1
|
Liu C, Liu Q, Mou Z. Redox signaling and oxidative stress in systemic acquired resistance. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4535-4548. [PMID: 38693779 DOI: 10.1093/jxb/erae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Plants fully depend on their immune systems to defend against pathogens. Upon pathogen attack, plants not only activate immune responses at the infection site but also trigger a defense mechanism known as systemic acquired resistance (SAR) in distal systemic tissues to prevent subsequent infections by a broad-spectrum of pathogens. SAR is induced by mobile signals produced at the infection site. Accumulating evidence suggests that reactive oxygen species (ROS) play a central role in SAR signaling. ROS burst at the infection site is one of the earliest cellular responses following pathogen infection and can spread to systemic tissues through membrane-associated NADPH oxidase-dependent relay production of ROS. It is well known that ROS ignite redox signaling and, when in excess, cause oxidative stress, damaging cellular components. In this review, we summarize current knowledge on redox regulation of several SAR signaling components. We discuss the ROS amplification loop in systemic tissues involving multiple SAR mobile signals. Moreover, we highlight the essential role of oxidative stress in generating SAR signals including azelaic acid and extracellular NAD(P) [eNAD(P)]. Finally, we propose that eNAD(P) is a damage-associated molecular pattern serving as a converging point of SAR mobile signals in systemic tissues.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Qingcai Liu
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, PO Box 110700, Gainesville, FL 32611, USA
| |
Collapse
|
2
|
Borrowman S, Kapuganti JG, Loake GJ. Expanding roles for S-nitrosylation in the regulation of plant immunity. Free Radic Biol Med 2023; 194:357-368. [PMID: 36513331 DOI: 10.1016/j.freeradbiomed.2022.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Following pathogen recognition, plant cells produce a nitrosative burst resulting in a striking increase in nitric oxide (NO), altering the redox state of the cell, which subsequently helps orchestrate a plethora of immune responses. NO is a potent redox cue, efficiently relayed between proteins through its co-valent attachment to highly specific, powerfully reactive protein cysteine (Cys) thiols, resulting in formation of protein S-nitrosothiols (SNOs). This process, known as S-nitrosylation, can modulate the function of target proteins, enabling responsiveness to cellular redox changes. Key targets of S-nitrosylation control the production of reactive oxygen species (ROS), the transcription of immune-response genes, the triggering of the hypersensitive response (HR) and the establishment of systemic acquired resistance (SAR). Here, we bring together recent advances in the control of plant immunity by S-nitrosylation, furthering our appreciation of how changes in cellular redox status reprogramme plant immune function.
Collapse
Affiliation(s)
- Sam Borrowman
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | | | - Gary J Loake
- Institute of Molecular Plant Sciences, School of Biological Sciences, Edinburgh University, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK; Centre for Engineering Biology, Max Born Crescent, King's Buildings, Edinburgh, EH9 3BF, UK.
| |
Collapse
|
3
|
Maywald NJ, Mang M, Pahls N, Neumann G, Ludewig U, Francioli D. Ammonium fertilization increases the susceptibility to fungal leaf and root pathogens in winter wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:946584. [PMID: 36160997 PMCID: PMC9500508 DOI: 10.3389/fpls.2022.946584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen (N) fertilization is indispensable for high yields in agriculture due to its central role in plant growth and fitness. Different N forms affect plant defense against foliar pathogens and may alter soil-plant-microbe interactions. To date, however, the complex relationships between N forms and host defense are poorly understood. For this purpose, nitrate, ammonium, and cyanamide were compared in greenhouse pot trials with the aim to suppress two important fungal wheat pathogens Blumeria graminis f. sp. tritici (Bgt) and Gaeumannomyces graminis f. sp. tritici (Ggt). Wheat inoculated with the foliar pathogen Bgt was comparatively up to 80% less infested when fertilized with nitrate or cyanamide than with ammonium. Likewise, soil inoculation with the fungal pathogen Ggt revealed a 38% higher percentage of take-all infected roots in ammonium-fertilized plants. The bacterial rhizosphere microbiome was little affected by the N form, whereas the fungal community composition and structure were shaped by the different N fertilization, as revealed from metabarcoding data. Importantly, we observed a higher abundance of fungal pathogenic taxa in the ammonium-fertilized treatment compared to the other N treatments. Taken together, our findings demonstrated the critical role of fertilized N forms for host-pathogen interactions and wheat rhizosphere microbiome assemblage, which are relevant for plant fitness and performance.
Collapse
|
4
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
5
|
Chen J, Clinton M, Qi G, Wang D, Liu F, Fu ZQ. Reprogramming and remodeling: transcriptional and epigenetic regulation of salicylic acid-mediated plant defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5256-5268. [PMID: 32060527 DOI: 10.1093/jxb/eraa072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/11/2020] [Indexed: 05/13/2023]
Abstract
As a plant hormone, salicylic acid (SA) plays essential roles in plant defense against biotrophic and hemibiotrophic pathogens. Significant progress has been made in understanding the SA biosynthesis pathways and SA-mediated defense signaling networks in the past two decades. Plant defense responses involve rapid and massive transcriptional reprogramming upon the recognition of pathogens. Plant transcription factors and their co-regulators are critical players in establishing a transcription regulatory network and boosting plant immunity. A multitude of transcription factors and epigenetic regulators have been discovered, and their roles in SA-mediated defense responses have been reported. However, our understanding of plant transcriptional networks is still limited. As such, novel genomic tools and bioinformatic techniques will be necessary if we are to fully understand the mechanisms behind plant immunity. Here, we discuss current knowledge, provide an update on the SA biosynthesis pathway, and describe the transcriptional and epigenetic regulation of SA-mediated plant immune responses.
Collapse
Affiliation(s)
- Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Michael Clinton
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Guang Qi
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou, P. R. China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, P. R. China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
6
|
Unravelling the Roles of Nitrogen Nutrition in Plant Disease Defences. Int J Mol Sci 2020; 21:ijms21020572. [PMID: 31963138 PMCID: PMC7014335 DOI: 10.3390/ijms21020572] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023] Open
Abstract
Nitrogen (N) is one of the most important elements that has a central impact on plant growth and yield. N is also widely involved in plant stress responses, but its roles in host-pathogen interactions are complex as each affects the other. In this review, we summarize the relationship between N nutrition and plant disease and stress its importance for both host and pathogen. From the perspective of the pathogen, we describe how N can affect the pathogen’s infection strategy, whether necrotrophic or biotrophic. N can influence the deployment of virulence factors such as type III secretion systems in bacterial pathogen or contribute nutrients such as gamma-aminobutyric acid to the invader. Considering the host, the association between N nutrition and plant defence is considered in terms of physical, biochemical and genetic mechanisms. Generally, N has negative effects on physical defences and the production of anti-microbial phytoalexins but positive effects on defence-related enzymes and proteins to affect local defence as well as systemic resistance. N nutrition can also influence defence via amino acid metabolism and hormone production to affect downstream defence-related gene expression via transcriptional regulation and nitric oxide (NO) production, which represents a direct link with N. Although the critical role of N nutrition in plant defences is stressed in this review, further work is urgently needed to provide a comprehensive understanding of how opposing virulence and defence mechanisms are influenced by interacting networks.
Collapse
|
7
|
A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proc Natl Acad Sci U S A 2019; 116:17090-17095. [PMID: 31371496 DOI: 10.1073/pnas.1900052116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, is emerging as a key modulator of eukaryotic immune function. In plants, a SUMO1/2-dependent process has been proposed to control the deployment of host defense responses. The molecular mechanism underpinning this activity remains to be determined, however. Here we show that increasing nitric oxide levels following pathogen recognition promote S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1, at Cys139. The SUMO-conjugating activities of both SCE1 and its human homolog, UBC9, were inhibited following this modification. Accordingly, mutation of Cys139 resulted in increased levels of SUMO1/2 conjugates, disabled immune responses, and enhanced pathogen susceptibility. Our findings imply that S-nitrosylation of SCE1 at Cys139 enables NO bioactivity to drive immune activation by relieving SUMO1/2-mediated suppression. The control of global SUMOylation is thought to occur predominantly at the level of each substrate via complex local machineries. Our findings uncover a parallel and complementary mechanism by suggesting that total SUMO conjugation may also be regulated directly by SNO formation at SCE1 Cys139. This Cys is evolutionary conserved and specifically S-nitrosylated in UBC9, implying that this immune-related regulatory process might be conserved across phylogenetic kingdoms.
Collapse
|
8
|
Vero S, Garmendia G, Martínez-Silveira A, Cavello I, Wisniewski M. Yeast Activities Involved in Carbon and Nitrogen Cycles in Antarctica. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Vicente J, Mendiondo GM, Pauwels J, Pastor V, Izquierdo Y, Naumann C, Movahedi M, Rooney D, Gibbs DJ, Smart K, Bachmair A, Gray JE, Dissmeyer N, Castresana C, Ray RV, Gevaert K, Holdsworth MJ. Distinct branches of the N-end rule pathway modulate the plant immune response. THE NEW PHYTOLOGIST 2019; 221:988-1000. [PMID: 30117535 DOI: 10.1111/nph.15387] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/11/2018] [Indexed: 05/24/2023]
Abstract
The N-end rule pathway is a highly conserved constituent of the ubiquitin proteasome system, yet little is known about its biological roles. Here we explored the role of the N-end rule pathway in the plant immune response. We investigated the genetic influences of components of the pathway and known protein substrates on physiological, biochemical and metabolic responses to pathogen infection. We show that the glutamine (Gln) deamidation and cysteine (Cys) oxidation branches are both components of the plant immune system, through the E3 ligase PROTEOLYSIS (PRT)6. In Arabidopsis thaliana Gln-specific amino-terminal (Nt)-amidase (NTAQ1) controls the expression of specific defence-response genes, activates the synthesis pathway for the phytoalexin camalexin and influences basal resistance to the hemibiotroph pathogen Pseudomonas syringae pv tomato (Pst). The Nt-Cys ETHYLENE RESPONSE FACTOR VII transcription factor substrates enhance pathogen-induced stomatal closure. Transgenic barley with reduced HvPRT6 expression showed enhanced resistance to Ps. japonica and Blumeria graminis f. sp. hordei, indicating a conserved role of the pathway. We propose that that separate branches of the N-end rule pathway act as distinct components of the plant immune response in flowering plants.
Collapse
Affiliation(s)
- Jorge Vicente
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | | | - Jarne Pauwels
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | - Victoria Pastor
- Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, E-12071, Spain
| | - Yovanny Izquierdo
- Centro National de Biotecnología CSIC, C/Darwin, 3, Campus of Cantoblanco, E-28049, Madrid, Spain
| | - Christin Naumann
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, 06120 Halle (Saale), Germany
| | - Mahsa Movahedi
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Daniel Rooney
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Daniel J Gibbs
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Katherine Smart
- SABMiller Plc, SABMiller House, Church Street West, Woking, GU21 6HS, UK
| | - Andreas Bachmair
- Department of Biochemistry and Cell Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr Gasse 9, Vienna, A-1030, Austria
| | - Julie E Gray
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Nico Dissmeyer
- Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, D-06120, Halle (Saale), Germany
- Science Campus Halle - Plant-Based Bioeconomy, 06120 Halle (Saale), Germany
| | - Carmen Castresana
- Centro National de Biotecnología CSIC, C/Darwin, 3, Campus of Cantoblanco, E-28049, Madrid, Spain
| | - Rumiana V Ray
- School of Biosciences, University of Nottingham, Nottingham, LE12 5RD, UK
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
- Department of Biochemistry, Ghent University, Albert Baertsoenkaai 3, B-9000, Ghent, Belgium
| | | |
Collapse
|
10
|
Imanifard Z, Vandelle E, Bellin D. Measurement of Hypersensitive Cell Death Triggered by Avirulent Bacterial Pathogens in Arabidopsis. Methods Mol Biol 2018; 1743:39-50. [PMID: 29332284 DOI: 10.1007/978-1-4939-7668-3_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hypersensitive response is one of the most powerful and complex defense reactions to survive to pathogen attacks during an incompatible plant-pathogen interaction. Local programmed cell death accompanies the hypersensitive response at the site of infection to prevent pathogen growth and spread. A precise quantitative assessment of this form of programmed cell death is essential to unravel the genetic and molecular mechanisms underlying the process. Here, we first describe the optimization of a Trypan Blue staining protocol for quantitatively measuring the HR-cell death in Arabidopsis. Furthermore, we provide an electrolyte leakage protocol based on pathogen vacuum infiltration, which allows its simultaneous application to a large number of plants as well as to Arabidopsis mutants affected by small size phenotype.
Collapse
Affiliation(s)
- Zahra Imanifard
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
11
|
Alber NA, Sivanesan H, Vanlerberghe GC. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain. PLANT, CELL & ENVIRONMENT 2017; 40:1074-1085. [PMID: 27987212 DOI: 10.1111/pce.12884] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 05/03/2023]
Abstract
The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Qi -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Qo -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III.
Collapse
Affiliation(s)
- Nicole A Alber
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| | - Hampavi Sivanesan
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| | - Greg C Vanlerberghe
- Department of Biological Sciences and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C1A4, Canada
| |
Collapse
|
12
|
Exogenous Feeding of Fructose and Phenylalanine Further Improves Betulin Production in Suspended Betula platyphylla Cells under Nitric Oxide Treatment. Molecules 2017; 22:molecules22071035. [PMID: 28665342 PMCID: PMC6152328 DOI: 10.3390/molecules22071035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 01/11/2023] Open
Abstract
The aim of this study was to assay by NMR the metabolites which contribute to betulin production. 8-day-old suspended birch (Betula platyphylla) cells were treated by sodium nitroprusside (SNP) treatment, an NO donor, and 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (cPTIO), an NO-specific scavenger. The results showed that betulin production was increased by five times after SNP treatment, similar with that of the control under cPTIO treatment. Forty one metabolites were detected after SNP treatment or cPTIO treatment. Among them, 10 were found to significantly contribute to the differences observed between controls and treated cell culture samples. To validate the contribution of the above 10 metabolites to betulin production, myo-inositol, fructose and phenylalanine based on correlation analysis between the content of 12 metabolites and betulin were used to feed birch suspension cell cultures under SNP treatment. Exogenous feeding of fructose or phenylalanine further enhanced the betulin production under SNP treatment, but myo-inositol had the opposite result.
Collapse
|
13
|
Li L, Shi X, Zheng F, Li C, Wu D, Bai G, Gao D, Wu J, Li T. A novel nitrogen-dependent gene associates with the lesion mimic trait in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2075-2084. [PMID: 27460590 DOI: 10.1007/s00122-016-2758-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/22/2016] [Indexed: 05/24/2023]
Abstract
Using bulk segregant analysis (BSA) coupling with RNA-seq and DNA markers identified a potentially novel nitrogen-dependent lesion mimic gene Ndhrl1 on 2BS in wheat. Lesion mimic (LM) refers to hypersensitive reaction-like (HRL) traits that appear on leaf tissue in the absence of plant pathogens. In a wheat line P7001, LM showed up on the leaves under the 0 g nitrogen (N) treatment, but disappeared when sufficient N was supplied, suggesting that LM is N-responsive and N dosage dependent. Using BSA strategy together with RNA-seq and DNA markers, we identified an N-dependent LM gene (Ndhrl1) and mapped it to the short arm of chromosome 2B using an F5 recombinant inbred population developed from the cross of P7001 × P216. The putative gene was delimited into an interval of 8.1 cM flanked by the CAPS/dCAPS markers 7hrC9 and 7hr2dc14, and co-segregated with the dCAPS marker 7hrdc2. This gene is most likely a novel gene for LM in wheat based on its chromosomal location. Further analysis of RNA-seq data showed that plant-pathogen interaction, nitrogen metabolism, zeatin biosynthesis and plant hormone signal transduction pathways were significantly differentially expressed between LM and non-LM lines.
Collapse
Affiliation(s)
- Lei Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xuan Shi
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Fei Zheng
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Changcheng Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Di Wu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Guihua Bai
- Lixiahe Agricultural Research Institute of Jiangsu Province, Yangzhou, 225000, China
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Derong Gao
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Jincai Wu
- College of Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Tao Li
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops; Key Laboratory of Plant Functional Genomics of Ministry of Education; Wheat Research Center, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
14
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 PMCID: PMC4848386 DOI: 10.3389/fpls.2016.00570] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/18/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
| | | | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| |
Collapse
|
15
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/ffpls.2016.00570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
16
|
Corpas FJ. Reactive Nitrogen Species (RNS) in Plants Under Physiological and Adverse Environmental Conditions: Current View. PROGRESS IN BOTANY 2016:97-119. [PMID: 0 DOI: 10.1007/124_2016_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|
17
|
Wany A, Gupta AK, Kumari A, Gupta S, Mishra S, Jaintu R, Pathak PK, Gupta KJ. Chemiluminescence Detection of Nitric Oxide from Roots, Leaves, and Root Mitochondria. Methods Mol Biol 2016; 1424:15-29. [PMID: 27094407 DOI: 10.1007/978-1-4939-3600-7_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
NO is a free radical with short half-life and high reactivity; due to its physiochemical properties it is very difficult to detect the concentrations precisely. Chemiluminescence is one of the robust methods to quantify NO. Detection of NO by this method is based on reaction of nitric oxide with ozone which leads to emission of light and amount of light is proportional to NO. By this method NO can be measured in the range of pico moles to nano moles range. Using direct chemiluminescence method, NO emitted into the gas stream can be detected whereas using indirect chemiluminescence oxidized forms of NO can also be detected. We detected NO using purified nitrate reductase, mitochondria, cell suspensions, and roots; detail measurement method is described here.
Collapse
Affiliation(s)
- Aakanksha Wany
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Alok Kumar Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Shika Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Sonal Mishra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Ritika Jaintu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Pradeep K Pathak
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India
| | - Kapuganti Jagadis Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, 10531, New Delhi, 10067, India.
| |
Collapse
|
18
|
Saxena I, Srikanth S, Chen Z. Cross Talk between H2O2 and Interacting Signal Molecules under Plant Stress Response. FRONTIERS IN PLANT SCIENCE 2016; 7:570. [PMID: 27200043 DOI: 10.3389/fpls.2016.00570/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/13/2016] [Indexed: 05/20/2023]
Abstract
It is well established that oxidative stress is an important cause of cellular damage. During stress conditions, plants have evolved regulatory mechanisms to adapt to various environmental stresses. One of the consequences of stress is an increase in the cellular concentration of reactive oxygen species, which is subsequently converted to H2O2. H2O2 is continuously produced as the byproduct of oxidative plant aerobic metabolism. Organelles with a high oxidizing metabolic activity or with an intense rate of electron flow, such as chloroplasts, mitochondria, or peroxisomes are major sources of H2O2 production. H2O2 acts as a versatile molecule because of its dual role in cells. Under normal conditions, H2O2 immerges as an important factor during many biological processes. It has been established that it acts as a secondary messenger in signal transduction networks. In this review, we discuss potential roles of H2O2 and other signaling molecules during various stress responses.
Collapse
Affiliation(s)
- Ina Saxena
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Sandhya Srikanth
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
19
|
Kovacs I, Durner J, Lindermayr C. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1)-dependent defense signaling in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 208:860-72. [PMID: 26096525 DOI: 10.1111/nph.13502] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/04/2015] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a ubiquitous signaling molecule involved in a wide range of physiological and pathophysiological processes in animals and plants. Although its significant influence on plant immunity is well known, information about the exact regulatory mechanisms and signaling pathways involved in the defense response to pathogens is still limited. We used genetic, biochemical, pharmacological approaches in combination with infection experiments to investigate the NO-triggered salicylic acid (SA)-dependent defense response in Arabidopsis thaliana. The NO donor S-nitrosoglutathione (GSNO) promoted the nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) protein accompanied by an elevated SA concentration and the activation of pathogenesis-related (PR) genes, leading to induced resistance of A. thaliana against Pseudomonas infection. Moreover, NO induced a rapid change in the glutathione status, resulting in increased concentrations of glutathione, which is required for SA accumulation and activation of the NPR1-dependent defense response. Our data imply crosstalk between NO and glutathione, which is integral to the NPR1-dependent defense signaling pathway, and further demonstrate that glutathione is not only an important cellular redox buffer but also a signaling molecule in the plant defense response.
Collapse
Affiliation(s)
- Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764, Munich/Neuherberg, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764, Munich/Neuherberg, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354, Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München - German Research Center for Environmental Health, D-85764, Munich/Neuherberg, Germany
| |
Collapse
|
20
|
Sandalio LM, Romero-Puertas MC. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. ANNALS OF BOTANY 2015; 116:475-85. [PMID: 26070643 PMCID: PMC4577995 DOI: 10.1093/aob/mcv074] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/10/2015] [Accepted: 04/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Peroxisomes are highly dynamic, metabolically active organelles that used to be regarded as a sink for H2O2 generated in different organelles. However, peroxisomes are now considered to have a more complex function, containing different metabolic pathways, and they are an important source of reactive oxygen species (ROS), nitric oxide (NO) and reactive nitrogen species (RNS). Over-accumulation of ROS and RNS can give rise oxidative and nitrosative stress, but when produced at low concentrations they can act as signalling molecules. SCOPE This review focuses on the production of ROS and RNS in peroxisomes and their regulation by antioxidants. ROS production is associated with metabolic pathways such as photorespiration and fatty acid β-oxidation, and disturbances in any of these processes can be perceived by the cell as an alarm that triggers defence responses. Genetic and pharmacological studies have shown that photorespiratory H2O2 can affect nuclear gene expression, regulating the response to pathogen infection and light intensity. Proteomic studies have shown that peroxisomal proteins are targets for oxidative modification, S-nitrosylation and nitration and have highlighted the importance of these modifications in regulating peroxisomal metabolism and signalling networks. The morphology, size, number and speed of movement of peroxisomes can also change in response to oxidative stress, meaning that an ROS/redox receptor is required. Information available on the production and detection of NO/RNS in peroxisomes is more limited. Peroxisomal homeostasis is critical for maintaining the cellular redox balance and is regulated by ROS, peroxisomal proteases and autophagic processes. CONCLUSIONS Peroxisomes play a key role in many aspects of plant development and acclimation to stress conditions. These organelles can sense ROS/redox changes in the cell and thus trigger rapid and specific responses to environmental cues involving changes in peroxisomal dynamics as well as ROS- and NO-dependent signalling networks, although the mechanisms involved have not yet been established. Peroxisomes can therefore be regarded as a highly important decision-making platform in the cell, where ROS and RNS play a determining role.
Collapse
Affiliation(s)
- L M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - M C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|