 DOI: 10.1371/journal.pgen.1007802] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 12/11/2018] [Accepted: 11/01/2018] [Indexed: 02/06/2023] Open
Abstract
The human genome encodes thousands of long noncoding RNA (lncRNA) genes; the function of majority of them is poorly understood. Aberrant expression of a significant number of lncRNAs is observed in various diseases, including cancer. To gain insights into the role of lncRNAs in breast cancer progression, we performed genome-wide transcriptome analyses in an isogenic, triple negative breast cancer (TNBC/basal-like) progression cell lines using a 3D cell culture model. We identified significantly altered expression of 1853 lncRNAs, including ~500 natural antisense transcript (NATs) lncRNAs. A significant number of breast cancer-deregulated NATs displayed co-regulated expression with oncogenic and tumor suppressor protein-coding genes in cis. Further studies on one such NAT, PDCD4-AS1 lncRNA reveal that it positively regulates the expression and activity of the tumor suppressor PDCD4 in mammary epithelial cells. Both PDCD4-AS1 and PDCD4 show reduced expression in TNBC cell lines and in patients, and depletion of PDCD4-AS1 compromised the cellular levels and activity of PDCD4. Further, tumorigenic properties of PDCD4-AS1-depleted TNBC cells were rescued by exogenous expression of PDCD4, implying that PDCD4-AS1 acts upstream of PDCD4. Mechanistically, PDCD4-AS1 stabilizes PDCD4 RNA by forming RNA duplex and controls the interaction between PDCD4 RNA and RNA decay promoting factors such as HuR. Our studies demonstrate crucial roles played by NAT lncRNAs in regulating post-transcriptional gene expression of key oncogenic or tumor suppressor genes, thereby contributing to TNBC progression. Breast cancer is the most common cancer in women worldwide. The molecular mechanisms underlying the disease have been extensively studied, leading to dramatic improvements in diagnostic and prognostic approaches. Despite the overall improvements in survival rate, numerous cases of death by breast cancer are still reported per year, alerting us about the potential gap of knowledge in cancer molecular biology era. The emerging advances in new generation sequencing techniques have revealed that the majority of genome is transcribed into non-protein coding RNAs or ncRNAs, including thousands of long ncRNAs (lncRNAs) of unknown function. Natural antisense RNAs (NATs) constitute a group of lncRNAs that are transcribed in the opposite direction to a sense protein-coding or non-coding gene with partial or complete complementarity. In this manuscript, we investigate the role of NATs in breast cancer progression, focusing on the role of PDCD4-AS1, a NAT expressed from the established tumor suppressor PDCD4 gene locus. We observe that both PDCD4-AS1 and PDCD4 display concordant expression in breast cancer cell lines and patients. In mammary epithelial cells, PDCD4-AS1 promotes the stability of PDCD4 mRNA. PDCD4-AS1 by forming RNA duplex with PDCD4 RNA prevents the interaction between PDCD4 RNA and RNA decay factors in the nucleus.
Collapse
|
6
|
Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J Nat Med 2018; 73:353-368. [PMID: 30467676 DOI: 10.1007/s11418-018-1267-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/07/2018] [Indexed: 12/31/2022]
Abstract
Pruni Cortex is a herbal drug from the bark of the Japanese flowering cherries, Prunus jamasakura or Prunus verecunda, and is included in the traditional Japanese herbal (Kampo) formula Jumihaidokuto, which is administered orally to patients suffering from inflammatory skin diseases. The flavanones contained in Pruni Cortex (e.g., sakuranetin and naringenin) have potent anti-inflammatory, anti-allergic, and anti-microbial activities. Although the effects of Pruni Cortex on skin disease have been well studied, reports regarding its pharmacological effects on the liver are limited. In this study, we extracted the bark of Prunus jamasakura and purified it to isolate the pharmacologically active constituents by monitoring nitric oxide (NO) production in rat hepatocytes that were treated with the pro-inflammatory cytokine, interleukin (IL)-1β. Sakuranetin and (-)-naringenin, which were present in an ethyl acetate-soluble fraction of the bark extract, significantly inhibited NO induction and inducible nitric oxide synthase (iNOS) expression. These two flavanones decreased the expression of type 1 IL-1 receptor gene and phosphorylation of Akt, also known as protein kinase B, which is regulated by phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). Furthermore, sakuranetin decreased the phosphorylation of the activator isoforms of CCAAT/enhancer-binding protein β (C/EBPβ), which synergistically activates the transcription of the iNOS gene with nuclear factor κB (NF-κB). Therefore, sakuranetin inhibited the co-activating activity of C/EBPβ with NF-κB, leading to the suppression of iNOS gene expression in hepatocytes. Taken together, sakuranetin in Pruni Cortex downregulated the iNOS gene by inhibiting PI3K/Akt signal transduction and the phosphorylation of C/EBPβ. These results imply that sakuranetin may be primarily responsible for the anti-inflammatory effects of Pruni Cortex in the liver.
Collapse
|
7
|
Okuyama T, Nakatake R, Kaibori M, Okumura T, Kon M, Nishizawa M. A sense oligonucleotide to inducible nitric oxide synthase mRNA increases the survival rate of rats in septic shock. Nitric Oxide 2017; 72:32-40. [PMID: 29128398 DOI: 10.1016/j.niox.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/04/2017] [Accepted: 11/07/2017] [Indexed: 12/28/2022]
Abstract
Natural antisense transcripts (asRNAs) that do not encode proteins are transcribed from rat, mouse, and human genes, encoding inducible nitric oxide synthase (iNOS), which catalyzes the production of the inflammatory mediator nitric oxide (NO). In septic shock, NO is excessively produced in hepatocytes and macrophages. The iNOS asRNA interacts with and stabilizes iNOS mRNA. We found that single-stranded 'sense' oligonucleotides corresponding to the iNOS mRNA sequence reduced iNOS mRNA levels by interfering with the mRNA-asRNA interactions in rat hepatocytes. The iNOS sense oligonucleotides that were substituted with phosphorothioate bonds and locked nucleic acids efficiently decreased the levels of iNOS mRNA and iNOS protein. In this study, the gene expression patterns in the livers of two endotoxemia model rats with acute liver failure were compared. Next, we optimized the sequence and modification of the iNOS sense oligonucleotides in interleukin 1β-treated rat hepatocytes. When a sense oligonucleotide was simultaneously administered with d-galactosamine and bacterial lipopolysaccharide (LPS) to rats, their survival rate significantly increased compared to the rats administered d-galactosamine and LPS alone. In the livers of the sense oligonucleotide-administered rats, apoptosis in the hepatocytes markedly decreased. These results suggest that natural antisense transcript-targeted regulation technology using iNOS sense oligonucleotides may be used to treat human inflammatory diseases, such as sepsis and septic shock.
Collapse
Affiliation(s)
- Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tadayoshi Okumura
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masanori Kon
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
8
|
Kurokawa T, Kohno K, Nagai K, Chiba M, Pak S, Murata S, Fukunaga K, Yasue H, Ohkohchi N. Antisense RNA transcripts in the blood may be novel diagnostic markers for colorectal cancer. Oncol Lett 2017; 14:3487-3493. [PMID: 28927104 PMCID: PMC5587960 DOI: 10.3892/ol.2017.6572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/06/2017] [Indexed: 01/21/2023] Open
Abstract
Numerous genetic studies have been conducted regarding the occurrence of colorectal cancer (CRC) and the prognosis using microarrays. However, adequate investigations into the diagnostic application of microarrays have yet to be performed. The simplicity and accuracy of diagnosis and prognosis tracking are important requirements for its processes, and the use of blood cells for diagnosis is considered to be suitable to meet these requirements. The patients involved in the study were 28 preoperative patients with CRC and 6 healthy individuals who served as controls. RNA was extracted from the blood cells of the patients and analyzed using a sense/antisense RNA custom microarray. In the patients with CRC, the expression levels of 20 sense RNA and 20 antisense RNA species were identified as being significantly altered compared with that of the healthy volunteers (P<0.05; fold-change, >2.0). Cluster analysis of these RNA species revealed that the top 10 antisense RNAs significantly clustered patients with cancer and healthy individuals separately. Patients with stage I or II CRC exhibited significant changes in the expression levels of 33 sense and 39 antisense RNA species, as compared with healthy volunteers (P<0.01; fold-change >2.0). Cluster analysis demonstrated that patients with stage I or II CRC and healthy volunteers formed separate clusters only among the top 20 antisense RNA species. A tracking study of expression levels of haloacid dehalogenase-like hydrolase domain-containing 1 (HDHD1) antisense RNA was performed and a significant difference was identified between the CRC and healthy groups revealing that the levels at one week and three months following surgical removal of the cancerous tissue, decreased to almost same levels of the healthy individuals. The results of the current study indicate that HDHD1 antisense RNA may serve as a potential biomarker for the prognosis of CRC.
Collapse
Affiliation(s)
- Tomohiro Kurokawa
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Keisuke Kohno
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kentaro Nagai
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Mitsuru Chiba
- Department of Biomedical Sciences, Division of Medical Life Sciences, Hirosaki University Graduate School of Health Sciences, Hirosaki, Aomori 036-8564, Japan
| | - Sugiru Pak
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Soichiro Murata
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kiyoshi Fukunaga
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Yasue
- Genome Resource Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-0901, Japan
| | - Nobuhiro Ohkohchi
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
9
|
Strategies to identify natural antisense transcripts. Biochimie 2017; 132:131-151. [DOI: 10.1016/j.biochi.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
|
10
|
Miki H, Tokuhara K, Oishi M, Nakatake R, Tanaka Y, Kaibori M, Nishizawa M, Okumura T, Kon M. Japanese Kampo Saireito Has a Liver-Protective Effect Through the Inhibition of Inducible Nitric Oxide Synthase Induction in Primary Cultured Rat Hepatocytes. JPEN J Parenter Enteral Nutr 2016; 40:1033-1041. [DOI: 10.1177/0148607115575035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Hirokazu Miki
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Katsuji Tokuhara
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaharu Oishi
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Richi Nakatake
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshito Tanaka
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masanori Kon
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
11
|
Tanemoto R, Okuyama T, Matsuo H, Okumura T, Ikeya Y, Nishizawa M. The constituents of licorice ( Glycyrrhiza uralensis) differentially suppress nitric oxide production in interleukin-1β-treated hepatocytes. Biochem Biophys Rep 2015; 2:153-159. [PMID: 29124157 PMCID: PMC5668654 DOI: 10.1016/j.bbrep.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/30/2015] [Accepted: 06/12/2015] [Indexed: 10/25/2022] Open
Abstract
Licorice (Glycyrrhizae radix) is the roots and stolons of Glycyrrhiza uralensis Fischer or Glycyrrhiza glabra Linnaeus in the Japanese Pharmacopoeia. Glycyrrhizae radix has been widely used as a sweetener and a traditional medicine. A Glycyrrhizae radix extract contains many constituents and has antispasmodic, antitussive, anti-ulcer, and anti-inflammatory effects. However, reports comparing the anti-inflammatory effects of these constituents are very few. Here, we purified several constituents from the roots and stolons of G. uralensis and examined and compared their anti-inflammatory effects by monitoring the levels of the inflammatory mediator, nitric oxide (NO), in interleukin (IL)-1β-treated rat hepatocytes. From the G. uralensis extract, we purified the main constituent glycyrrhizin and the constituents that are characteristic of G. uralensis (chalcones and flavanones). These constituents suppressed NO production in IL-1β-treated rat hepatocytes, and isoliquiritigenin showed the greatest suppression activity. Isoliquiritigenin, isoliquiritin, and liquiritigenin significantly decreased both protein and mRNA for the inducible nitric oxide synthase. These constituents reduced the levels of mRNAs encoding tumor necrosis factor α and IL-6. In contrast, although glycyrrhizin is abundant, it showed a 100-fold lower potency in NO suppression. Therefore, both glycyrrhizin and the minor constituents (isoliquiritigenin, isoliquiritin, and liquiritigenin) may be responsible for the anti-inflammatory effects of G. uralensis. It is also implied that these constituents may have a therapeutic potential for inflammatory hepatic disorders.
Collapse
Affiliation(s)
- Ryunosuke Tanemoto
- Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga, Japan.,Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga, Japan
| | - Hirotaka Matsuo
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan.,Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yukinobu Ikeya
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Kusatsu, Shiga, Japan
| |
Collapse
|
12
|
Bogdan C. Nitric oxide synthase in innate and adaptive immunity: an update. Trends Immunol 2015; 36:161-78. [PMID: 25687683 DOI: 10.1016/j.it.2015.01.003] [Citation(s) in RCA: 578] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/14/2015] [Accepted: 01/14/2015] [Indexed: 12/22/2022]
Abstract
Thirty years after the discovery of its production by activated macrophages, our appreciation of the diverse roles of nitric oxide (NO) continues to grow. Recent findings have not only expanded our understanding of the mechanisms controlling the expression of NO synthases (NOS) in innate and adaptive immune cells, but have also revealed new functions and modes of action of NO in the control and escape of infectious pathogens, in T and B cell differentiation, and in tumor defense. I discuss these findings, in the context of a comprehensive overview of the various sources and multiple reaction partners of NO, and of the regulation of NOS2 by micromilieu factors, antisense RNAs, and 'unexpected' cytokines.
Collapse
Affiliation(s)
- Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie, und Hygiene, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Universitätsklinikum Erlangen, Wasserturmstraße 3/5, 91054 Erlangen, Germany.
| |
Collapse
|
13
|
Tanaka Y, Kaibori M, Miki H, Nakatake R, Tokuhara K, Nishizawa M, Okumura T, Kwon AH. Alpha-lipoic acid exerts a liver-protective effect in acute liver injury rats. J Surg Res 2015; 193:675-83. [DOI: 10.1016/j.jss.2014.08.057] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/19/2014] [Accepted: 08/28/2014] [Indexed: 01/23/2023]
|
14
|
Inaba H, Yoshigai E, Okuyama T, Murakoshi M, Sugiyama K, Nishino H, Nishizawa M. Antipyretic analgesic drugs have different mechanisms for regulation of the expression of inducible nitric oxide synthase in hepatocytes and macrophages. Nitric Oxide 2014; 44:61-70. [PMID: 25499030 DOI: 10.1016/j.niox.2014.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/14/2014] [Accepted: 12/02/2014] [Indexed: 12/25/2022]
Abstract
Antipyretic analgesic drugs (including non-steroidal anti-inflammatory drugs) inhibit cyclooxygenase-2 and inducible nitric oxide synthase (iNOS), resulting in decreases of the proinflammatory mediators prostaglandin E2 and nitric oxide (NO), respectively. Both mediators are regulated by nuclear factor-kappa B (NF-κB), a key transcription factor in inflammation. Few reports have compared the efficacy and potency of anti-inflammatory drugs as NO inhibitors. In our study, we examined the effects of four popular antipyretic analgesic drugs on NO production induced in hepatocytes and macrophages. Mouse RAW264.7 macrophages treated with bacterial lipopolysaccharide showed the highest efficacy with regard to NO production; aspirin, loxoprofen, ibuprofen, and acetaminophen dose-dependently suppressed NO induction. Ibuprofen showed the highest potency in suppressing the induced production of NO. In rat hepatocytes, all the drugs inhibited interleukin 1β-induced NO production and ibuprofen and loxoprofen inhibited NO induction effectively. Unexpectedly, the potency of NO suppression of each drug in hepatocytes did not always correlate with that observed in RAW264.7 cells. Microarray analyses of mRNA expression in hepatocytes revealed that the effects of the four antipyretic analgesic drugs modulated the NF-κB signaling pathway in a similar manner to the regulation of the expression of genes associated with inflammation, including the iNOS gene. However, the affected signal-transducing molecules in the NF-κB pathway were different for each drug. Therefore, antipyretic analgesic drugs may decrease NO production by modulating the NF-κB pathway in different ways, which could confer different efficacies and potencies with regard to their anti-inflammatory effects.
Collapse
Affiliation(s)
- Hiroyuki Inaba
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan; Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Michiaki Murakoshi
- Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan; Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keikichi Sugiyama
- Research and Development Headquarters, Lion Corporation, Odawara, Kanagawa, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hoyoku Nishino
- Department of Biochemistry, Kyoto Prefectural University of Medicine, Kyoto, Japan; Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan.
| |
Collapse
|
15
|
Khorkova O, Myers AJ, Hsiao J, Wahlestedt C. Natural antisense transcripts. Hum Mol Genet 2014; 23:R54-63. [PMID: 24838284 DOI: 10.1093/hmg/ddu207] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent years have seen the increasing understanding of the crucial role of RNA in the functioning of the eukaryotic genome. These discoveries, fueled by the achievements of the FANTOM, and later GENCODE and ENCODE consortia, led to the recognition of the important regulatory roles of natural antisense transcripts (NATs) arising from what was previously thought to be 'junk DNA'. Roughly defined as non-coding regulatory RNA transcribed from the opposite strand of a coding gene locus, NATs are proving to be a heterogeneous group with high potential for therapeutic application. Here, we attempt to summarize the rapidly growing knowledge about this important non-coding RNA subclass.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health Inc., 10320 USA Today Way, Miramar, FL 33025, USA
| | | | - Jane Hsiao
- OPKO Health Inc., 10320 USA Today Way, Miramar, FL 33025, USA
| | - Claes Wahlestedt
- Department of Psychiatry and Behavioral Sciences and Center for Therapeutic Innovation, University of Miami Miller School of Medicine, 1501 NW 10th Avenue, Miami, FL 33136, USA
| |
Collapse
|
16
|
Yamanishi R, Yoshigai E, Okuyama T, Mori M, Murase H, Machida T, Okumura T, Nishizawa M. The anti-inflammatory effects of flavanol-rich lychee fruit extract in rat hepatocytes. PLoS One 2014; 9:e93818. [PMID: 24705335 PMCID: PMC3976307 DOI: 10.1371/journal.pone.0093818] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 03/07/2014] [Indexed: 12/23/2022] Open
Abstract
Flavanol (flavan-3-ol)-rich lychee fruit extract (FRLFE) is a mixture of oligomerized polyphenols primarily derived from lychee fruit and is rich in flavanol monomers, dimers, and trimers. Supplementation with this functional food has been shown to suppress inflammation and tissue damage caused by high-intensity exercise training. However, it is unclear whether FRLFE has in vitro anti-inflammatory effects, such as suppressing the production of the proinflammatory cytokine tumor necrosis factor α (TNF-α) and the proinflammatory mediator nitric oxide (NO), which is synthesized by inducible nitric oxide synthase (iNOS). Here, we analyzed the effects of FRLFE and its constituents on the expression of inflammatory genes in interleukin 1β (IL-1β)-treated rat hepatocytes. FRLFE decreased the mRNA and protein expression of the iNOS gene, leading to the suppression of IL-1β-induced NO production. FRLFE also decreased the levels of the iNOS antisense transcript, which stabilizes iNOS mRNA. By contrast, unprocessed lychee fruit extract, which is rich in flavanol polymers, and flavanol monomers had little effect on NO production. When a construct harboring the iNOS promoter fused to the firefly luciferase gene was used, FRLFE decreased the luciferase activity in the presence of IL-1β, suggesting that FRLFE suppresses the promoter activity of the iNOS gene at the transcriptional level. Electrophoretic mobility shift assays indicated that FRLFE reduced the nuclear transport of a key regulator, nuclear factor κB (NF-κB). Furthermore, FRLFE inhibited the phosphorylation of NF-κB inhibitor α (IκB-α). FRLFE also reduced the mRNA levels of NF-κB target genes encoding cytokines and chemokines, such as TNF-α. Therefore, FRLFE inhibited NF-κB activation and nuclear translocation to suppress the expression of these inflammatory genes. Our results suggest that flavanols may be responsible for the anti-inflammatory and hepatoprotective effects of FRLFE and may be used to treat inflammatory diseases.
Collapse
Affiliation(s)
- Ryota Yamanishi
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Emi Yoshigai
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tetsuya Okuyama
- Graduate School of Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Masatoshi Mori
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Hiromitsu Murase
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Toru Machida
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tadayoshi Okumura
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Surgery, Kansai Medical University, Hirakata, Osaka, Japan
| | - Mikio Nishizawa
- Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- * E-mail:
| |
Collapse
|
17
|
Citrus nobiletin suppresses inducible nitric oxide synthase gene expression in interleukin-1β-treated hepatocytes. Biochem Biophys Res Commun 2013; 439:54-9. [PMID: 23958298 DOI: 10.1016/j.bbrc.2013.08.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nobiletin is a polymethoxylated flavone that is abundant in the peels of citrus fruits, such as Citrus unshiu (Satsuma mandarin) and Citrus sinensis. The dried peels of C. unshiu (chinpi) have been included in several formulae of Japanese Kampo medicines. Nobiletin may suppress the induction of inducible nitric oxide synthase (iNOS), which synthesizes the inflammatory mediator nitric oxide (NO) in hepatocytes. METHODS A C. unshiu peel (CUP) extract was prepared. Primary cultured rat hepatocytes were treated with the CUP extract or nobiletin in the presence of interleukin 1β (IL-1β), which induces iNOS expression. NO production and iNOS gene expression were analyzed. RESULTS High-performance liquid chromatography analyses revealed that the nobiletin content in the CUP extract was 0.14%. Nobiletin dose-dependently reduced the NO levels and decreased iNOS expression at the protein, mRNA and antisense transcript levels. Flavone, which does not contain any methoxy groups, also suppressed iNOS induction. Nobiletin reduced the transcriptional activity of iNOS promoter-luciferase constructs and the DNA-binding activity of nuclear factor κB (NF-κB) in the nuclei. CONCLUSIONS The suppression of iNOS induction by nobiletin suggests that nobiletin may be responsible for the anti-inflammatory effects of citrus peels and have a therapeutic potential for liver diseases.
Collapse
|