1
|
Singh S, Saini R, Kumar Chaudhary V, Ghosh K. Organometallic Ru(III) Catalysts for α-Alkylation of Carbonyl Compounds using Alcohols: Mechanistic Insights via Detection of Key Intermediates. Chem Asian J 2025; 20:e202400811. [PMID: 39482933 DOI: 10.1002/asia.202400811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/03/2024]
Abstract
Three novel cyclometalated ruthenium complexes ([Ru.L(9)] [Ru.L(10)] and [Ru.L(11)]) featuring azo functionalities were synthesized and characterized using a variety of spectroscopic techniques, namely FT-IR, electronic absorption spectroscopy, and ESI-MS. Representative solid-state structures of the acquired complexes were determined through X-ray crystallography. These complexes were evidenced to be efficient catalysts for the synthesis of various α-alkylated compounds utilizing simple acetophenone derivatives with easily affordable and economically viable alcohols, which were isolated and characterized via 1H and 13C NMR spectroscopy. The optimum reaction conditions were found by employing toluene as solvent and potassium tert-butoxide as a base at 115 °C temperature utilizing 0.8 mol % of catalyst [Ru.L(10)]. The yield of the desired compounds was found to be in the range of 83-97 %. Additionally, mass spectrometry provided insights into the in-situ generated ruthenium hydride and ruthenium alkoxy intermediates, shedding light on the catalytic mechanism.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Rajat Saini
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | | | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
2
|
Navale GR, Ahmed I, Lim MH, Ghosh K. Transition Metal Complexes as Therapeutics: A New Frontier in Combatting Neurodegenerative Disorders through Protein Aggregation Modulation. Adv Healthc Mater 2024; 13:e2401991. [PMID: 39221545 DOI: 10.1002/adhm.202401991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Neurodegenerative disorders (NDDs) are a class of debilitating diseases that progressively impair the protein structure and result in neurological dysfunction in the nervous system. Among these disorders, Alzheimer's disease (AD), prion diseases such as Creutzfeldt-Jakob disease (CJD), and Parkinson's disease (PD) are caused by protein misfolding and aggregation at the cellular level. In recent years, transition metal complexes have gained significant attention for their potential applications in diagnosing, imaging, and curing these NDDs. These complexes have intriguing possibilities as therapeutics due to their diverse ligand systems and chemical properties and can interact with biological systems with minimal detrimental effects. This review focuses on the recent progress in transition metal therapeutics as a new era of hope in the battle against AD, CJD, and PD by modulating protein aggregation in vitro and in vivo. It may shed revolutionary insights into unlocking new opportunities for researchers to develop metal-based drugs to combat NDDs.
Collapse
Affiliation(s)
- Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Imtiaz Ahmed
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee, 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, 247667, India
| |
Collapse
|
3
|
Ghaffari-Bohlouli P, Jafari H, Okoro OV, Alimoradi H, Nie L, Jiang G, Kakkar A, Shavandi A. Gas Therapy: Generating, Delivery, and Biomedical Applications. SMALL METHODS 2024; 8:e2301349. [PMID: 38193272 DOI: 10.1002/smtd.202301349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/11/2023] [Indexed: 01/10/2024]
Abstract
Oxygen (O2), nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and hydrogen (H2) with direct effects, and carbon dioxide (CO2) with complementary effects on the condition of various diseases are known as therapeutic gases. The targeted delivery and in situ generation of these therapeutic gases with controllable release at the site of disease has attracted attention to avoid the risk of gas poisoning and improve their performance in treating various diseases such as cancer therapy, cardiovascular therapy, bone tissue engineering, and wound healing. Stimuli-responsive gas-generating sources and delivery systems based on biomaterials that enable on-demand and controllable release are promising approaches for precise gas therapy. This work highlights current advances in the design and development of new approaches and systems to generate and deliver therapeutic gases at the site of disease with on-demand release behavior. The performance of the delivered gases in various biomedical applications is then discussed.
Collapse
Affiliation(s)
- Pejman Ghaffari-Bohlouli
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Hafez Jafari
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Houman Alimoradi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| | - Lei Nie
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, Québec, H3A 0B8, Canada
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, Brussels, 1050, Belgium
| |
Collapse
|
4
|
Martins PHR, Romo AIB, Gouveia FS, Paz IA, Nascimento NRF, Andrade AL, Rodríguez-López J, de Vasconcelos MA, Teixeira EH, Moraes CAF, Lopes LGF, Sousa EHSD. Anti-bacterial, anti-biofilm and synergistic effects of phenazine-based ruthenium(II) complexes. Dalton Trans 2024; 53:12627-12640. [PMID: 39011568 DOI: 10.1039/d4dt01033g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Antimicrobial resistance has become a global threat to human health, which is coupled with the lack of novel drugs. Metallocompounds have emerged as promising diverse scaffolds for the development of new antibiotics. Herein, we prepared some metal compounds mainly focusing on cis-[Ru(bpy)(dppz)(SO3)(NO)](PF6) (PR02, bpy = 2,2'-bipyridine, dppz = dipyrido[3,2-a:2',3'-c]phenazine), in which phenazinic and nitric oxide ligands along with sulfite conferred some key properties. This compound exhibited a redox potential for bound NO+/0 of -0.252 V (vs. Ag|AgCl) and a high pH for nitrosyl-nitro conversion of 9.16, making the nitrosyl ligand the major species. These compounds were still able to bind to DNA structures. Interestingly, reduced glutathione (GSH) was unable to promote significant NO/HNO release, an uncommon feature of many similar systems. However, this reducing agent was essential to generate superoxide radicals. Antimicrobial studies were carried out using six bacterial strains, where none or very low activity was observed for Gram-negative bacteria. However, PR02 and PR (cis-[Ru(bpy)(dppz)Cl2]) showed high antibacterial activity in some Gram-positive strains (MBC for S. aureus up to 4.9 μmol L-1), where the activity of PR02 was similar to or at least 4-fold better than that of PR. Besides, PR02 showed capacity to inhibit bacterial biofilm formation, a major health issue leading to bacterial tolerance to antibiotics. Interestingly, we also showed that PR02 can function in synergism with the known antibiotic ampicillin, improving their action up to 4-fold even against resistant strains. Altogether, these results showed that PR02 is a promising antimicrobial nitrosyl ruthenium compound combining features beyond its killing action, which deserves further biological studies.
Collapse
Affiliation(s)
- Patrícia H R Martins
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Adolfo I B Romo
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Florêncio S Gouveia
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Iury A Paz
- Laboratory of Cardiovascular and Renal Physiology and Pharmacology (LAFCAR), State University of Ceará (UECE), Fortaleza, 60714-903, Brazil
| | - Nilberto R F Nascimento
- Laboratory of Cardiovascular and Renal Physiology and Pharmacology (LAFCAR), State University of Ceará (UECE), Fortaleza, 60714-903, Brazil
| | - Alexandre L Andrade
- Biomolecule Integrated Laboratory (LIBS), Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | - Joaquín Rodríguez-López
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Mayron A de Vasconcelos
- Faculty of Education of Itapipoca (FACEDI), State University of Ceará, Itapipoca (UECE), Ceará, 62500-000, Brazil
| | - Edson Holanda Teixeira
- Biomolecule Integrated Laboratory (LIBS), Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil
| | | | - Luiz G F Lopes
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| | - Eduardo Henrique Silva de Sousa
- Bioinorganic Group, Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, 60451-970, Brazil.
| |
Collapse
|
5
|
Juarez-Martinez Y, Labra-Vázquez P, Lacroix PG, Tassé M, Mallet-Ladeira S, Pimienta V, Malfant I. Photorelease of Nitric Oxide (NO) in Mono- and Bimetallic Ruthenium Nitrosyl Complexes: A Photokinetic Investigation with a Two-Step Model. Inorg Chem 2024; 63:7665-7677. [PMID: 38623892 DOI: 10.1021/acs.inorgchem.3c04496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Two monometallic and three bimetallic ruthenium acetonitrile (RuMeCN) complexes are presented and fully characterized. All of them are built from the same skeleton [FTRu(bpy)(MeCN)]2+, in which FT is a fluorenyl-substituted terpyridine ligand and bpy is the 2,2'-bipyridine. The crystal structure of [FTRu(bpy)(MeCN)](PF6)2 is presented. A careful spectroscopic analysis allows establishing that these 5 RuMeCN complexes can be identified as the product of the photoreaction of 5 related RuNO complexes, investigated as efficient nitric oxide (NO) donors. Based on this set of complexes, the mechanism of the NO photorelease of the bimetallic complexes has been established through a complete investigation under irradiations performed at 365, 400, 455, and 490 nm wavelength. A two-step (A → B → C) kinetic model specially designed for this purpose provides a good description of the mechanism, with quantum yields of photorelease in the range 0.001-0.029, depending on the irradiation wavelength. In the first step of release, the quantum yields (ϕAB) are always found to be larger than those of the second step (ϕBC), at any irradiation wavelengths.
Collapse
Affiliation(s)
- Yael Juarez-Martinez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pablo Labra-Vázquez
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Pascal G Lacroix
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Marine Tassé
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
- Institut de Chimie de Toulouse (ICT, UAR 2599), 118 Route de Narbonne, 31062 Toulouse Cedex 09, France
| | - Véronique Pimienta
- Laboratoire SOFTMAT, Université Toulouse III, 118 Rte de Narbonne, 31062 Toulouse, France
| | - Isabelle Malfant
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, F-31077 Toulouse, France
| |
Collapse
|
6
|
Saini R, Navale GR, Singh S, Singh HK, Chauhan R, Agrawal S, Sarkar D, Sarma M, Ghosh K. Inhibition of amyloid β 1-42 peptide aggregation by newly designed cyclometallated palladium complexes. Int J Biol Macromol 2023; 248:125847. [PMID: 37460075 DOI: 10.1016/j.ijbiomac.2023.125847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 03/16/2023] [Accepted: 07/13/2023] [Indexed: 07/26/2023]
Abstract
Uncontrolled amyloid aggregation is a frequent cause of neurodegenerative disorders such as prions and Alzheimer's disease (AD). As a result, many drug development approaches focus on evaluating novel molecules that can alter self-recognition pathways. Herein, we designed and synthesized the cyclometallated pyrene (Pd-1 and Pd-3) and anthracene (Pd-2) based palladium complexes ([Pd((L1)Cl] Pd-1, [Pd(L2)Cl](Pd-2), and [Pd(L3)Cl] (Pd-3)). This study explores the effect of these complexes on the aggregation, fibrillation, and amyloid formation of bovine serum albumin (BSA) and Aβ1-42 peptide. Several spectroscopic methods were used to characterize all the Pd-complexes, and the molecular structure of Pd-3 was determined by X-ray crystallography. The secondary structures were studied using circular dichroism (CD) and transmission electron microscopy (TEM), while amyloid aggregation and inhibitory activities were investigated using the Thioflavin-T (ThT) fluorescence assay. Molecular docking of the Pd-complex (Pd-3) was done using fibril (PDB: 2BEG) and monomeric (PDB: 1IYT) peptides using Auto-dock Vina. As a result, the hydrogen bonding and hydrophobic interaction between the aromatic rings of the Pd-complexes and the amino acids of amyloid-β peptides significantly reduced the production of ordered β-sheets of amyloid fibrils and protein aggregation in the presence of Pd-2 and Pd-3 complexes.
Collapse
Affiliation(s)
- Rahul Saini
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Rahul Chauhan
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
7
|
Navale GR, Rana A, Saini S, Singh S, Saini R, Chaudhary VK, Roy P, Ghosh K. An efficient fluorescence chemosensor for sensing Zn(II) ions and applications in cell imaging and detection of Zn(II) induced aggregation of PrP(106–126) peptide. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Navale GR, Singh S, Ghosh K. NO donors as the wonder molecules with therapeutic potential: Recent trends and future perspectives. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
9
|
Singh S, Navale GR, Agrawal S, Singh HK, Singla L, Sarkar D, Sarma M, Choudhury AR, Ghosh K. Design and synthesis of ruthenium complexes and their studies on the inhibition of amyloid β (1-42) peptide aggregation. Int J Biol Macromol 2023; 239:124197. [PMID: 36972817 DOI: 10.1016/j.ijbiomac.2023.124197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/07/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Misfolding and protein aggregation have been linked to numerous human neurodegenerative disorders such as Alzheimer's, prions, and Parkinson's. Due to their interesting photophysical properties, ruthenium (Ru) complexes have received considerable attention in studying protein aggregation. In this study, we synthesized the novel Ru complexes ([Ru(p-cymene)Cl(L-1)][PF6](Ru-1), and [Ru(p-cymene)Cl(L-2)][PF6](Ru-2)) and investigated their inhibitory activity against the bovine serum albumin (BSA) aggregation and the Aβ1-42 peptides amyloid formation. Several spectroscopic methods were used to characterize the complexes, and the molecular structure was determined by X-ray crystallography. Amyloid aggregation and inhibition activity were examined using the Thioflavin-T (ThT) assay, and secondary structures were analyzed by circular dichroism (CD) spectroscopy and transmission electron microscopy (TEM). The cell viability assay was carried out on the neuroblastoma cell line, revealing that the Ru-2 complex showed better protective effects against Aβ1-42 peptide toxicity on neuro-2a cells than the Ru-1 complex. Molecular docking studies elucidate binding sites and interactions between the Ru-complexes and the Aβ1-42 fibrils. The experimental studies revealed that these complexes significantly inhibited BSA aggregation and Aβ1-42 amyloid fibril formation at 1:3 and 1:1 equimolar concentrations, respectively. Antioxidant assays demonstrated that these complexes act as antioxidants, protecting from amyloid-induced oxidative stress. Molecular docking studies with the monomeric Aβ1-42 (PDB: 1IYT) show hydrophobic interaction, and both complexes bind preferably in the central region of the peptide and coordinate with two binding sites of the peptide. Hence, we suggest that the Ru-based complexes could be applied as a potential agent in metallopharmaceutical research against Alzheimer's disease.
Collapse
Affiliation(s)
- Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Govinda R Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Haobam Kisan Singh
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Labhini Singla
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Manabendra Sarma
- Department of Chemistry, Indian Institute of Technology, Guwahati 781039, India
| | - Anghuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India; Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India.
| |
Collapse
|
10
|
Ratnam A, Kumari S, Singh S, Mawai K, Kumar R, Singh UP, Ghosh K. Unprecedented cleavage of -N-N- bond of ligand and phenyl ring nitration during nitric oxide (NO) reactivity studies: new ruthenium nitrosyl complex and photoinduced liberation of NO. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2141115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anand Ratnam
- Department of Chemistry, DDU Gorakhpur University, Gorakhpur, India
| | - Sheela Kumari
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kiran Mawai
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Rajan Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - U. P. Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, India
- Department of Bioscience and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
11
|
Navale G, Singh S, Agrawal S, Ghosh C, Roy Choudhury A, Roy P, Sarkar D, Ghosh K. DNA binding, antitubercular, antibacterial and anticancer studies of newly designed piano-stool ruthenium( ii) complexes. Dalton Trans 2022; 51:16371-16382. [DOI: 10.1039/d2dt02577a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemotherapeutic potential of ruthenium(ii) complexes as DNA binding, antitubercular, antibacterial, and anticancer agents.
Collapse
Affiliation(s)
- Govinda Navale
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sain Singh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
| | - Sonia Agrawal
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Chandrachur Ghosh
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Angshuman Roy Choudhury
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, India
| | - Partha Roy
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| | - Dhiman Sarkar
- Department of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411 008, India
| | - Kaushik Ghosh
- Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee 247667, India
| |
Collapse
|