1
|
Scavuzzo CJ, LeBlancq MJ, Nargang F, Lemieux H, Hamilton TJ, Dickson CT. The amnestic agent anisomycin disrupts intrinsic membrane properties of hippocampal neurons via a loss of cellular energetics. J Neurophysiol 2019; 122:1123-1135. [PMID: 31291154 PMCID: PMC6766744 DOI: 10.1152/jn.00370.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/08/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
The nearly axiomatic idea that de novo protein synthesis is necessary for long-term memory consolidation is based heavily on behavioral studies using translational inhibitors such as anisomycin. Although inhibiting protein synthesis has been shown to disrupt the expression of memory, translational inhibitors also have been found to profoundly disrupt basic neurobiological functions, including the suppression of ongoing neural activity in vivo. In the present study, using transverse hippocampal brain slices, we monitored the passive and active membrane properties of hippocampal CA1 pyramidal neurons using intracellular whole cell recordings during a brief ~30-min exposure to fast-bath-perfused anisomycin. Anisomycin suppressed protein synthesis to 46% of control levels as measured using incorporation of radiolabeled amino acids and autoradiography. During its application, anisomycin caused a significant depolarization of the membrane potential, without any changes in apparent input resistance or membrane time constant. Anisomycin-treated neurons also showed significant decreases in firing frequencies and spike amplitudes, and showed increases in spike width across spike trains, without changes in spike threshold. Because these changes indicated a loss of cellular energetics contributing to maintenance of ionic gradients across the membrane, we confirmed that anisomycin impaired mitochondrial function by reduced staining with 2,3,5-triphenyltetrazolium chloride and also impaired cytochrome c oxidase (complex IV) activity as indicated through high-resolution respirometry. These findings emphasize that anisomycin-induced alterations in neural activity and metabolism are a likely consequence of cell-wide translational inhibition. Critical reevaluation of studies using translational inhibitors to promote the protein synthesis dependent idea of long-term memory is absolutely necessary.NEW & NOTEWORTHY Memory consolidation is thought to be dependent on the synthesis of new proteins because translational inhibitors produce amnesia when administered just after learning. However, these agents also disrupt basic neurobiological functions. We show that blocking protein synthesis disrupts basic membrane properties of hippocampal neurons that correspond to induced disruptions of mitochondrial function. It is likely that translational inhibitors cause amnesia through their disruption of neural activity as a result of dysfunction of intracellular energetics.
Collapse
Affiliation(s)
- C. J. Scavuzzo
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
| | - M. J. LeBlancq
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
| | - F. Nargang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - H. Lemieux
- Faculty Saint-Jean, Department of Medicine, Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
| | - T. J. Hamilton
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Psychology, MacEwan University, Edmonton, Alberta, Canada
| | - C. T. Dickson
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
de Abreu MS, Giacomini AC, dos Santos BE, Genario R, Marchiori NI, Rosa LGD, Kalueff AV. Effects of lidocaine on adult zebrafish behavior and brain acetylcholinesterase following peripheral and systemic administration. Neurosci Lett 2019; 692:181-186. [DOI: 10.1016/j.neulet.2018.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
|
3
|
ZIP It: Neural Silencing Is an Additional Effect of the PKM-Zeta Inhibitor Zeta-Inhibitory Peptide. J Neurosci 2017; 36:6193-8. [PMID: 27277798 DOI: 10.1523/jneurosci.4563-14.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/25/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Protein kinase M ζ (PKMζ), an atypical isoform of protein kinase C, has been suggested to be necessary and sufficient for the maintenance of long-term potentiation (LTP) and long-term memory (LTM). This evidence is heavily based on the use of ζ inhibitory peptide (ZIP), a supposed specific inhibitor of PKMζ that interferes with both LTP and LTM. Problematically, both LTP and LTM are unaffected in both constitutive and conditional PKMζ knock-out mice, yet both are still impaired by ZIP application, suggesting a nonspecific mechanism of action. Because translational interference can disrupt neural activity, we assessed network activity after a unilateral intrahippocampal infusion of ZIP in anesthetized rats. ZIP profoundly reduced spontaneous hippocampal local field potentials, comparable in magnitude to infusions of lidocaine, but with a slower onset and longer duration. Our results highlight a serious confound in interpreting the behavioral effects of ZIP. We suggest that future molecular approaches in neuroscience consider the intervening level of cellular and systems neurophysiology before claiming influences on behavior. SIGNIFICANCE STATEMENT Long-term memory in the brain is thought to arise from a sustained molecular process that can maintain changes in synaptic plasticity. A so-called candidate for the title of "the memory molecule" is protein kinase M ζ (PKMζ), mainly because its inhibition by ζ inhibitory peptide (ZIP) interferes with previously established synaptic plasticity and memory. We show that brain applications of ZIP that can impair memory actually profoundly suppress spontaneous brain activity directly or can cause abnormal seizure activity. We suggest that normal brain activity occurring after learning may be a more primary element of memory permanence.
Collapse
|
4
|
Schiffino FL, Holland PC. Consolidation of altered associability information by amygdala central nucleus. Neurobiol Learn Mem 2016; 133:204-213. [PMID: 27427328 PMCID: PMC4987260 DOI: 10.1016/j.nlm.2016.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/13/2016] [Accepted: 07/14/2016] [Indexed: 12/26/2022]
Abstract
The surprising omission of a reinforcer can enhance the associability of the stimuli that were present when the reward prediction error was induced, so that they more readily enter into new associations in the future. Previous research from this laboratory identified brain circuit elements critical to the enhancement of stimulus associability by the omission of an expected event and to the subsequent expression of that altered associability in more rapid learning. These elements include the amygdala, the midbrain substantia nigra, the basal forebrain substantia innominata, the dorsolateral striatum, the secondary visual cortex, and the posterior parietal cortex. Here, we found that consolidation of a surprise-enhanced associability memory in a serial prediction task depends on processing in the amygdala central nucleus (CeA) after completion of sessions that included the surprising omission of an expected event. Post-surprise infusions of anisomycin, lidocaine, or muscimol prevented subsequent display of surprise-enhanced associability. Because previous studies indicated that CeA function is unnecessary for the expression of associability enhancements that were induced previously when CeA function was intact (Holland & Gallagher, 2006), we interpreted these results as indicating that post-surprise activity of CeA ("surprise replay") is necessary for the consolidation of altered associability memories elsewhere in the brain, such as the posterior parietal cortex (Schiffino et al., 2014a).
Collapse
Affiliation(s)
- Felipe L Schiffino
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Peter C Holland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
5
|
Tolić L, Grujić S, Mojović M, Jovanović M, Lubec G, Bačić G, Laušević M. Determination of anisomycin in tissues and serum by LC-MS/MS: application to pharmacokinetic and distribution studies in rats. RSC Adv 2016. [DOI: 10.1039/c6ra16083b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first study on anisomycin pharmacokinetics in rats using a new preparation method for tissues and serum and LC-MS/MS analysis.
Collapse
Affiliation(s)
- Ljiljana Tolić
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Svetlana Grujić
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Miloš Mojović
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Miloš Jovanović
- Faculty of Biology
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Gert Lubec
- Medical University of Vienna
- Department of Pediatrics
- 1090 Vienna
- Austria
| | - Goran Bačić
- Faculty of Physical Chemistry
- University of Belgrade
- 11000 Belgrade
- Serbia
| | - Mila Laušević
- Faculty of Technology and Metallurgy
- University of Belgrade
- 11000 Belgrade
- Serbia
| |
Collapse
|
6
|
Tolić L, Lović J, Petrović S, Mijin D, Grujić S, Laušević M, Ivić MA. Investigation of electrochemical behavior of anisomycin on gold electrode followed by HPLC–MS/MS analysis. Electrochem commun 2015. [DOI: 10.1016/j.elecom.2015.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
7
|
Dubue JD, McKinney TL, Treit D, Dickson CT. Intrahippocampal Anisomycin Impairs Spatial Performance on the Morris Water Maze. J Neurosci 2015; 35:11118-24. [PMID: 26245972 PMCID: PMC6605282 DOI: 10.1523/jneurosci.1857-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/21/2022] Open
Abstract
New memories are thought to be solidified (consolidated) by de novo synthesis of proteins in the period subsequent to learning. This view stems from the observation that protein synthesis inhibitors, such as anisomycin (ANI), administered during this consolidation period cause memory impairments. However, in addition to blocking protein synthesis, intrahippocampal infusions of ANI cause the suppression of evoked and spontaneous neural activity, suggesting that ANI could impair memory expression by simply preventing activity-dependent brain functions. Here, we evaluated the influence of intrahippocampal ANI infusions on allocentric spatial navigation using the Morris water maze, a task well known to require dorsal hippocampal integrity. Young, adult male Sprague Dawley rats were implanted with bilateral dorsal hippocampal cannulae, and their ability to learn the location of a hidden platform was assessed before and following infusions of ANI, TTX, or vehicle (PBS). Before infusion, all groups demonstrated normal spatial navigation (training on days 1 and 2), whereas 30 min following infusions (day 3) both the ANI and TTX groups showed significant impairments in allocentric navigation, but not visually cued navigation, when compared with PBS-treated animals. Spatial navigational deficits appeared to resolve on day 4 in the ANI and TTX groups, 24 h following infusion. These results show that ANI and TTX inhibit the on-line function of the dorsal hippocampus in a similar fashion and highlight the importance of neural activity as an intervening factor between molecular and behavioral processes. SIGNIFICANCE STATEMENT The permanence of memories has long thought to be mediated by the production of new proteins, because protein synthesis inhibitors can block retrieval of recently learned information. However, protein synthesis inhibitors may have additional detrimental effects on neurobiological function. Here we show that anisomycin, a commonly used protein synthesis inhibitor in memory research, impairs on-line brain function in a way similar to an agent that eliminates electrical neural activity. Since disruption of neural activity can also lead to memory loss, it may be that memory permanence is mediated by neural rehearsal following learning.
Collapse
Affiliation(s)
- Jonathan D Dubue
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Ty L McKinney
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Dallas Treit
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, Alberta, Canada T6G 2E9, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7, and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
8
|
Pena RR, Pereira-Caixeta AR, Moraes MFD, Pereira GS. Anisomycin administered in the olfactory bulb and dorsal hippocampus impaired social recognition memory consolidation in different time-points. Brain Res Bull 2014; 109:151-7. [PMID: 25451454 DOI: 10.1016/j.brainresbull.2014.10.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 10/13/2014] [Accepted: 10/19/2014] [Indexed: 12/31/2022]
Abstract
To identify an individual as familiar, rodents form a specific type of memory named social recognition memory. The olfactory bulb (OB) is an important structure for social recognition memory, while the hippocampus recruitment is still controversial. The present study was designed to elucidate the OB and the dorsal hippocampus contribution to the consolidation of social memory. For that purpose, we tested the effect of anisomycin (ANI), which one of the effects is the inhibition of protein synthesis, on the consolidation of social recognition memory. Swiss adult mice with cannulae implanted into the CA1 region of the dorsal hippocampus or into the OB were exposed to a juvenile during 5 min (training session; TR), and once again 1.5 h or 24 h later to test social short-term memory (S-STM) or social long-term memory (S-LTM), respectively. To study S-LTM consolidation, mice received intra-OB or intra-CA1 infusion of saline or ANI immediately, 3, 6 or 18 h after TR. ANI impaired S-LTM consolidation in the OB, when administered immediately or 6h after TR. In the dorsal hippocampus, ANI was amnesic only if administered 3 h after TR. Furthermore, the infusion of ANI in either OB or CA1, immediately after training, did not affect S-STM. Moreover, ANI administered into the OB did not alter the animal's performance in the buried food-finding task. Altogether, our results suggest the consolidation of S-LTM requires both OB and hippocampus participation, although in different time points. This study may help shedding light on the specific roles of the OB and dorsal hippocampus in social recognition memory.
Collapse
Affiliation(s)
- R R Pena
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - A R Pereira-Caixeta
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - M F D Moraes
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil
| | - G S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627-CEP, Campus Pampulha, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
9
|
Delorenzi A, Maza FJ, Suárez LD, Barreiro K, Molina VA, Stehberg J. Memory beyond expression. ACTA ACUST UNITED AC 2014; 108:307-22. [PMID: 25102126 DOI: 10.1016/j.jphysparis.2014.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 01/05/2023]
Abstract
The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.
Collapse
Affiliation(s)
- A Delorenzi
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - F J Maza
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - L D Suárez
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - K Barreiro
- Laboratorio de Neurobiología de la Memoria, Departamento de Fisiología y Biología Molecular, IFIByNE-CONICET, Pabellón II, FCEyN, Universidad de Buenos Aires, Ciudad Universitaria (C1428EHA), Argentina.
| | - V A Molina
- Departamento de Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, IFEC-CONICET (X5000HUA), Argentina.
| | - J Stehberg
- Laboratorio de Neurobiología, Departamento de Ciencias Biológicas, Universidad Andrés Bello, Chile.
| |
Collapse
|
10
|
Lin JY, Amodeo LR, Arthurs J, Reilly S. Anisomycin infusions in the parabrachial nucleus and taste neophobia. Neurobiol Learn Mem 2012; 98:348-53. [PMID: 23063932 DOI: 10.1016/j.nlm.2012.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 01/11/2023]
Abstract
To investigate whether de novo protein synthesis in the parabrachial nucleus (PBN) is required for recovery from taste neophobia, anisomycin (a protein synthesis inhibitor) was infused immediately after consumption of a novel saccharin solution (Experiment 1). Unexpectedly, this PBN treatment caused a reduction in saccharin intake. In addition, we found that the anisomycin-induced suppression of tastant intake was attenuated by prior intra-PBN infusions of lidocaine (Experiment 2). This pattern of results raises concerns about using anisomycin to investigate memory consolidation processes in the PBN. Thus, a different manipulation may be needed to examine the nature of the neuroplastic changes that occur in the PBN during taste memory formation.
Collapse
Affiliation(s)
- Jian-You Lin
- Department of Psychology, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | | | | | | |
Collapse
|
11
|
Li JY, Huang JY, Li M, Zhang H, Xing B, Chen G, Wei D, Gu PY, Hu WX. Anisomycin induces glioma cell death via down-regulation of PP2A catalytic subunit in vitro. Acta Pharmacol Sin 2012; 33:935-40. [PMID: 22684030 DOI: 10.1038/aps.2012.46] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM To examine the effects of anisomycin on glioma cells and the related mechanisms in vitro. METHODS The U251 and U87 human glioblastoma cell lines were tested. The growth of the cells was analyzed using a CCK-8 cell viability assay. Apoptosis was detected using a flow cytometry assay. The expression of proteins and phosphorylated kinases was detected using Western blotting. RESULTS Treatment of U251 and U87 cells with anisomycin (0.01-8 μmol/L) inhibited the cell growth in time- and concentration-dependent manners (the IC(50) values at 48 h were 0.233±0.021 and 0.192±0.018 μmol/L, respectively). Anisomycin (4 μmol/L) caused 21.5%±2.2% and 25.3%±3.1% of apoptosis proportion, respectively, in U251 and U87 cells. In the two cell lines, anisomycin (4 μmol/L) activated p38 MAPK and JNK, and inactivated ERK1/2. However, neither the p38 MAPK inhibitor SB203580 (10 μmol/L) nor the JNK inhibitor SP600125 (10 μmol/L) prevented anisomycin-induced cell death. On the other hand, anisomycin (4 μmol/L) reduced the level of PP2A/C subunit (catalytic subunit) in a time-dependent manner in the two cell lines. Treatment of the two cell lines with the PP2A inhibitor okadaic acid (100 nmol/L) caused marked cell death. CONCLUSION Anisomycin induces glioma cell death via down-regulation of PP2A catalytic subunit. The regulation of PP2A/C exression by anisomycin provides a clue to further study on its role in glioma therapy.
Collapse
|
12
|
Gold PE, Wrenn SM. Cycloheximide impairs and enhances memory depending on dose and footshock intensity. Behav Brain Res 2012; 233:293-7. [PMID: 22610049 DOI: 10.1016/j.bbr.2012.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 05/05/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022]
Abstract
This experiment examined the effects on memory of interactions of cycloheximide dose and training foot shock intensity. Mice received injections of cycloheximide (120 mg/kg, s.c.) or saline 30 min prior to inhibitory avoidance training with shock intensities of 100, 150, 250 or 300 μA (1 s duration). Memory was tested 48 h later. The saline control mice showed increasing memory latencies as a function of shock intensity. The ability of cycloheximide to impair memory increased as the training shock intensity increased. In a second experiment, mice were trained with a 200 μA (1 s duration) shock and received injections of saline or cycloheximide at one of several doses (30, 60 or 120 mg/kg). Under these training conditions, cycloheximide enhanced memory in an inverted-U dose-response manner. These findings are consistent with prior findings suggesting that protein synthesis inhibitors act on memory by altering modulators of memory formation as a secondary consequence of the inhibition of protein synthesis rather than by interfering with training-initiated synthesis of proteins required for memory formation.
Collapse
Affiliation(s)
- Paul E Gold
- Department of Biology, Life Sciences Complex, Syracuse University, Syracuse, NY 13244, USA.
| | | |
Collapse
|
13
|
Macdonald CJ, Cheng RK, Meck WH. Acquisition of "Start" and "Stop" response thresholds in peak-interval timing is differentially sensitive to protein synthesis inhibition in the dorsal and ventral striatum. Front Integr Neurosci 2012; 6:10. [PMID: 22435054 PMCID: PMC3303086 DOI: 10.3389/fnint.2012.00010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/28/2012] [Indexed: 01/07/2023] Open
Abstract
Time-based decision-making in peak-interval timing procedures involves the setting of response thresholds for the initiation (“Start”) and termination (“Stop”) of a response sequence that is centered on a target duration. Using intracerebral infusions of the protein synthesis inhibitor anisomycin, we report that the acquisition of the “Start” response depends on normal functioning (including protein synthesis) in the dorsal striatum (DS), but not the ventral striatum (VS). Conversely, disruption of the VS, but not the DS, impairs the acquisition of the “Stop” response. We hypothesize that the dorsal and ventral regions of the striatum function as a competitive neural network that encodes the temporal boundaries marking the beginning and end of a timed response sequence.
Collapse
|